
Journal of Statistical Theory and Applications
Vol. 19(3), September 2020, pp. 432–438

DOI: https://doi.org/10.2991/jsta.d.200923.001; ISSN 1538-7887
https://www.atlantis-press.com/journals/jsta

A New Stochastic Process with Long-Range Dependence

Sung Ik Kim1,*, , Young Shin Kim2
1College of Business, Louisiana State University Shreveport, 1 University Place, Shreveport, LA 71115, USA
2College of Business, Stony Brook University, 100 Nicolls Road., Stony Brook, NY 11794, USA

ART I C L E I N FO
Article History

Received 10 Jun 2020
Accepted 15 Sep 2020

Keywords

Generalized hyperbolic process
Lévy process
Time-changed Brownian motion
Long-range dependence
Fractional Brownian motion

ABSTRACT
In this paper, we introduce a fractional Generalized Hyperbolic process, a new stochastic process with long-range dependence
obtained by subordinating fractional Brownianmotion to a fractionalGeneralized InverseGaussian process. The basic properties
and covariance structure between the elements of the processes are discussed, and we present numerical methods to generate
the sample paths for the processes.
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1. INTRODUCTION

The fractional Brownian motion {BH(t)}t≥0 with Hurst parameter H ∈ (0, 1) is a continuous zero mean Gaussian process with stationary
increments and covariance function

Cov (BH(t),BH(s)) = 1
2
(
|t|2H + |s|2H − |t − s|2H

)
, for t, s ∈ ℝ.

ForH = 1/2, the fractional Brownian motion is the same as ordinary Brownian motion which has independent increments. The fractional
Brownian motion is first introduced by Mandelbrot and Van Ness [1] and has been widely used in many areas, such as theoretical physics,
probability, hydrology, biology, finance, and many others, due to growing interest in the simulation of long-range dependence processes. In
finance, especially, as a subclass of the fractional Stable process (See Samorodnitsky and Taqqu [2]), it has been applied to financial time
series models having long-range dependence (See Willinger et al. [3], Lo [4], Cutland et al. [5]). Indeed, Kim [6] introduces the fractional
multivariate Normal Tempered Stable process by using the time-changed fractional Brownian motion with the fractional Tempered Stable
subordinator. Kim [7] redefines a fractionalmultivariate Normal Tempered Stable process and constructs newmarketmodel by applying the
process to innovations on themultivariate ARMA-GARCHmodel.1 Furthermore, Kim et al. [10] use a fractional Tempered Stable process in
option pricing and compare its performance with that of the models using other types of stochastic processes. Other than Tempered Stable
process, Meerschaert et al. [11] obtains fractional Laplace motion by subordinating fractional Brownian motion to a Gamma process to
model hydraulic conductivity fields in geophysics, and Kozubowski et al. [12] applies it to modeling financial time series. Fractional Normal
Inverse Gaussian process is also proposed as a simple alternative to the Normal Inverse Gaussian process with long-range dependence (See
Kumar et al. [13], Kumar and Vellaisamy [14]).

Financial data have typically exhibited distinct nonperiodic cyclical patterns which are indicative of the presence of long-range dependence.
In this paper, we introduce a fractional Generalized Hyperbolic process, a new stochastic process with the long-range dependence. The
process is defined by taking the fractional Brownian motion that replaces the time variable to a fractional Generalized Inverse Gaussian
process. It is noted that using the time-changed fractional Brownianmotion with another long-range dependent stochastic process makes it
possible to capture endogenous as well as exogenous long-range dependence (See Kim [6]). We discuss the basic properties of this process
and obtain covariance structure between two elements of the processes from the covariance matrix of the fractional multivariate Brownian
motion.

