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Abstract

We consider a nearest-neighbor hard-core model, with three states , on a homogeneous
Cayley tree of order k (with k + 1 neighbors). This model arises as a simple example
of a loss network with nearest-neighbor exclusion. The state σ(x) at each node x of
the Cayley tree can be 0, 1 and 2. We have Poisson flow of calls of rate λ at each site
x, each call has an exponential duration of mean 1. If a call finds the node in state 1
or 2 it is lost. If it finds the node in state 0 then things depend on the state of the
neighboring sites. If all neighbors are in state 0, the call is accepted and the state
of the node becomes 1 or 2 with equal probability 1/2. If at least one neighbor is in
state 1, and there is no neighbor in state 2 then the state of the node becomes 1. If at
least one neighbor is in state 2 the call is lost. We focus on ‘splitting’ Gibbs measures
for this model, which are reversible equilibrium distributions for the above process.
We prove that in this model, ∀ λ > 0 and k ≥ 1, there exists a unique translation-
invariant splitting Gibbs measure µ∗. We also study periodic splitting Gibbs measures
and show that the above model admits only translation - invariant and periodic with
period two (chess-board) Gibbs measures. We discuss some open problems and state
several related conjectures.

1 Introduction

A Cayley tree T k = (V,L) of order k ≥ 1 is defined as an infinite homogeneous tree, i.e.,
a graph without cycles, with exactly k + 1 edges incident to each site. Here V is the set
of sites and L is the set of edges. Fix a site x0 (the origin) and set: Vn = {x ∈ V : dist
(x0, x) ≤ n}, Wn = {x ∈ V : dist (x0, x) = n}, where the distance between x, y ∈ V is the
number of edges in the shortest path x → y. Call a site x ∈ V even if dist (x0, x) is even
and odd if it is odd.

Our goal is to present results on the nature of a phase transition in the nearest-neighbor
three state hard-core model. In this model one assigns, to each site x, values σ(x) ∈

{0, 1, 2}; values σ(x) = 1, 2 mean that site x is ‘occupied’ and σ(x) = 0 that x is ‘vacant’.

Copyright c© 2005 by J B Martin , U A Rozikov and Y M Suhov
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A configuration σ on the tree is a collection {σ(x), x ∈ V } considered also as a function
V → {0, 1, 2}. In a similar fashion one defines a configuration in Vn and Wn. We call
σ an admissible configuration (on the tree, in Vn or Wn) if the sum σ(x) + σ(y) ≤ 2 ∀

nearest-neighbor pair x, y (from V , Vn or Wn, respectively). Denote the set of admissible
configurations by Ω (ΩVn

and ΩWn
). Ω is endowed by a natural topology in which it is a

(totally disconnected) compact. For σn ∈ ΩVn
we define : #σn =

∑

x∈Vn
1(σn(x) ≥ 1) (the

number of occupied sites in σn). Let B be the sigma-algebra generated by the cylinder
subsets of Ω. Furthermore, ∀ n, BVn

stands for the sub-algebra of B generated by events
{σ ∈ Ω: σ

∣

∣

Vn

= σn} where σn: x ∈ Vn 7→ σn(x) is an admissible configuration in Vn and

σ
∣

∣

Vn

the restriction of σ on Vn (the notation σ
∣

∣

V \Vn

and σ
∣

∣

Wn

has a similar meaning).

Definition 1. A (three state) hard core Gibbs measure with fugacity λ > 0 is a probability
measure µ on (Ω,B) such that, ∀ n and σn ∈ ΩVn

:

µ
{

σ ∈ Ω : σ
∣

∣

Vn

= σn

}

=

∫

Ω
µ(dω)Pn

(

σn

∣

∣ ωWn+1

)

, (1.1)

where

Pn

(

σn

∣

∣ ωWn+1

)

=
1

Ξn(λ;ω|Wn+1
)
λ#σn1

(

σn ∨ ω
∣

∣

Wn+1

∈ ΩVn+1

)

.

Here, and below, symbol ∨ means concatenation of configurations and Ξn

(

λ;ω
∣

∣

Wn+1

)

is

the partition function with the boundary condition ω
∣

∣

Wn

:

Ξn

(

λ;ω
∣

∣

Wn+1

)

=
∑

σ̃n∈ΩVn

λ#σ̃n1

(

σ̃n ∨ ω
∣

∣

Wn+1

∈ ΩVn+1

)

. (1.2)

Pictorially, this definition means that, given values σ(x), x ∈ Wn, of the restriction of
an admissible configuration σ ∈ Ω to Wn, (i) its restrictions σ

∣

∣

Vn

inside Vn and σ
∣

∣

V \Vn+1

outside Vn+1 are conditionally independent, and (ii) the conditional probability of σ
∣

∣

Vn

is

proportional to λ#σ|Vn . For k ≥ 2, this is an analogue of a Markov property (taking place
for k = 1, when the tree is reduced to an integer lattice).

