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Abstract 

A negative selection algorithm based on the hierarchical clustering of self set HC-RNSA is introduced in this paper. 
Several strategies are applied to improve the algorithm performance. First, the self data set is replaced by the self 
cluster centers to compare with the detector candidates in each cluster level. As the number of self clusters is much 
less than the self set size, the detector generation efficiency is improved. Second, during the detector generation 
process, the detector candidates are restricted to the lower coverage space to reduce detector redundancy. In the 
article, the problem that the distances between antigens coverage to a constant value in the high dimensional space 
is analyzed, accordingly the Principle Component Analysis (PCA) method is used to reduce the data dimension, 
and the fractional distance function is employed to enhance the distinctiveness between the self and non-self 
antigens. The detector generation procedure is terminated when the expected non-self coverage is reached. The 
theory analysis and experimental results demonstrate that the detection rate of HC-RNSA is higher than that of the 
traditional negative selection algorithms while the false alarm rate and time cost are reduced. 
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1. Introduction 

Negative selection is a biological process by which the 
immune system generates non-self detectors that do not 
match self structures. The biological negative selection 
process can be mapped to the computational domain as a 
two class pattern classification problem in the artificial 
immune system (AIS) 1, in which the normal states 
correspond to self antigens while the abnormal states 
correspond to non-self antigens. In AIS, negative 
selection algorithm (NSA) is an important method for the 
generation of detectors. NSA is designed by modeling the 
biological process in which T-cells mature in thymus 
through being censored against self cells 2. After negative 

selection, the left mature (valid) detectors are used for 
further applications such as anomaly detection 3, machine 
learning 4, pattern recognition 5, intrusion detection 6, and 
etc.

The native negative selection algorithm (NNSA) 
defines the self/non-self discrimination problems using 
binary representations and calculates the affinities 
between binary strings by the r-contiguous-bits method 
2,7,8. Li and T. Stibor pointed out that the efficiency of 
NNSA is too low to be applied 9,10,11: under the given 
failure rate Pf e-Pm|D|, where Pm is the match probability 
between random detector and antigen, the least number of 
detector candidates N0 is -ln(Pf)/(Pm (1-Pm)Ns) which 
means N0 is exponentially related to Ns and the time 
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complexity of NNSA is O(N0 Ns)
2. Thus, the time cost 

of NNSA cannot be accepted when the self size is large 10.
Gonzalez and Dasgupta introduced the real negative 

selection algorithm RNSA 12,13, which normalized 
detectors and antigens into [0, 1] d. And then, Ji and 
Dasgupta improved RNSA using variable detector radius 
called V-Detector, which set detector radius by the 
nearest self distance to enlarge the non-self coverage with 
little number of detectors 14,15.

T. Stibor indicated that RNSA and V-detector also 
suffered to the curse of dimensionality 16,17. On the one 
hand, the distances between antigens in the high 
dimensional data space converges to a constant value. 
Therefore, there is little distinctiveness between self and 
non-self antigens, resulting in the higher false alarm rate. 
On the other hand, the algorithms terminate with only a 
very small number of large radii detectors (hyperspheres) 
which are covering a limited number of spikes. As a 
result a large proportion of the volume of the hypercube 
([0, 1]d) does not lie within the hyperspheres, it lies in the 
remaining (high-volume) spikes. Thus the detection rate 
is lower. 

Additionally, for most pattern recognition algorithms, 
the distance calculation is the main source of time 
consuming 18,19. However, NNSA, RNSA and V-detector 
didn’t take any strategy to reduce the cost of distance 
calculation: the distances from detector candidates to the 
self set have to be calculated, resulting in the lower 
efficiency 9. Furthermore, as there are many overlapped 
detection regions, the reduction of detector redundancy 
must also be taken into consideration. 

A real negative selection algorithm based on the 
hierarchical clustering of self set (HC-RNSA) is present 
in this article. The underline idea is that first, the self data 
set is preprocessed using Principle Component Analysis 
(PCA) method to reduce the data dimension, and then the 
self set is hierarchically clustered. During the detector 
generation process the detector candidates, restricted in 
the lower coverage space, are compared with the cluster 
centers using fractional distance function to eliminate the 
self reactive detectors. The detector generation process is 
recursively continued from the higher cluster level to the 
lower level until the cluster radius is less than the self 
radius, and in each cluster level, the exit condition is to 
reach the expected non-self coverage. 