*Corresponding author. Email: sung.kim@lsus.edu

1 Please refer to Rachev and Mittnik [8], Sun et al. [9] for other applications of Stable process to the fractional models.
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Our paper is organized as follows: In Section 2, we reviewGeneralized Inverse Gaussian distribution. In Section 3, the fractional Generalized
Inverse Gaussian process is defined, and its basic properties are discussed. In Section 4, we study the corresponding fractional univariate
Generalized Hyperbolic process and discuss long-range dependence. Section 5 is devoted to the presentation of the fractional multivariate
Generalized Hyperbolic process. In Section 6, we simulate the fractional Generalized Hyperbolic processes and illustrate sample paths for
representative values of parameters. The principal findings are summarized in Section 7.

2. GENERALIZED INVERSE GAUSSIAN DISTRIBUTION

The class of Generalized InverseGaussian distributionwhich has been extensively studied by Jørgensen [15] is described by three parameters
(𝜆, 𝛿, 𝛾). Its density function has support on the positive axis and is given by

fGIG(x) =
(𝛾/𝛿)𝜆
2N𝜆(𝛿𝛾)

x𝜆−1 exp
(
−1
2
(
𝛿2x−1 + 𝛾2x

))
, x > 0, (1)

whereN𝜆 is the modified Bessel function of the second kind with index 𝜆 given byN𝜆(x) = ∫∞0 u𝜆−1e−
1
2 x(u

−1+u)du for x > 0. The parameter
domain of the Generalized Inverse Gaussian distribution is

𝛿 > 0, 𝛾 ≥ 0, if 𝜆 < 0,
𝛿 > 0, 𝛾 > 0, if 𝜆 = 0,
𝛿 ≥ 0, 𝛾 > 0, if 𝜆 > 0.

If 𝜆 = − 1
2 , the density function in Equation (1) reduces to that of the Inverse Gaussian distribution. The Gamma distribution is a limiting

case of the Generalized Inverse Gaussian distribution for 𝜆 > 0 and 𝛾 > 0 and 𝛿 → 0. The mean and the variance of a Generalized Inverse
Gaussian random variable G can easily be obtained from the Laplace transform. They are given, respectively, by E[G] = 𝛿

𝛾
N𝜆+1(𝛿𝛾)
N𝜆(𝛿𝛾) and

Var(G) = 𝛿2

𝛾2 [N𝜆+2(𝛿𝛾)
N𝜆(𝛿𝛾) − N2

𝜆+1(𝛿𝛾)
N2
𝜆(𝛿𝛾)

]. Proposition 2.1 defines characteristic function of the Generalized Inverse Gaussian G.

Proposition 2.1. The characteristic function of a Generalized Inverse Gaussian random variable G is given by

𝜙G(u) =
(

𝛾
√𝛾2 − 2iu

)𝜆
N𝜆(𝛿√𝛾2 − 2iu)

N𝜆(𝛿𝛾)
, 𝛿, 𝛾 > 0.

Proof. Let q(𝜆, 𝛿, 𝛾) = ( 𝛾
𝛿
)𝜆 1

2N𝜆(𝛿𝛾) denote the norming constant of the Generalized Inverse Gaussian density, then the characteristic function
of G is

𝜙G(u) = E [eiuG] = ∫
∞

0
q(𝜆, 𝛿, 𝛾)x𝜆−1 exp

(
−1
2
(
𝛿2x−1 + (𝛾2 − 2iu)x

))
dx

= q(𝜆, 𝛿, 𝛾)
q(𝜆, 𝛿,√𝛾2 − 2iu)

=
(

𝛾
√𝛾2 − 2iu

)𝜆
N𝜆(𝛿√𝛾2 − 2iu)

N𝜆(𝛿𝛾)
.

□

Since Generalized Inverse Gaussian distribution is infinitely divisible, we can define one Lévy process {G(t)}t≥0 such that the characteristic
function of G(t) is given by 𝜙G(t)(u) = E[exp(iuG(t))] = exp(t log(𝜙G(u))), where 𝜙G(u) is given by Proposition 2.1. In this case, {G(t)}t≥0 is
referred to as Generalized Inverse Gaussian process with parameters (𝜆, 𝛿, 𝛾).