The rest of this section provides a review of basic properties of hard core Gibbs mea-
sures. They can be found in [8] (see in particular Ch. 12) and [23, 24]. The set of hard core
Gibbs measures with a given fugacity is denoted by G. The set of values of λ for which G is
reduced to a single point is interpreted as a ‘single-phase domain’; its complement referred
to as the ‘domain of phase transitions’. Set G is a Choquet simplex, i.e., a convex compact,
in the topology of weak convergence, such that any µ ∈ G can be uniquely written as an
integral

µ =

∫

E

dΠ(ν)ν.

Here E ⊂ G is the set of extreme Gibbs measures, for which the probability of any tail
event is 0 or 1, Π (= Πµ) is a probability distribution on E (more precisely, on the Borel
sigma-algebra in E induced by the above topology).
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It is also interesting to consider translation-invariant and translation-periodic Gibbs
measures, G ∩ T and G ∩ P. Here sets T and P are formed, respectively, by translation-
invariant and translation-periodic measures on (Ω,B) .

Set G contains limiting points of measures P
(

·
∣

∣ω
∣

∣

Wn

)

, again in the topology of weak

convergence. (Here we consider P
(

·
∣

∣ ω
∣

∣

Wn

)

as a measure on (Ω,B), defined in a standard
way.) In particular, G contains a ‘maximal’ and a ‘minimal’ measure, µ± such that every
measure µ ∈ G lies ‘between’ them (symbolically, µ− ≤ µ ≤ µ+, see below). Clearly G is
reduced to a single point iff µ+ = µ−. The maximality and minimality properties of µ±

with respect to µ ∈ G are expressed in terms of integrals of (suitably defined) monotone
functions F : Ω → R (the FKG inequalities). See, e.g., Refs [23, 24]).

The hard core model is interesting from the point of view of statistical mechanics [8]
as well of combinatorics [3] and the theory of neuron networks ([11]). Here, we stress its
application in communication networks. Consider the following model of a loss network
with nearest-neighbor exclusion. Calls arrive in independent Poisson processes ξx, x ∈ V ,
of rate λ. If a call finds the node in state 1 or 2 it is lost. If it finds the node in state
0 then its fate depends on the state of the neighboring sites. If all neighbors are in state
0, the call is accepted and the state of the node becomes 1 or 2 with equal probability
1/2. If at least one neighbor is in state 1, but there is no neighbor in state 2, the state of
the node becomes 1. Finally, if at least one of the neighbors is in state 2, the call is lost.
Pictorially, state 2 means a high quality service that requires that all neighbors are silent.
State 1 means a moderate quality service where neighbors can interfere (if they are also
in state 1). Once accepted, the call is processed during an exponential time of rate one
and then leaves the network.

The above description gives rise to a continuous-time Markov process X(t), t ≥ 0, on
space Ω. Due to a theorem by Dobrushin (see, [6]), any reversible equilibrium measure µ

for X(t) belongs to G, i.e. is hard core Gibbs measure with fugacity λ. Thus, our analysis
leads to a description of various properties of reversible equilibrium distributions of the
above loss network.

A more general model was considered in [4] (by using a different language), with three
fugacities λ0, λ1 and λ2. Results from [4] can be considered as complementary to the
results of this paper. we comment on this in Remarks 1 and 2 following our Theorems 1
and 3.

2 Construction of splitting Gibbs measures

Following Ref. [22, 17] (and subsequent papers [23, 24], [1, 2, 7, 19, 20, 21]), we consider
a special class S ⊂ G of Gibbs measures. We call them splitting Gibbs measures, to
emphasize the fact that, in addition to the aforementioned Markov property, they satisfy
the following condition: given values σ(x), x ∈ Vn, of an admissible configuration σ ∈ Ω
over set Vn, its values σ(y) at sites y ∈ Wn+1 are conditionally independent. [In [23, 24]
such measures were called Markov chains (on a tree) and in [22] entrance laws.] A formal
definition follows.

Write x < y if the path from x0 to y goes through y. Call vertex y a direct successor
of x if y > x and x, y are nearest neighbors. Denote by S(x) the set of direct successors
of x. Note that any vertex x 6= x0 has k direct successors and x0 has k + 1.
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Let z : x 7→ zx = (z0,x, z1,x, z2,x) ∈ R
3
+ be a vector-valued function on V . Given

n = 1, 2, . . ., consider the probability distribution µ(n) on ΩVn
defined by

µ(n)(σn) =
1

Zn
λ#σn

∏

x∈Wn

zσ(x),x. (2.1)

Here, as before, Zn is the corresponding partition function:

Zn =
∑

σ̃n∈ΩVn

λ#σ̃n

∏

x∈Wn

zσ̃(x),x.