2. Basic Definition 

In the AIS, antibodies are defined as detectors which are 
used to recognize non-self elements2. Therefore, the 
accuracy of the detection result is determined by the 
quality of detectors. As the randomly generated detector 
candidates may matched self elements, resulting in self 
reactive 2,12.  The negative selection algorithm, inspired 
by the censoring process of antibody cells in the 
biological body, was designed to eliminate the self 
reactive detectors. The basic conceptions are defined as: 
Def 1. All the character strings abstracted from the 
sample space constitute the antigen set U= {g | g = (f1,
f2…fn), fi [0, 1]}, where n is the data dimension and fi is
the ith normalized attribute.
Def 2. The self set S U is the character strings 
abstracted from the normal samples, rs R+ is the 
variability threshold of the self points; Non-self set N = U 
- S, which are character strings abstracted from the 
abnormal samples, and ,S N U S N .
Def 3. Detector d=<c, r>, where c N, c is the central 
vector which represents the location of d in the sample 
space, r R+ is the detector radius. Antigens which are 
close to d less than r will be identified as non-self 
elements.  
Def 4. The non-self coverage of detectors is defined as 
the ratio of the volume of the non-self space that can be 
recognized by any detector to the volume of the entire 
non-self space 14.

.    
covered covered

nonself nonself

V dx

V dx
p    (1) 

Def 5. Anomaly detection is to find a functional mapping 
f:

                               RN f {C0, C1}.                       (2) 

using training data samples generated according to an 
unknown probability distribution P(x, y): 

                (x1, y1),…(xn, yn) RN, Y={C0, C1} .             (3) 

where C0 is the set of normal samples, C1 is the set of 
abnormal samples, and such that f will correctly classify 
unknown examples (x, y). For AIS, the training set only 
contains normal samples (x, y C0) and the task is to 
detect abnormal samples (x, y C1) with the function f
trained by normal samples. As described in Ref. 17, 
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abstracting these principles and modeling immune 
components according to the AIS framework, we obtain a 
technique for anomaly detection: 

Input: S = set of points [0, 1] n gathered from 
normal behavior of a system.

Output: D = set of hyperspheres, which recognizing 
a proportion of the total space [0, 1]n, except the normal 
points. 

Detector generation: While non-self coverage of 
detectors is not reached, generate hyperspheres. 

Classification: If unknown point lies within a 
hypersphere, it does not belong to the normal behavior of 
the system and is classified as an anomaly. 

3. The Description of HC-RNSA 

3.1. The strategies of detector generation 

3.1.1. The estimation of non-self coverage 

As Eq. (1) is hard to calculate, we select fixed number of 
samples in the non-self space and then estimate p using 
statistical inference method: the probability of a random 
sample to be recognized by detector set D obeys binomial 
distribution 15, P{x =1, x is covered} =p, P{x =0, x is 
uncovered} =1-p. According to the Neyman-Pearson 
theorem, there exists a most powerful test for the 
hypothesis testing problem in Eq. (4):

                  0 1: ,  : .exp expH p p H p p                    (4) 

where H0 is the hypothesis that the expected non-self 
coverage is not reached and H1 is on the contrary. The 
rejection region of Eq. (4) is the same as that of Eq. (5) 20.

                  0 exp 1 1 exp: ,  : ( ).H p p H p p p          (5) 

where p1 is a random value bigger than pexp. The 
likelihood ratio of Eq.(5) is calculated through a random 
sample set {x1, x2, … xn}.
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As p1>pexp, p1 (1-pexp)>pexp (1-p1), therefore Eq. (7) 
equals: 
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So the rejection range of H0 is: 

                  { }.b                                                       (9) 
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When is bigger than b, the initial hypothesis H0 is 

rejected, and the detector generation procedure is stopped. 