3. FRACTIONAL GENERALIZED INVERSE GAUSSIAN PROCESS

To define a fractional Generalized Inverse Gaussian process, we use the Voltera kernel KH ∶ [0, ∞] × [0, ∞] → [0, ∞], given by

KH(t, s) = cH
(( t

s
)H− 1

2 (t − s)H−
1
2 −

(
H − 1

2

)
s
1
2−H ∫

t

s
uH−

3
2 (u − s)H−

1
2 du

)
𝟙[0,t](s) (2)
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with

cH =
(

H(1−2H)Γ
( 1
2−H

)
Γ(2−2H)Γ

(
H+ 1

2
)
) 1

2
and H ∈ (0, 1).

According to Houdre and Kawai [16] and Nualart [17], we have the following facts:

1. For t, s > 0, ∫ t∧s0 KH(t, u)KH(s, u)du = 1
2
(
t2H + s2H − |t − s|2H

)
and ∫ t0 KH(t, s)2ds = t2H.

2. If H ∈
( 1
2 , 1

)
, then KH(t, s) = cH

(
H − 1

2
)
s
1
2−H ∫ ts (u − s)H−

3
2 uH−

1
2 du 𝟙[0,t](s).

3. Let t > 0 and p ≥ 2.KH(t, ⋅) ∈ Lp([0, t]) if and only ifH ∈
(

1
2 − 1

p , 1
2 + 1

p

)
.WhenKH(t, ⋅) ∈ Lp([0, t]), ∫ t0 KH(t, s)pds = CH,p t

p
(
H− 1

2
)
+1,

where CH,p = cpH ∫ 10 vp
( 1
2−H

)
[(1 − v)H−

1
2 −

(
H − 1

2
) ∫ 1v wH− 3

2 (w − v)H−
1
2 dw]

p
dv.

LetH ∈ (0, 1), and consider a fractional Lévy processGH = {GH(t)}t≥0, which isGH(t) = ∫ t0 KH(t, u) dG(u), where {G(t)}t≥0 is theGeneralized
Inverse Gaussian process and KH is the Volterra kernel defined in Equation (2). The process GH is referred to as the fractional Generalized
Inverse Gaussian process with parameters (H, 𝜆, 𝛿, 𝛾). We first describe the covariance structure of fractional Generalized Inverse Gaussian
process as the Proposition 3.1 without proof.2

Proposition 3.1. Let t, s ≥ 0. The covariance between GH(s) and GH(t) is given by

Cov(GH(s),GH(t)) = 1
2
𝛿2
𝛾2

N𝜆+2(𝛿𝛾)
N𝜆(𝛿𝛾)

(
t2H + s2H − |t − s|2H

)
. (3)

The characteristic function of fractional Generalized Inverse Gaussian process and cumulants are obtained by the Propositions 3.2 and 3.3,
respectively.

Proposition 3.2. With H ∈ (0, 1), the characteristic function of GH(t) is given by

𝜙GH(t)(z) = E[exp(izGH(t))] = exp
(
∫
t

0
𝜓G (zKH(t, u)) du

)
, where 𝜓G(u) = log𝜙G(1)(u).

Proof. For 0 = t0 < t1 < ⋯ < tM = t and ∆t = t1 − t0 = t2 − t1 = ⋯ = tM − tM−1,

E[exp(izGH(t))] = E [exp
(
iz ∫

t

0
KH(t, u)dG(u)

)
] = lim

∆t→0

M−1

∏
j=0

E [exp
(
izK(t, tj)∆G(tj)

)
] . (4)

For all t ≥ 0, ∆G(tj) can be represented as ∆G(tj) d= ∆t G(1). Therefore, from Equation (4) the characteristic function of GH(t) is

𝜙GH(t)(z) = lim
∆t→0

M−1

∏
j=0

exp
(
∆t 𝜓G

(
zKH(t, tj)

))
= exp

(
∫
t

0
𝜓G (zKH(t, u)) du

)
.