We say that the probability distributions µ(n) are compatible if ∀ n ≥ 1 and σn−1 ∈

ΩVn−1
:

∑

ωn∈ΩWn

µ(n)(σn−1 ∨ ωn)1(σn−1 ∨ ωn ∈ ΩVn
) = µ(n−1)(σn−1). (2.2)

In this case there exists a unique probability measure µ on (Ω,B) such that, ∀ n and

σn ∈ ΩVn
, µ

({

σ
∣

∣

∣

Vn

= σn

})

= µ(n)(σn).

Definition 2. Measure µ defined by (2.1), (2.2) is called a splitting hard core Gibbs
measure with fugacity λ, corresponding to function z : x ∈ V \ {x0} 7→ zx. The set of
such measures (for all possible choices of z) is denoted by S.

The following statement describes conditions on zx guaranteeing compatibility of dis-
tributions µ(n).

Proposition 1. Probability distributions µ(n), n = 1, 2, . . ., in (2.1) are compatible iff for

any x ∈ V the following system of equations holds:

z′1,x = λ
∏

y∈S(x)

1 + z′1,y

1 + z′1,y + z′2,y

, (2.3a)

z′2,x = λ
∏

y∈S(x)

1

1 + z′1,y + z′2,y

. (2.3b)

Here, and below, z′i,x = λzi,x/z0,x, i = 1, 2.

Proof. Write:

LHS of (2.2) =

1

Zn
λ#σn−1

∏

x∈Wn−1

∏

y∈S(x)

(z0,y + 1(σn−1(x) ∈ {0, 1})λz1,y + 1(σn−1(x) = 0)λz2,y) .

(2.4)
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Sufficiency. Suppose that (2.3) holds. It is equivalent to the representations
∏

y∈S(x)

(z0,y + λz1,y + λz2,y) = a(x)z0,x,

∏

y∈S(x)

(z0,y + λz1,y) = a(x)z1,x,
∏

y∈S(x)

z0,y = a(x)z2,x,

for some function a(x) > 0, x ∈ V . Setting An =
∏

x∈Wn
a(x) and substituting (2.1) into

(2.4), we get:

RHS of (2.4) =
1

Zn
λ#σn−1

∏

x∈Wn−1

zσn−1(x),xa(x) =
An−1

Zn
λ#σn−1

∏

x∈Wn−1

zσn−1(x),x.

We should have
∑

σn−1∈ΩVn−1

∑

ωn∈ΩWn

1 (σn−1 ∨ ωn ∈ ΩVn
)µ(n)(σn−1 ∨ ωn) = 1,

hence An−1/Zn = 1/Zn−1, and (2.2) holds.
Necessity. Suppose that (2.2) holds; we want to prove (2.3). Substituting (2.1) in (2.2)

and using (2.4), we obtain that ∀ σn−1 ∈ ΩVn−1
:

Zn−1

Zn

∏

x∈Wn−1

∏

y∈S(x)

(z0,y + 1(σn−1(x) ∈ {0, 1})λz1,y + 1(σn−1(x) = 0)λz2,y) =

∏

x∈Wn−1

zσn−1(x),x.

In particular, comparing a pair of configurations σn−1, σ′

n−1 different at a single site
x ∈ Wn−1 yields (2.3). �

Proposition 2. Any measure µ with local distributions µ(n) satisfying (2.1), (2.3) belongs

to G.

Proof. Straightforward. �

Proposition 3. E ⊆ S, i.e., any extreme Gibbs measure µ ∈ E is splitting.

Proof. See [8], Theorem 12.6. �

3 Uniqueness of a translation-invariant splitting Gibbs mea-

sure

Without loss of generality, we set in future z0,x ≡ 1 and zi,x = z′i,x > 0, i = 1, 2. Then ∀

function x ∈ V 7→ zx = (z1,x, z2,x) satisfying

z1,x = λ
∏

y∈S(x)

1 + z1,y

1 + z1,y + z2,y
, (3.1a)

z2,x = λ
∏

y∈S(x)

1

1 + z1,y + z2,y
, (3.1b)
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there exists a unique hard core splitting Gibbs measure µ and vice versa. However, the
analysis of solutions to (3.1) is rather tricky. It is natural to begin with translation-
invariant solutions where zx = z is constant ∈ R

2
+, x 6= x0.

In this case we obtain, from (3.1), the following system of equations:

z1 = λ

(

1 + z1

1 + z1 + z2

)k

, (3.2a)

z2 = λ

(

1

1 + z1 + z2

)k

. (3.2b)

It is easy to see that

z2 = z1(1 + z1)
−k. (3.3)

Using this equality from (3.2) we get

λ−1z =

(

(1 + z)k+1

z + (1 + z)k+1

)k

, (3.4)

with z = z1.

Proposition 4. For any λ > 0, k ≥ 1 the system of equations (3.2) has a unique positive

solution (with z1, z2 > 0) .