3.1.2. The value ranges of detector candidates 

The random value ranges (RVR) are set of d dimensional 
hypercube: ranges = {hypercube | hypercube = ([low1,
low2…lowd], [high1, high2…highd])}. Highi and lowi

represent the upper and lower bounds of the ith attribute 
of the detectors’ central vectors. The RVR of the ith
cluster of cluster level l is defined in Eq. (10): 

       Hypercubeli = ([ci1-rl…cid-rl], [ci1+rl …cid +rl]).    (10) 

where ci is the cluster center and rl is the cluster radius. 
During the detector generation procedure of level l+1, the 
non-self space outside the RVR of level l has been 
covered by detectors, so the new generated detector 
candidates should be located in the RVR of level l to 
reduce detector redundancy. 

As Fig. 1 shows, during the detector generation 
process of level 2, the non-self space outside the RVR of 
level 1 has been covered by detectors, therefore the 
detector candidates in level 2 are generated within the 
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RVR of level 1 to reduce the detector redundancy. So 
does the detector generation process in the level 3. 

3.1.3. The probability of generating invalid detectors 

As the randomness during the detector generation 
procedure, many invalid detectors (covered self samples) 
are generated which results in the lower efficiency. Let p
represents the probability of generating an invalid 
detector. For RNSA 12 and V-detector 14, as the central 
vectors of the detector candidates are randomly sampled 
from the unit hypercube [0, 1]d, p is the ratio of the self 
hyperspheres’ volume to the volume of the unit 
hypercube: 

/ 2

1
( / 2 1)

= = .
d d

self s

cube

n V n r
P

V d
                                       (11) 

where n is the self number, selfV  is the volume of single 

self hypershpere, cubeV  is the volume of the unit 

hypercube. 
In HC-RNSA, samples are chosen from the random 

value range which is hypercube with edge length 4r, r is 
the cluster radius, so p is the ratio of the cluster   
hyperspheres’ volume to the volume of the 4r-hypercube: 

/ 2

2

_ (4 ) ( / 2 1)
= = .

d d
clu

d
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m V m r
P

V r d
                  (12)

where m is the number of clusters, cluV is the volume of a 

cluster hypersphere, _random cubeV is the volume of the 4r-

hypercube (RVR). 

To compare the efficiency of RNSA V-detector and 
HC-RNSA, we define the coefficient as follows:

1

2
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From Eq. (13), we get coefficient =( 4 )dd s
n

r
m

,

when  is bigger than 1, the efficiency of HC-RNSA is 
higher than that of the traditional algorithms. As Fig. 2 
shows, when the data dimension is lower than 20 and the 
self radius is bigger than 0.05, >1, otherwise the 
efficiency of HC-RNSA is lower than that of the 
traditional NSAs. 

Therefore, the data pretreatment process is needed to 
reduce the data dimension when deals with high 
dimensional data. In the article, the Principle Component 
Analysis (PCA) method is employed: 

First, n antigen samples x1, x2…xn, xi = (xi1, xi2…xip), 
1 i n are selected to calculate the correlation 
coefficient matrix R: 

1

2 2

1 1

( )( )

=

( ) ( )

.

n

ki i kj j

k
ij

n n

ki i kj j

k k

x x

x x

x x

R

x x (14) 

  (a) original data                      (b) detectors in level 1

(c) detectors in level 2                (d) detectors in level 3

Fig. 1. The rectangles are random value ranges, the cycles are clusters 

and the shadows are regions covered by detectors. From the higher cluster 

level to the lower level, the cluster radius is halved.
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Then the eigenvector of R is calculated and ordered 
by values. The first m eigenvector whose accumulative 
contribution rate is more than threshold are selected as 
the principle components.

3.1.4. The fractional distance function 

Theorem 1. Let F is a random distribution of two 

antigens, for the Lk metric,
1/ 1/ 2

lim
max min

k
kd

D D
E C

d
,

where d is the data dimension, Ck is a constant 
dependents on norm k, Dmax and Dmin are the maximum 
and minimum distances from antigens to the origin using 
the Lk metric.

Proof. Let A = (P1…Pd) and B=(Q1…Qd), with Pi and Qi

being drawn from F. Let dA = 
1

d
k

k
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P is the distance 

from A to the origin using the Lk metric and dB =  

1

d
k

k
i

i

Q  is the distance from B to the origin. 