□

Proposition 3.3. Let n ∈ ℕ. The cumulant cn(GH(t)) of GH(t) is given by

cn(GH(t)) = 1
in
𝜕n
𝜕zn log𝜙GH(t)(z)|z=0 =

1
in𝜓

(n)
G (0) ∫

t

0
(KH(t, u))n du.

Therefore, by the cumulant cn(GH(t)) from Proposition 3.3, the mean and variance of GH(t) can be obtained, respectively, by

E[GH(t)] = 1
i 𝜓′G(0) ∫

t

0
KH(t, u)du = E[G] CH,1 tH+

1
2 = 𝛿

𝛾
N𝜆+1(𝛿𝛾)
N𝜆(𝛿𝛾)

CH,1 tH+
1
2 and

2 Refer to Proposition 3.1 in Houdre and Kawai [16].
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Var(GH(t)) = −𝜓′′G (0) ∫
t

0
(KH(t, u))2 du = Var (G) CH,2 t2H = 𝛿2

𝛾2 [
N𝜆+2(𝛿𝛾)
N𝜆(𝛿𝛾)

−
N2
𝜆+1(𝛿𝛾)
N2
𝜆(𝛿𝛾)

]CH,2 t2H.

4. FRACTIONAL UNIVARIATE GENERALIZED HYPERBOLIC PROCESS

Assume that {BH(t)}t≥0 the univariate fractional Brownian motion with Hurst parameter H ∈ (0, 1) is given by BH(t) = ∫ t0 KH(t, s)dB(s),
where {B(t)}t≥0 is a standard Brownianmotion, andKH is a Volterra kernel defined in Equation (2). Let {BH1 (t)}t≥0 be the fractional Brownian
motion with Hurst parameterH1 ∈ (0, 1) and {GH2 (t)}t≥0 be the univariate fractional Generalized Inverse Gaussian process with parameters
(H2, 𝜆, 𝛿, 𝛾). Suppose that {BH1 (t)}t≥0 and {GH2 (t)}t≥0 are independent. A processX = {X(t)}t≥0 defined byX(t) = 𝛽(GH2 (t))2H1+BH1 (GH2 (t)),
where 𝛽 ∈ ℝ, is referred to as the fractional univariate Generalized Hyperbolic process. The characteristic function of X(t) is 𝜙X(t)(z) =
𝜙(GH2 (t))

2H1

(
𝛽z + iz2

2

)
, where 𝜙(GH2 (t))

2H1 is the characteristic function of (GH2 (t))2H1 . Since 𝜙(GH2 (t))
2H1 does not have a general closed form for

all H1 ∈ (0, 1), we consider H1 = 1
2 . Then, we have

𝜙X(t)(z) = exp
(
∫
t

0
𝜓G

((
𝛽z + iz2

2

)
KH2 (t, u)

)
du

)
. (5)

The mean of X(t), E[X(t)] = 𝛽E[(GH2 (t))2H1 ]. If H1 = 1
2 , E[X(t)] = 𝛽E[GH2 (t)] = 𝛽𝛿

𝛾
N𝜆+1(𝛿𝛾)
N𝜆(𝛿𝛾) CH2,1 tH2+ 1

2 .

For 0 ≤ s ≤ t, we have

E[BH1 (GH2 (s))BH1 (GH2 (t))] =
1
2
E [(GH2 (t))

2H1 + (GH2 (s))
2H1 − (GH2 (t) − GH2 (s))

2H1] ,

so that the covariance between X(s) and X(t) is given by

Cov(X(s),X(t)) = 𝛽2Cov((GH2 (s))
2H1 , (GH2 (t))

2H1 ) + 1
2
E [(GH2 (t))

2H1 + (GH2 (s))
2H1 − (GH2 (t) − GH2 (s))

2H1] .

