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1.  INTRODUCTION

The fields of machine learning (ML), deep learning (DL), and arti-
ficial intelligence (AI) are speculated to change the way that we 
practice medicine [1–3]. The current medical literature in ML’s and 
DL’s use is exponentially expanding; however, most applications of 
these technologies are still limited, with a lack of prospective and 
real-life applications of the most proposed algorithms [4]. The inte-
gration of ML and DL in clinical care is faced with multiple ethical 
and logistic concerns [5]. However, it is reasonable to say that the 
field is promising, given the considerable amount of data generated 
by the current healthcare system and the ability of ML and DL to 
analyze, process, and identify patterns.

The field of hematology (benign and malignant) is also rapidly 
expanding, including increasing our molecular/genomic under-
standing and the number of new therapies joining the pipeline 
[6]. For instance, genomics has become an integral part of oncol-
ogy, where it provides diagnostic, prognostic, and therapeutic 
values [7]. Using deep/machine learning in genomics might help 
overcome the challenge that a large amount of data imposes, 
leading to improved diagnosis, identification of genomic pat-
terns, and increased efficiency. The integration of these newer 
technologies in hematology practice holds an opportunity to 
improve it.

In this review, we introduce AI tools, particularly ML and DL, in 
hematology diagnosis. We summarize the significant directions of 

ML and DL in the current hematology literature and hematopoietic 
cell transplant.

2.  BASICS OF AI, ML, AND DL

2.1.  Basic Definitions

Artificial intelligence is a general term that describes the use of 
technology in accomplishing tasks that would usually need human 
intelligence, for example, voice or image recognition. Machine 
learning, on the other hand, is a subset of artificial intelligence. The 
ML technology enables machines to learn from previous data using 
statistical approaches and algorithms [8]. The performance of ML 
algorithms generally improves as more data are used.

Machine learning has two main categories: Supervised and unsuper-
vised. Supervised ML is the most widely used in the medical litera-
ture. It uses labeled input and output, which can then be applied to an 
algorithm to create a function that relates between the input and the 
output, i.e., y = f(x), where y is output, and x is the input. Supervised 
ML is usually used to accomplish two main tasks: classification (e.g., 
support vector machine, naïve Bayes classifier) and regression (e.g., 
non-linear regression, Bayesian linear regression) [8,9]. Additionally, 
the incorporation of the ensembles method (combining multiple 
algorithms to produce a more accurate model) to create decision 
trees (such methods include random forest, XGBoost Bagging) is 
another important function of such algorithms.

On the other hand, unsupervised machine learning is used to a 
lesser extent in medicine. Unlike the supervised process, output 
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Figure 1 | Supervised machine learning and its different subtypes.

Figure 2 | Deep learning with description of two types of neural networks frequently used in medical literature.

data are not needed in unsupervised learning. In addition to 
supervised and unsupervised learning, semi-supervised learn-
ing (or reinforcement) is another category of machine learning 
that uses a combination of labelled and unlabeled data [8,9]. 
This approach power stems from its ability to adapt through 
rewards-like systems to more complex environments. Figure 1 
illustrates the different types of machine learning with examples 
on each.

Deep learning is a subset of ML which approaches problems in 
a fashion that is more similar to the human approach. In deep 
learning, algorithms can deduce the data’s features/patterns 

through multiple layers of processing (i.e., neural networks) [10]. 
Two very frequently used neural network approaches include 
convolutional neural network (CNN) and recurrent neural net-
works (RNN). CNN is a feed-forward neural network method 
that is mainly used in medical imaging processing, including 
pathologic diagnosis of hematologic cancers. In RNN, outputs of 
prior steps are fed as inputs in subsequent steps. This approach 
is mainly used in time series analysis and sequence classification 
(Figure 2). Similar to ML, DL algorithms can use labeled and 
unlabeled data. The DL popularity has increased in the medical 
literature in recent years.
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2.2.  Models’ Evaluation

Applying the different ML and DL methods described above to 
different medical questions requires measures to ensure that the 
models are accurate and valid. It is important to note that every 
model is usually based on a set of data called ‘training set.’ After cre-
ating the model, it is generally validated with either another set of 
data, “validation set”, or using the original data set itself. However, 
the usual approach is to start with the validation with the original 
data set, and then use an external “test set” sample.

The hold-out approach involves the process by which the data are 
usually split into training and validation sets. Typically, the valida-
tion set is a new set of data that is not a subset of the training set. 
This approach ensures that the data can be applied to another/new 
set of data. A discrepancy in accuracy between the training and 
validation sets indicates ‘overfitting.’ Overfitting is a phenomenon 
where the algorithm is modeled very well on the training set to a 
point where it is not generalizable to other data [8,11]. However, 
another approach to validation is using the training set itself.  
A commonly used method is ‘cross-validation.’ In cross-validation, 
the training set will usually be split into multiple subsets on which 
the model will be run to confirm accuracy. The number of sub-
sets is generally dictated by how many k-folds of cross-validation, 
where k is the number of subsets [11].