Proof. We shall prove that equation (3.4) has a unique positive solution. Denote

f(z) = f(z, k) =

(

(1 + z)k+1

z + (1 + z)k+1

)k

.

We have f(0) = 1 and

f ′(z) =
k(1 + z)k

2+k−1

(z + (1 + z)k+1)k+1
(kz − 1).

For 0 < z < 1/k , f decreases monotonically from 1 to f(1/k) = ((k + 1)k+1((k + 1)k+1 +
kk)−1)k. For z > 1/k, f is monotonically increasing to 1 as z → ∞; thus there are at most
three solutions of (3.4). On the other hand , it is easy to see that (3.4) has more than one
solution if and only if there is more than one solution to the equation zf ′(z) = f(z) which
is equivalent to

(1 + z)k+2 = (k2 − 1)z2 − (k + 1)z. (3.5)

It is straightforward that equation (3.5) has no positive solutions. Thus (3.4) has a unique
positive solution z∗ = z∗1 . Using (3.3) we get unique z∗2 . �

We then obtain

Theorem 1. ∀ λ > 0, the set S ∩ T of translation-invariant hard-core splitting Gibbs

measures consists of a single point.
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The translation-invariant hard-core splitting Gibbs measure is denoted by µ∗.

Remark 1. The model considered in this paper, translating to the language of [4] has
a constraint graph consisting of a three-node path 2-0-1, with loops on 0 and 1. This
graph is called “wrench” in [4], where it is proved that there do exist multiple translation-
invariant splitting (simple in [4]) Gibbs measures, for some fugacities λi on the three nodes.
Theorem 1 shows that if fugacities are chosen as in this paper then there is always just
one translation-invariant Gibbs measure. It is thus natural to ask: When the constraint
graph H has three nodes, for which H in [4] is the analog of Theorem 1 true for fugacities
chosen as in our case? Now we shall answer this question.

The other graphs in [4] with three nodes have node set, edges, and loops as follows:
the pipe: {0, 1, 2}; {0, 1}, {1, 2}; loop at 0,
the hinge: {0, 1, 2}; {0, 1}, {0, 2}; loops at 0, 1 and 2,
the wand: {0, 1, 2}; {0, 1}, {0, 2}; loops at 1 and 2.
By a similar argument one can see that the system of equations (3.2) has the following

form for above constraint graphs:

(pipe)















z1 = λ

(

1+z2

1+z1

)k

,

z2 = λ

(

z1

1+z1

)k

.

(3.6)

(hinge)















z1 = λ

(

1+z1

1+z1+z2

)k

,

z2 = λ

(

1+z2

1+z1+z2

)k

.

(3.7)

(wand)















z1 = λ

(

1+z1

z1+z2

)k

,

z2 = λ

(

1+z2

z1+z2

)k

.

(3.8)

Case pipe. Assume k = 2. Then from system (3.6) we have z3
1 = z2(1 + z2)

2 and

λ−1z = fpipe(z), with fpipe(z) =

(

3

√

z(1 + z)2

1 + 3

√

z(1 + z)2

)2

, z = z2

We have f ′

pipe(z) > 0. It is easy to see that the equation zf ′

pipe(z) = fpipe(z) has the form

3(1 + z) 3

√

z(1 + z)2 + 2 = 0 which has no positive solutions. Thus in the pipe case for
k = 2 and ∀λ > 0 the splitting Gibbs measure is unique.

Of course , it is very natural to expect that this result is true for k ≥ 3.
Case hinge. Subtracting from the first equation of system (3.7) the second one we get

z1 = z2 and

(1 + z1 + z2)
k = λ

(

(1 + z1)
k−1 + ... + (1 + z2)

k−1
)

, if z1 6= z2. (3.9)

For z1 = z2 = z from system (3.7) we have

λ−1z = fhinge(z) =

(

1 + z

1 + 2z

)k

. (3.10)
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It is easy to see that the function fhinge(z) is decreasing for z > 0 which implies that
equation (3.10) has unique solution z∗ = z∗(k, λ) for any λ > 0.

If (3.9) is satisfied then we assume k = 2 and from (3.9) we have

1 + z1 + z2 =
λ +

√
λ2 + 4λ

2
. (3.11)

Using this equality from first equation of the system (3.7) we have (for k = 2)

z
(1)
1 =

(

1 +
√

1 − 4a2

2a

)2

, z
(2)
1 =

(

1 −
√

1 − 4a2

2a

)2

, (3.12)

if λ > 9/4 where a = 2(
√

λ+
√

λ + 4)−1. Using the second equation we also have z
(1)
2 , z

(2)
2 ∈

{z
(1)
1 , z

(2)
1 }. Since z1 6= z2 we conclude that z1 = z

(1)
1 , z2 = z

(2)
1 and z1 = z

(2)
1 , z2 = z

(1)
1 . It

is easy to check that these solutions satisfies the condition (3.11).