In the case of H1 = 1
2 , we obtain by Proposition (3.1)

Cov(X(s),X(t)) = 1
2
𝛽2𝛿2
𝛾2

N𝜆+2(𝛿𝛾)
N𝜆(𝛿𝛾)

(
t2H2 + s2H2 − (t − s)2H2

)
+ 𝛿
𝛾
N𝜆+1(𝛿𝛾)
N𝜆(𝛿𝛾)

CH2,1 s
H2+ 1

2 .

The fractional Generalized Hyperbolic process X(t) defined as above can be applied to stock price process with the objective of valuing
option. Suppose that under the risk neutral measureℚ, the stock price process {S(t)}t≥0 is given by

S(t) = S(0) exp (rt + X(t))
Eℚ[exp(X(t))]

,

where r is the risk-free short rate. Then, by the inverse Fourier transform method in Carr and Madan [18] and Lewis [19], the call option
price with time to maturity T and strike price K is

K1+𝜌e−rT

𝜋S(0)𝜌 Re ∫
∞

0
e−iu log(K/S(0)) e(iu−𝜌)T𝜙X(T)(u + i𝜌)

(𝜌 − iu)(1 + 𝜌 − iu)(𝜙X(T)(−i))iu−𝜌
du,

where 𝜌 is real number such that 𝜌 < −1, and the characteristic function 𝜙X(T)(⋅) is defined on Equation (5). The put option price can be
obtained by the same formula under the condition of 𝜌 > 0.

5. FRACTIONAL MULTIVARIATE GENERALIZED HYPERBOLIC PROCESS

Consider a multivariate fractional Brownian motion BH1 = {BH1 (t)}t≥0 such that BH1 (t) = (BH1,1(t),BH1,2(t), ⋯ ,BH1,N(t))T, and suppose
that

Cov(BH1,m(t),BH1,n(t)) = 𝜎m,nt2H1

for all m, n ∈ {1, 2, ⋯ ,N}. Let Σ be the covariance matrix for BH1 (1), which is Σ = [𝜎m,n]m,n∈{1,2,⋯ ,N}, and GH2 = {GH2 (t)}t≥0 be the
univariate fractional Generalized Inverse Gaussian process with parameters (H2, 𝜆, 𝛿, 𝛾). Suppose that GH2 is independent of BH1 . Let X =
{X(t)}t≥0 with X(t) = (X1(t),X2(t), ⋯ ,XN(t))T be a process of the random vector defined by

X(t) = (GH2 (t))
2H1𝛽 + BH1 (GH2 (t)), (6)
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where 𝛽 = (𝛽1, 𝛽2, ⋯ , 𝛽N)T ∈ ℝN. Then, X is referred to as the fractional multivariate Generalized Hyperbolic process. The characteristic
function of X(t) is given by

𝜙X(t)(z) = E[exp(izTX(t))] = 𝜙(GH2 (t))
2H1

(
𝛽Tz + i

2
zTΣz

)
,

where z = (z1, z2, ⋯ , zN)T ∈ ℝN and 𝜙(GH2 (t))
2H1 is the characteristic function of (GH2 (t))2H1 . Let t ≥ 0,m, n ∈ {1, 2, ⋯ ,N}, and Xm(t) and

Xn(t) be them-th and n-th elements of the vector X(t), respectively. Then, the covariance between Xm(t) and Xn(t) is given by

Cov(Xm(t),Xn(t)) = 𝛽m𝛽nVar
(
(GH2 (t))

2H1
)
+ 𝜎m,nE [(GH2 (t))

2H1] .

If H1 = 1
2 , we have

𝜙X(t)(z) = exp
(
∫
t

0
𝜓G

((
𝛽Tz + i

2
zTΣz

)
KH2 (t, u)

)
du

)
and

Cov(Xm(t),Xn(t)) = 𝛽m𝛽n
𝛿2
𝛾2 [

N𝜆+2(𝛿𝛾)
N𝜆(𝛿𝛾)

−
N2
𝜆+1(𝛿𝛾)
N2
𝜆(𝛿𝛾)

]CH2,2 t
2H2 + 𝜎m,n

𝛿
𝛾
N𝜆+1(𝛿𝛾)
N𝜆(𝛿𝛾)

CH2,1 t
H2+ 1

2 .