As the d attributes of A and B are drawn from the 
distribution F with mean and standard deviation ,

which means 21:
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The comparison is between two random antigens, so
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From Eq.(16) we get: 
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Since each k k
i i iR P Q , 1 i d is a random 

variable with zero mean and finite variance 2 ' ,

where ' is the standard deviation of k
iP . The sum of 

different values of Ri over d dimensions will converge to 

a normal distribution: 
1

( ) ~
d

k k
i i

i

P Q N (0, 2d 2' )

because of the central limit theorem, so the expected 
value of the numerator is a constant C.
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According to Slutsky’s Theorem, put Eq. (15) into the 
denominator of Eq. (17), get  

1
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Combine the results of Eq. (18) and Eq. (19) to obtain 

       
max min
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d
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where Ck is some constant dependents on k
From Fig. 3 we can see Dmax - Dmin is increasing with 

d(1/k)-(1/2), which inspires us to use the fractional norm
distance function in Eq. (21) to enhance the 
distinctiveness between self and non-self antigens. 

1
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Fig. 2. The relationship between , rs and d
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3.2. The negative selection algorithm HC-RNSA 

The pseudo-code of HC-RNSA is: 
HC-RNSA(C, D, Pexp, N)
C: cluster centers,       Pexp: expected coverage 
D: detector set,           N: non-self sample size 
Step1 Preprocess the self data set using PCA method to 

reduce the data dimension. 
Step2 Hierarchically cluster the self set, the cluster result 

is stored in set C.
Step3 Initialize cluster level i =1, non-self number n =0, 

cover count m =0. 
Step4 Sample non-self data x from the random value 

ranges of the ith cluster level. 
Step5 Calculate the distance dis(x, c) between x and each 

center c in Ci by Eq. (21), if dis(x, c) is less than the 
cluster radius ri, drop x, go to step 4, else increase n.

Step6 If n equals N, calculate the rejection range of H0 by 
Eq. (9). If H0 is rejected then increase i, reset m, n,
go to step 4; else put the detectors from Td into D.

Step7 If x is covered by detectors in D, increase the cover 
count m

Step8 Generate detector d<x, r>. Put d<x, r> into the 
temporary set Td, go to step4. 

Steps 1-3 are the data pretreatment stages, in which 
the data dimension is reduced and the self set is 
hierarchically clustered. Steps 4-8 are the detector 
generation process. In step4 the detector candidates are 
restricted to the random value ranges to reduce the 
detector redundancies. In step 5, the self data is replaced 
by the cluster centers to compare with the detector 
candidates. As the number of cluster centers is far less 
than the self set size, the efficiency of the negative 
selection process is much enhanced. In step 6, the 
termination criterion is based on the hypothesis test of the 
non-self coverage. If the hypothesis H0 in Eq. (4) is 
rejected, the generation procedure can be terminated. 
Step 7 test whether the non-self sample x is covered by 
detectors to accumulate the cover count m. In step 8, the 
non-self sample x is reused to generate detector d<x, r>,
where r is the nearest distance between x and the cluster 
ranges, and r is a byproduct of step 5. As the non-self 
coverage of detectors is varying when new detectors are 
put into D, so the detector set is unchanged until the 
number of non-self samples equals the predefined size N.

3.3. The cost of HC-RNSA 

Theorem 2. The time complexity of the detector 
generation process of HC-RNSA is irrelevant to the self 
set size.

Proof. In HC-RNSA, the time consuming of step 4, 6 and 
8 is a constant time t which could be ignored. In step 5, 
the distances from the sample x to the cluster centers are 
calculated, the time complexity of this step is O (|Cl|), Cl

(a) Fractional norm distance 

(b)  Integer norm distance 

Fig. 3. The relationship between d and Dmax-Dmin under 
different distance norm 
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is the set of cluster centers in level l. Assuming the 
number of samples in cluster level l is Nl, the number of 
non-self samples of step 7 is (1 )l lP N , Pl calculated by 

Eq. (12) is the probability of generating self samples. The 
distances between the non-self sample x and the detector 
set D are calculated in step 7, and the time complexity of 
this step is (1 ) | |l lP N D . So the time complexity of 

the detection generation process in level l
is ( | | (1- ) | |)l l lO N C P Nl D . As the level of the 

hierarchical clusters is k= 2log
s

n

r
, the total time 

complexity of the detector generation process 

is
1

( ( | | (1 ) | |))
k

l l l l

l

O N C P N D . The total number 

of samples is N0=
1 1

k

l

l

D
N

P
, thus the simplified time 

complexity is 0 0( (1 ) | |)| |O N P N DC , where P

is the average probability of generating self samples and 

| |C  is the average number of clusters in each level. 