Thus if k = 2, λ > 9
4 then the system (3.7) has three solutions (z∗, z∗), (z

(1)
1 , z

(2)
1 ), (z

(2)
1 , z

(1)
1 ),

where z∗ is the unique solution of (3.10) and z
(i)
1 , i = 1, 2 is defined in (3.12). Note that

z
(1)
1 = 1

z
(2)

2

. The value λ = λcr = 9
4 is exactly the critical value for k = 2.

Case wand. This case is very similar to the case hinge and one can prove that if k = 2,
λ > 1 then the system (3.8) has three solutions given by similar formulas of case hinge
just replacing a with a = 2(

√
λ +

√
λ + 8)−1. Here also the value λc = 1 is the exact value

of critical λ for k = 2.
Thus the uniqueness (Theorem 1) is true for pipe but is not true for cases hinge and

wand.

Now we move to our model (the wrench graph case).

Proposition 5. If zx = (z1,x, z2,x) is a solution of (3.1) then z−i ≤ zi,x ≤ z+
i , for any i =

1, 2, x ∈ V, where (z−1 , z+
1 , z−2 , z+

2 ) is a solution of

z−1 = λ

(

1 + z−1
1 + z−1 + z+

2

)k

, (3.13a)

z+
1 = λ

(

1 + z+
1

1 + z+
1 + z−2

)k

, (3.13b)

z−2 = λ

(

1

1 + z+
1 + z+

2

)k

, (3.13c)

z+
2 = λ

(

1

1 + z−1 + z−2

)k

. (3.13d)

Proof. It is clear that 0 < zi,x < λ, i = 1, 2, ∀x ∈ V. We rewrite (3.1) as

z1,x = λ

k
∏

i=1

1 + z1,xi

1 + z1,xi
+ z2,xi

,

z2,x = λ

k
∏

i=1

1

1 + z1,xi
+ z2,xi

,
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where xj, j = 1, 2, ..., k are direct successors of x. Denote

f1(u1, ..., uk, v1, ..., vk) = λ

k
∏

i=1

1 + ui

1 + ui + vi
,

f2(u1, ..., uk, v1, ..., vk) = λ

k
∏

i=1

1

1 + ui + vi
,

with 0 < uj < λ, 0 < vj < λ. It is not difficult to see that

λ

(1 + λ)k
< f1(u1, ..., uk, v1, ..., vk) < λ,

λ

(1 + 2λ)k
< f2(u1, ..., uk, v1, ..., vk) < λ,

Thus for zi,x we get

λ

(1 + λ)k
< z1,x < λ,

λ

(1 + 2λ)k
< z2,x < λ.

Now consider fi(u1, ..., uk, v1, ..., vk) with

λ

(1 + λ)k
< uj < λ,

λ

(1 + 2λ)k
< vj < λ, j = 1, ..., k.

Iterating this procedure we can obtain the following

z−i,n < zi,x < z+
i,n, i = 1, 2,

where z±i,n, i = 1, 2, n = 1, 2, ... satisfy

z−1,n+1 = λ

(

1 + z−1,n

1 + z−1,n + z+
2,n

)k

,

z+
1,n+1 = λ

(

1 + z+
1,n

1 + z+
1,n + z−2,n

)k

,

z−2,n+1 = λ

(

1

1 + z+
1,n + z+

2,n

)k

,

z+
2,n+1 = λ

(

1

1 + z−1,n + z−2,n

)k

,

with z−1,1 = λ
(1+λ)k

, z+
1,1 = z+

2,1 = λ and z−2,1 = λ
(1+2λ)k

. It is easy to see that z−i,n, i = 1, 2

(z+
i,n) are increasing (decreasing) and bounded sequences. Thus there exist limn→∞ z±i,n =

z±i , i = 1, 2. �

Proposition 6. If z = (z−1 , z+
1 , z−2 , z+

2 ) a solution of (3.13) then z−1 = z+
1 iff z−2 = z+

2 .
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Proof. From (3.13) we have

{

z−1 − z+
1 = λA((1 + z−1 )(z−2 − z+

2 ) + z+
2 (z−1 − z+

1 )),
z−2 − z+

2 = λB((z−2 − z+
2 ) + (z−1 − z+

1 )),
(3.14)

where A = A(z) > 0, B = B(z) > 0. Rewrite (3.14) in the following form:

{

λA(1 + z−1 )(z−2 − z+
2 ) + (λAz+

2 − 1)(z−1 − z+
1 ) = 0,

(λB − 1)(z−2 − z+
2 ) + λB(z−1 − z+

1 ) = 0,
(3.15)

If z−1 = z+
1 then from first equation of (3.15) we get z−2 = z+

2 . If z−2 = z+
2 then from second

equation of (3.15) we have z−1 = z+
1 . �

Corollary 1. If system (3.13) has a unique solution, then system (3.1) also has a unique

solution. Moreover this solution is zx = (z∗1 , z∗2), x ∈ V where (z∗1 , z∗2) is the unique

solution of (3.2).