6. SIMULATION

In this section, the sample paths of the fractional Generalized Hyperbolic processes are simulated by subordinating a discretized fractional
Generalized Inverse Gaussian process with fractional Brownian motion on equally spaced intervals. We simulate GH2 (t) as follows:

1. ChooseM fixed times in [0, t]: t0 = 0, t1 = t/M,⋯ , tM−1 = (M − 1)t/M, and tM = t.

2. GenerateM Generalized Inverse Gaussian variates (G(t1),G(t2), ⋯ ,G(tM)).
3. Generate GH2 (t) using GH2 (t) = limM→∞∑M

j=1 KH2 (t, tj−1)(G(tj) − G(tj−1)).

Let LΣ be the lower triangular matrix obtained by the Cholesky decomposition for Σ with Σ = LΣLTΣ, where Σ is the correlation matrix
in Equation (6). Then, we have BH1 (t) = LΣBH1 (t), where BH1 (t) = (BH1,1(t),BH1,2(t), ⋯ ,BH1,N(t))T is a mutually independent vector of
fractional Brownian motions. For a given partition in 1) above and tj < tk for j < k, we have

BH1,n(GH2 (tj)) − BH1,n(GH2 (tj−1)) = (GH2 (tj) − GH2 (tj−1))H1 (BH1,n(tj) − BH1,n(tj−1)),

where n ∈ {1, 2, ⋯ ,N}. Therefore,

X(tk) = 𝛽(GH2 (tk))
2H1 +

k

∑
j=1

(GH2 (tj) − GH2 (tj−1))H1LΣB̃j, (7)

where 𝛽 = (𝛽1, 𝛽2, ⋯ , 𝛽N)T and B̃j = (BH1,1(tj) − BH1,1(tj−1),BH1,2(tj) − BH1,2(tj−1), ⋯ ,BH1,N(tj) − BH1,N(tj−1))T.

Figure 1 illustrates the simulated sample paths from a Generalized Inverse Gaussian process with M = 250 and parameters 𝜆 = −1.2,
𝛿 = 0.1, and 𝛾 = 0.01. The GIG process on panel (a) depicts a sample path from the Generalized Inverse Gaussian process. Then, obtained
are the fGIGs, the fractional Generalized Inverse Gaussian processes, with H = 0.70 and 0.90 from the GIG process. Panel (b) gives the
simulated sample paths of the univariate fractional Generalized Hyperbolic processes with 𝛽 = −0.05, comparing with the path of the
nonfractional Generalized Hyperbolic process. Notice that the sample paths for the fractional processes have less fluctuations than the path
for nonfractional process, indicating the persistence of long-range dependence property of the fractional Generalized Hyperbolic processes.
In panel (c), the two-dimensional plot for the bivariate fractional Generalized Hyperbolic process is presented using Equation (7) with
H1 = 0.55, H2 = 0.80, 𝛽 = (−0.05, −0.03)T, and Cov(BH1,1(1), BH1,2(1)) = 0.75.

7. CONCLUDING REMARKS

In this paper, a fractional Generalized Hyperbolic process defined by the time-changed fractional Brownian motion with the fractional
Generalized Inverse Gaussian process is presented. This process is featured by the capability to capture not only the endogenous long-
range dependence by the fractional Brownian motion, but also the exogenous long-range dependence by the fractional Generalized Inverse
Gaussian process. That is, the process could implement the long-range dependence in volatility as well as the long-range dependence in
random process itself.Pdf_Folio:436
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Figure 1 Sample Paths from Simulations (a) Sample Paths for (Fractional) Generalized Inverse
Gaussian Processes (b) Sample Paths for (Fractional) Generalized Hyperbolic Processes (c)
Sample Path for Fractional Bivariate Generalized Hyperbolic Process.
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