Moreover, models are evaluated by different metrics. Similar to the 
evaluation of diagnostic tests, classification algorithms (the major-
ity of diagnostic algorithms) can be assessed based on their ability 
to identify samples with a specific diagnosis (Figure 3). Thus, con-
cepts such as ‘accuracy’ and ‘precision’ can still be used to evaluate 
algorithms [12,13]. On the other hand, “recall” can be calculated 
by the ratio of positive results identified by the algorithm to all the 
positive samples. Moreover, F1 (F-measure) is a harmonic mean 

of precision and recall used to measure the not correctly classified 
results [11].

Using the algorithms’ specificity and sensitivity, the receiver opera-
tor curve (ROC) can be drawn using a true-positive and false-pos-
itive rate. Additionally, the area under the curve (AUC) can be 
calculated, an operation which has been widely used for years [14] 
and is now used to evaluate classification algorithms with binary 
results. There are no exact cut-offs to interpret AUC values; how-
ever, AUC of 0.50 and below usually indicates a low classification 
ability. Table 1 demonstrates the different definitions.

3. � ML AND DL IN THE DIAGNOSIS OF  
HEMATOLOGICAL DISEASES

The use of ML and DL tools has been investigated in different areas 
of hematologic diagnoses, including laboratory, histopathology, 
flow cytometry, and molecular data. The applications of ML and 
DL in hematology are many. In the discussion below, we highlight 
ML’s and DL’s multiple applications in diagnosing hematologic dis-
eases. Table 2 lists selected examples of these.

3.1. � Image-based Diagnosis  
and Recognition

Image recognition and diagnosis are essential in multiple dis-
eases, including malignant and benign hematologic diseases. 
The increase in ML and DL utilization could be attributed to the 
increased awareness and the efforts to digitalize histopathology 
slides, including whole slide imaging (WSI) [15,16]. The primary 
ML function used in image-based diagnosis is the classification of 
histopathology slides.

The approach of using ML in image recognition and classification 
usually starts with pre-processing the images, which includes digi-
tally labeling the slides. Slide labeling is particularly important with 
supervised machine learning, which generally requires the labeling 
of both the input and the output, a process that introduces a logis-
tical limitations, given the required resources to label many slides 
[17]. Following that, images are usually segmented into different 
parts (i.e., cytoplasm and nucleus), followed by identifying fea-
tures (feature extraction). The ML algorithm can then be applied 
to the sample (usually with known output), creating a model that Figure 3 | Confusion matrix.

Table 1 | Definitions of frequently used evaluation matrices

Index Description Comments

Accuracy Reflects the models’ ability to achieve correct predictions (TP + TN)/(TP + TN + FN + FP)
Precision It is the ratio of the true positive results to the total positive results TP/(TP + FP)
Recall It is the ratio of the true positive results to the total results that are supposed  

to be positives
TP/(TP + FN)

F1 score A measure that uses precision and recall to identify the not correctly  
classified results

2 ´ ´Precision Recall

Precision + Recall
The area under the curve It is the area under the receiver operating characteristic curve, which plots two 

parameters; true positive rate (sensitivity) over false-positive rate  
(1-specificity)—used to assess the performance of binary classification models

TP, true positive; TN, true negative; FP, false positive; FN, false-negative.
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Table 2 | Selected examples of ML and DL use in the diagnosis of hematologic disease

Hematologic disease Application Diagnostic modality Methodology References

Acute leukemia Diagnosing AML using  
histopathology slides

Microscopic ML-supervised (SVM) Kazemi et al. [23]

Diagnosing ALL using  
histopathology slides

Microscopy ML-supervised (Multiple 
algorithms)

Rawat et al. [22]

Using gene expression profiling 
(GEP) to diagnose AML

GEP Multiple Warnet-Herresthal et al. [39]

Chronic leukemia Differentiating normal cytometry 
from flow cytometry  
indicating CLL

Flow cytometry Multiple supervised and 
unsupervised algorithms

Lakoumenta et al. [37]

Myeloma Detecting bone metastasis in 
myeloma patients

Radiology ML-supervised (SVM) Xu et al. [27]

Diagnosis of MM Mass spectrum DL Deulofeu et al. [38]
Lymphoma Differentiating different types  

of lymphoma
Microscopy DL (CNN) Achi et al. [19]

Grading follicular lymphoma  
into a high or low grade

Microscopy ML-supervised (k-NN) Fauzi et al. [20]