Now consider system of two last equations of (3.13):















z−2 = λ

(

1
1+z+

1
+z+

2

)k

,

z+
2 = λ

(

1
1+z−

1
+z−

2

)k

.

(3.16)

We are interested in solution z±2 = z±2 (λ, z−1 , z+
1 ) of (3.16).

Denote f±(x) = λ(1 + z±1 + x)−k, x ≥ 0.
From (3.16) we get

z−2 = f+(f−(z−2 )). (3.17)

Note that f−(x − z−1 + z+
1 ) = f+(x). Therefore, if we let z−2 = x − z−1 + z+

1 then (3.17)
implies

x − z−1 + z+
1 = f+(f+(x)) = F (x), (3.18)

where F (x) = λ(1 + z+
1 + λ(1 + z+

1 + x)−k)−k.

We have

F ′(x) = k2λ2(1 + z+
1 + λ(1 + z+

1 + x)−k)−k−1(1 + z+
1 + x)−k−1.

F ′′(x) = k2(k + 1)λ2(1 + z+
1 + λ(1 + z+

1 + x)−k)−k−2(1 + z+
1 + x)−2(k+1)×

[(k − 1)λ − (1 + z+
1 )(1 + z+

1 + x)k].

If k = 1 then F ′′(x) < 0 and F is concave increasing. Hence for k = 1, (3.18) has only one
solution. For k ≥ 2, F is convex for x < ((k − 1)λ(1 + z+

1 )−1)1/k − z+
1 − 1 and concave

for x > ((k − 1)λ(1 + z+
1 )−1)1/k − z+

1 − 1; thus there are at most three solutions. On the
other hand, it is easy to see that (3.18) has more than one solution if and only if there is
more than one solution to the equation xF ′(x) = F (x) which is equivalent to

(1 + z+
1 )uk+1 = (k2 − 1)λu − k2λ(z−1 + 1), (3.19)
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where u = 1 + z+
1 + x.

As function u → uk+1 is concave increasing, we conclude that (3.19) has a unique
positive solution, say u∗, if u∗ satisfies (3.19) and (1 + z+

1 )uk
∗

= (k − 1)λ. Then we obtain
u∗ = k(k − 1)−1(1 + z+

1 ) and λ = λHC
cr (1 + z+

1 )(1 + z−1 )k, where λHC
cr = 1

k−1( k
k−1)k is

critical value for two state hard-core model. Thus (3.19) has two solution for λ > λc =
λHC

cr (1 + z+
1 )(1 + z−1 )k.

So we proved the following

Proposition 7. 1) If k = 1 or k ≥ 2 and λ ≤ λc then a positive solution to (3.18) is

unique. 2) If k > 1 and λ > λc then there exist at least two solutions x∗

i = x∗

i (z
−

1 , z+
1 ), i =

1, 2.

Corollary 2. For λ > λc system (3.16) has at least two solutions (z−2,i = x∗

i−z−1 +z+
1 , z+

2,i =
f+(x∗

i )), i = 1, 2, where x∗

i are the positive solutions to (3.18).

Correspondingly, we make a

Conjecture 1. If there is a critical value λcr such that system (3.1) has more than one
solution for λ > λcr then λcr ≥ λHC

cr .

4 Description of periodic splitting Gibbs measures

We now write (3.1) in the following form

h1,x = ln λ +
∑

y∈S(x)

ln
1 + exp(h1,y)

1 + exp(h1,y) + exp(h2,y)
, (4.1a)

h2,x = ln λ +
∑

y∈S(x)

ln
1

1 + exp(h1,y) + exp(h2,y)
, (4.1b)

where hi,x = ln zi,x, i = 1, 2.
In this section we study periodic solutions of system (4.1).
Note that (see [7]) there exists a one-to-one correspondence between the set V of ver-

texes of the Cayley tree of order k ≥ 1 and the group Gk of the free products of k + 1
cyclic groups of the second order with generators a1, a2, ..., ak+1.

Definition 3. Let H0 be a subgroup of Gk. We say that a collection h = {hx =
(h1,x, h2,x) : x ∈ Gk} is H0-periodic if hi,yx = hi,x for all i = 1, 2, x ∈ Gk and y ∈ H0.

Definition 4. A Gibbs measure is called H0-periodic if it corresponds to an H0-periodic
collection h.

Observe that a translation -invariant Gibbs measure is Gk-periodic.
We give below a complete description of periodic Gibbs measures, i.e. characterize

these measures with respect to any normal subgroup of finite index.
Let H0 be a subgroup of index r in Gk, and let Gk|H0

= {H0,H1, ...,Hr−1} be the
quotient group. Let qi(x) = |S1(x) ∩ Hi|, i = 0, 1, ..., r − 1; N(x) = |{j : qj(x) 6= 0}|,
where S1(x) = {y ∈ Gk : 〈x, y〉}, x ∈ Gk and | · | is the number of elements of the set.
Denote Q(x) = (q0(x), q1(x), ..., qr−1(x)).
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We note (see [21]) that for every x ∈ Gk there is a permutation πx of the coordinates
of the vector Q(e) (where e is the identity of Gk) such that

πxQ(e) = Q(x). (4.2)

It follows from (4.2) that N(x) = N(e) for all x ∈ Gk.