Therefore, the time complexity of the detector generation 
process of HC-RNSA is irrelevant to the self set size.                                                                 

Table 1.  The time complexity of the detector 
generation process.

Algorithm Time complexity 

NNSA 
- ln( )

( )
(1 - )

f
s

Ns
m m

P
O N

P P

2

RNSA
| |

( )
(1 - )

s
Ns

D
O N

P

12

V-Detector 
| |

( )
(1 - )

s
Ns

D
O N

P

14

HC-RNSA 0 0( | | (1 ) | |)O N C P N D

As Table 1 shows the self set size is exponentially 
related to the time complexity of the traditional NSAs. 
Therefore, when the number of self data increases, the 
time consuming increases incredibly. But for HC-RNSA, 
the time complexity of the detector generation process is 
irrelevant to the self set size, which means HC-RNSA is 
suitable for the detector generation under large number of 
self data.

4. Experiment

To test the anomaly detection performance of HC-RNSA 
and compare it with the traditional NSAs: NNSA2,
RNSA12 and V-detector14, comparison experiments are 
designed based on different classic UCI (University of 
California Irvine) data sets 22, which have been widely 
used in the fields of anomaly detection, disease diagnose, 
equipment detection, etc 22.

The detection rate (DR), false alarm rate (FA) and 
time cost are three evaluation criterions of NSAs. 

/( ).DR TP TP FN                                                (22) 

/( ).FA FP FP TN                                                (23) 

where TP, TN, FP and FN are the counts of true positive, 
true negative, false positive and false negative 
respectively.

The experimental data properties are described in 
Table 2. In the data sets Ball-bearing and Delft pump, all 
the records with normal equipment state are taken as self 
data, others are non-self data. In the other data sets, the 
records collected from healthy people are self data, and 
records from the unhealthy constitute non-self data set.
The data records are first normalized into [0, 1]d, and then 
NSAs including: HC-RNSA, NNSA2, RNSA12, V-
detector14 are employed to generate detectors based on 
these data sets. The parameters are shown in Table 3. 

Table 2.  The data prosperities of the UCI data sets.

Data set Dimension
Record
number

Training 
set 

Test  set 
self non-

self 
Ball-bearing 32 4150 593 320 3237
Delft pump 64 1500 244 132 1124
Arrhythmia 278 420 154 83 183
B.Cancer 9 699 156 85 458
Biomed 5 194 82 45 67 
Diabetes 8 768 174 94 500

Table 3. Parameter set. 

Parameter Value 

expect coverage 20%~100%
self radius 0.05~0.15 

initial cluster radius d
PCA threshold 85%
distance norm 0.5 

*d is the data dimension 
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The receiver operating characteristic curves (ROC) 
are generated by repeated experiments under different 
expected coverage. In Fig. 4, the horizontal axis 
represents the false alarm rate while the vertical axis 
represents the detection rate. Therefore the ideal curve is 
the vertical axis, which means the false alarm rate will 
always be zero with any detection rate. 

Fig. 4 shows that the four NSAs get similar results on 
the data set Biomed; on the other data sets, they get much 

different results, and however, HC-RNSA always gets 
better results than others. Apparently, on Ball-bearing,
Delft pump and B.Cancer, the detection results of HC-
RNSA are much better than that of the traditional NSAs. 
Combining Table 2 and Fig. 4 we can see that, little self 
set size results in poor performance of the traditional 
NSAs. On the one hand, that is because the traditional 
NSAs rely on the self set to training detector candidates, 
thus the lack of self elements will result in the generation 
of self reactive detectors and poor performance. For HC-
RNSA, the coverage of detectors is decided by the 
nearest self cluster margin. Therefore, the absence of 
some self elements will not affect the training of 
detectors. On the other hand, the data distribution of self 
data is not taken into consideration in the traditional 
NSAs. However, HC-RNSA discriminates the self and 
non-self regions by the self cluster ranges and generates 
mature detectors based on the discrimination, which 
reduced the false alarm rate. 

Table 4. The time cost of the detector generation 
process (h).

Dataset V-detector NNSA RNSA HC-RNSA

Ball-bearing 5.37 8.23 3.57 2.16 
Delft pump 2.34 2.63 1.92 1.02 
Arrhythmia 1.75 1.96 1.30 0.81 
B.Cancer 2.33 2.3 1.93 0.96 
Biomed 1.12 0.86 0.71 0.55 
Diabetes 2.66 3.21 2.56 1.12 

The time cost of the detector generation process is 
shown in Table 4. From the table we can see that the time 
cost of HC-RNSA on each data set is less than that of the 
traditional NSAs. As discussed in Sec. 3.2, during the 
detector generation process, the self data are replaced by 
self cluster centers to compare with the detector 
candidates. Usually, the number of cluster centers is 
much less than the self set size, so the efficiency of the 
detector generation process is much improved. 

The HC-RNSA algorithm without PCA pretreatment 
stage is called HC1 and the HC-RNSA using integer norm 
distance function is called HC2. The detection result of 
HC-RNSA, HC1 and HC2 on the same UCI data sets is 
shown in Table 5. 

As Table 5 shows, on the data sets: Ball-bearing, 
Delft pump and Arrhythmia, the detection rate of HC-
RNSA is higher than that of HC1 and HC2 while its false 
alarm rate is lower. The result demonstrates that on the 

     

              (a) Ball-bearing                         (b) Delft pump 

     

              (c)Arrhythmia                          (d)B.Cancer 

     

               (e)Biomed                               (f) Diabetes 

Fig. 4. The receiver operating characteristic curves 
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higher dimensional data sets, the PCA pretreatment and 
fractional distance function is essential to the 
improvement of the algorithm performance. However, on 
the lower dimensional data sets: Biomed and Diabetes, 
HC1 and HC2 have better performance. On the one hand, 
that is because after the PCA pretreatment process, the 
data dimension is reduced, on the same time, some useful 
distinctiveness information is also lost; on the other hand, 
as discussed in Sec. 3.1.4 that Dmax-Dmin does not 
coverage in the lower dimensional space, so the fractional 
distance function is not needed. Therefore, when we 
chose negative selection algorithms to generate immune 
detectors, the self data distribution, data dimension, self 
set size, self radius and etc. must be taken into 
consideration.

Table 5. Detection result (%) of HC-RNSA, HC1

and HC2 under expected coverage 95%. 

Dataset 
HC-RNSA HC1 HC2

DR FA DR FA DR FA 
Ball-bearing 81.7 15.1 66.1 19.3 70.2 16.7
Delft pump 75.5 17.4 65.4 23.4 52.3 30.3
Arrhythmia 72.6 23.3 59.3 27.9 51.9 26.4
B.Cancer 94.5 9.5 96.5 15.1 89.7 11.6
Biomed 86.9 10.3 97.7 3.6 87.2 5.9 
Diabetes 87.1 7.6 89.1 8.5 90.6 6.3 

5. Conclusions 

Artificial immune theory is an intelligent soft 
computing technique which has the adaptive learning 
ability to study from the training data. But the application 
of the artificial immune system has been confined by the 
lower efficiency of the detector generation procedure. 
Therefore, a new negative selection algorithm HC-RNSA 
based on the hierarchical clustering of self set is proposed 
in this article. In HC-RNSA, the self data is replaced by 
the cluster centers to compare with the detector 
candidates to reduce the cost of distance calculations; the 
PCA method and fractional distance function are 
employed to improve the detection performance in the 
high dimensional space. The non-self coverage is 
estimated based on statistical inference method to 
dynamically terminate the detector generation procedure, 
which is more reasonable than the traditional exit 
conditions based on a given detector set size. The theory 
analysis and experimental results demonstrate that HC-
RNSA is an effective algorithm to generate artificial 
immune detectors for anomaly detection. 
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