Each H0− periodic collection is given by

{hx = hi for x ∈ Hi, i = 0, 1, ..., r − 1}.

By Proposition 2.1 and (4.1), the vector hn, n = 0, 1, ..., r − 1, satisfies the system

hn = (ln λ, ln λ) +

N(e)
∑

j=1

qij(e)F (hπn(ij)) − F (hπn(ij0 )), (4.3)

where j0 = 1, ...,N(e), N(e) = |{i1, ..., iN(e)}|, and function h = (h1, h2) 7→ F (h) =
(F1(h), F2(h)) where

F1(h) = ln
1 + exp(h1)

1 + exp(h1) + exp(h2)
, (4.4a)

F2(h) = ln
1

1 + exp(h1) + exp(h2)
. (4.4b)

Proposition 8. F (h) = F (l) if and only if h = l.

Proof. Straightforward. �

Let G∗

k be the subgroup in Gk consisting of all words of even length. Clearly, G∗

k is a
subgroup of index 2.

Theorem 2. Let H0 be a normal subgroup of finite index in Gk. Then each H0− peri-

odic Gibbs measure for three state hard-core model is either translation-invariant or G∗

k−

periodic.

Proof. We see from (4.3) that F (hπn(i1)) = F (hπn(i2)) = ... = F (hπn(iN(e))). Hence from
Proposition 4.3 we have hπn(i1) = hπn(i2) = ... = hπn(iN(e)). Therefore,

hx = hy = h, if x, y ∈ S1(z), z ∈ G∗

k;

hx = hy = l, if x, y ∈ S1(z), z ∈ Gk \ G∗

k.

Thus the measures are translation-invariant (if h = l) or G∗

k− periodic (if h 6= l). �

Let H0 be a normal subgroup of finite index in Gk. What condition on H0 guarantee
that each H0−periodic Gibbs measure is translation invariant ? We put I(H0) = H0 ∩

{a1, ..., ak+1}, where ai, i = 1, ..., k + 1 are generators of Gk.

Theorem 3. If I(H0) 6= ∅ then each H0− periodic Gibbs measure is translation-invariant.



444 J Martin, U Rozikov and Y Suhov

Proof. Take x ∈ H0. Observe that the inclusion xai ∈ H0 holds if and only if ai ∈ H0.

Since I(H0) 6= ∅, there is an element ai ∈ H0. Therefore H0 contains the subset H0ai =
{xai : x ∈ H0}. By Theorem 2 we have hx = h and hxai

= l. Since x and xai belong
to H0, it follows that hx = hxai

= h = l. Thus each H0− periodic Gibbs measure is
translation-invariant. �

Remark 2. An analogies of Theorem 2 and 3 can be proved for a wide class of hard
constraint models. The important point here is the property of function F (see (4.4))
given by Proposition 8 Note that in many interesting cases of hard constraint models the
corresponding function F has this property.

Theorems 2 and 3 reduce the problem of describing H0− periodic Gibbs measure with
I(H0) 6= ∅ to describing the fixed points of the map h = (h1, h2) → (ln λ, ln λ) + kF (h),
which describes translation -invariant Gibbs measures. If I(H0) = ∅, this problem is
reduced to describing the solutions of the system:

{

h = (ln λ, ln λ) + kF (l),
l = (ln λ, ln λ) + kF (h).

(4.5)

Recall zi = exp(hi), ti = exp(li), i = 1, 2. Then from (4.5) we get



















































z1 = λ

(

1+t1
1+t1+t2

)k

,

z2 = λ

(

1
1+t1+t2

)k

,

t1 = λ

(

1+z1

1+z1+z2

)k

,

t2 = λ

(

1
1+z1+z2

)k

.

(4.6)

The analysis of solutions to system (4.6) is rather tricky. Let z∗ = z∗(λ) = (z∗1 , z∗2) =
(z∗1(λ), z∗2(λ)) be the unique solution to (3.2) (see Proposition 4). The instability condition
for z∗ is

k2 z∗1z
∗

2

(1 + z∗1)(1 + z∗1 + z∗2)
> 1. (4.7)

The left-hand side is the product of the eigen-values of the Jacobian





∂F1

∂h1

∂F1

∂h2

∂F2

∂h1

∂F2

∂h2



 at

z = z∗ :

Λ1,2 = Λ1,2(λ) =
−k

2(1 + z∗1)(1 + z∗1 + z∗2)

(

z∗2 ±

√

(z∗2(2z∗1 + 1))2 + 4z∗1z∗2(1 + z∗1)2
)

.

Observe that, (4.7) is a necessary condition for existence of more than one solution to
(4.6).

Now we shall reduce the system (4.6) to equation γ(γ(x)) = x for some function γ and
will apply the following lemma.



Three State Hard-Core Model 445

Lemma 1. (See [10], p.70) Let f : [0, 1] → [0, 1] be a continuous function with a fixed

point ξ ∈ (0, 1). Assume that f is differentiable at ξ and that f ′(ξ) < −1. Then there exist

x0, x1, 0 ≤ x0 < ξ < x1 ≤ 1, such that f(x0) = x1 and f(x1) = x0.

From (4.6) we have

z2 = z1(1 + t1)
−k, t2 = t1(1 + z1)

−k,

and

z1 = λ

(

1 + t1

1 + t1 + t1(1 + z1)−k

)k

, (4.8a)

t1 = λ

(

1 + z1

1 + z1 + z1(1 + t1)−k

)k

. (4.8b)

Denote

γ(x) = γ(x, λ, k) =
(λ1/k − x1/k)(1 + x)k

x1/k − (λ1/k − x1/k)(1 + x)k
, 0 < x < λ.

Then (4.8) has the form

x = γ(y), y = γ(x). (4.9)

Hence now we need to solve the following

γ(γ(x)) = x. (4.10)

It is easy to see the following properties of γ

1) There is a unique a ∈ (0, λ) such that γ(a±0) = ±∞ and γ(x) > 0 only for x ∈ (a, λ).
2) γ is decreasing on (a, λ).
3) There are a1, a2 ∈ (a, λ) such that γ(a1) = a, γ(a2) = a1.
4) γ has a unique fixed point x∗ ∈ (a2, a1) .
5) There is a a3 ∈ (a2, a1) such that γ(a3) = λ and γ(γ(x)) > 0 iff x ∈ (a3, a1).
Using Lemma 1 for γ(x), x ∈ [a3, a1] one can prove the following

Theorem 4. For

λ ∈ {λ : γ′(x∗) < −1} = {λ : (1 + x∗)
k+2 > (k − 1)x∗((k + 1)x∗ + 1)} (4.11)

there are three G∗

k− periodic measures µ0, µ∗, µ1. Which corresponds to three solutions

(x0, x1), (x∗, x∗), (x1, x0) of (4.9).

5 Extremity of the translation-invariant splitting Gibbs mea-

sure

Results presented in this section are based on methods developed in [14, 15, 16, 13].
Consider a two-parameter family of Markov chains with states 0, 1, 2 and transition

matrix
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P =









1
1+z∗

1
+z∗

2

z∗
1

1+z∗
1
+z∗

2

z∗
2

1+z∗
1
+z∗

2

1
1+z∗

1

z∗
1

1+z∗
1

0

1 0 0









,

where as before z∗ = (z∗1 , z∗2) is the unique solution for (3.2).

The eigen-values for P are Λ1 = 1 and

Λ2,3 = Λ2,3(λ) =
−z∗2

2(1 + z∗1)(1 + z∗1 + z∗2)

(

1±
√

1 + 4z∗1(z∗2)−1(1 + z∗1)(1 + z∗1 + z∗2)

)

.

Theorem 5. For k ≥ 2 and

Λ2
2 >

1

k
(5.1)

the translation-invariant splitting Gibbs measure µ∗ is not extreme.

Proof. We apply the ‘second eigen-value’ calculation from [14]. A sufficient condition for
non-extremity of µ∗ is that k(Λ2)

2 > 1. This immediately leads to bound (5.1). �

The question when precisely measure µ∗ becomes non-extreme (and what its decompo-
sition is) is of a great interest. Also, the decomposition of µ∗ into extreme measures looks
pretty ‘weird’ (it cannot be a half-sum of measures µ± as this would destroy the splitting
character of µ∗).

We make a

Conjecture 2. For ∀k and

z∗1 + z∗2 <
1

2k − 1
, (5.2)

the translation-invariant splitting Gibbs measure µ∗ is extreme.

Remark 3. In particular, if λ < 1
2(2k−1) then the condition (5.2) is satisfied.

We conclude this section with an observation due to E. Mossel. This statement shows
that the definition of the ‘second’ critical point λ′

cr as inf [λ : measure µ∗ is non-extreme ]
is correct.

Proposition 9. If, for given k and λ0, measure µ∗ is non-extreme then it remains non-

extreme for the same k and all λ > λ0.

Proof. Again one uses reconstruction techniques from [14, 15, 16]. Given k and λ0, if
there exists an algorithm reconstructing value σ(x0) from σ

∣

∣

Wn

then it can be modified

for any λ ≥ λ0 so that the reconstruction remains possible. Details can be found e.g., in
[14]. �
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