Using GEP to classify large B-cell 
lymphoma (DLBCL)

GEP ML-supervised (SVM) Zhao et al. [40]

Myelodysplastic syndrome Detecting MRD in AML  
and MDS

Flow cytometry ML-supervised (SVM) Ko et al. [36]

Anemia Diagnosing anemia via  
fundoscopic images

Fundoscopic images DL (CNN) Mitani et al. [26]

Using cell population data  
parameters to improve the  
detection of liver disease and 
anemia in samples with  
abnormal scattergrams

Laboratory data ML-supervised (Multiple 
algorithms)

Bigorra et al. [34]

ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; MM, multiple myeloma; MDS, myelodysplastic syndrome; MRD, minimal  
residual disease.

can classify images based on their features. The majority of models 
in the slide-based diagnosis use a binary approach (diagnosis/no 
diagnosis), which significantly simplifies the real-life complexity of 
histopathology diagnosis [18]. Subsequently, all models have to be 
validated internally or externally to ensure applicability. The use of 
ML and DL is not a guarantee for developing an accurate model, as 
many factors play a role in achieving higher accuracy models.

Multiple studies have reported on the application of ML and DL in 
lymphoma. In one of these, Achi et al. [19] utilized the DL meth-
odology, particularly CNN and WSI from two different databases. 
The established model was able to diagnose three different types 
of lymphomas (diffuse large B-cell lymphoma, Burkitt lymphoma, 
and small lymphocytic lymphoma) with an accuracy of 95%, illus-
trating the utility of ML in more complex medical questions. As a 
DL approach, CNN is used for image classification by analyzing 
each image’s features in multiple deep layers. Usually, the initial 
layers aim at understanding the simple features of the image, sub-
sequently moving up to more complex and sophisticated feature 
extraction. K-nearest neighbor (k-NN) is another type of algorithm 
for tackling both classification and regression problems. Fauzi  
et al. [20] used k-NN to create a model to grade follicular lym-
phoma into a high or low grade. The model achieved an acceptable 
AUC of 0.75.

In leukemia, several studies have reported on ML supervised 
approaches such as support vector machine (SVM), naïve Bayesian, 
and random forest. Bigorra et al. [21] and Rawat et al. [22] have used 
SVM for diagnosing acute lymphoid leukemia (ALL). The AUC 
achieved by both models was 0.74 and 0.84, respectively. SVM is one 
of the most commonly used ML supervised approaches. It requires 

the labeled input and output data to analyze and process the input 
data, and to perform a classification function, as in the case of his-
topathology diagnosis. Kazemi et al. [23] used SVM in diagnosis 
acute myeloid leukemia (AML), achieving a model accuracy of 95%. 
CNN was primarily used in the histopathology diagnosis of ALL, 
with models achieving accuracy that is close to 95% [24,25].

The ML utility in image recognition goes beyond the histopathol-
ogy diagnosis of hematologic diseases. With data from the UK 
Biobank, Mitani et al. [26] used retinal fundal imaging to diagnose 
anemia via DL, achieving an AUC of 0.88 when used along with 
other patients’ data. ML was utilized for detecting bone lesions 
in multiple myeloma patients via analyzing PET/CT scans using 
various algorithms, including SVM, k-NN, RF, and CNN [27]. The 
latter outperformed the other ML algorithms used in that study.

Although the magnitude of practice change by such studies is ques-
tionable, they demonstrate the power of DL and ML in analyzing 
patterns, and the importance of having databases that can provide 
sufficient data to build algorithms. Furthermore, identifying pat-
terns in imaging using AI could help develop prognostic and diag-
nostic models [28].

Studies that have been done so far in histopathology diagnosis and 
image recognition are limited in terms of the sample size, which can 
be attributed to the lack of multi-institutional database-based stud-
ies. However, digital histopathology is a growing field, and WSI’s 
use may provide multiple opportunities, particularly in ML and DL 
utilization. The challenge in the AI literature remains to establish 
whether these models will achieve similar results in real-practice 
[21,23–25].
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3.2. � Laboratory-based Diagnosis and  
Flow Cytometry

Multiple studies have utilized ML and DL in laboratory diagno-
sis and flow cytometric diagnosis of benign and malignant hema-
tological diseases. The integration of AI models in hematology, 
particularly laboratory hematology, is not new [29,30]. Several 
knowledge-based equipment types were developed to aid in simple 
laboratory diagnoses, for instance, iron deficiency anemia or 
peripheral smear analysis [31,32].

The current literature provides a good sample of the breadth of 
the possible applications. For instance, one study has used both 
regression and classification algorithms to predict ferritin levels 
and increase its accuracy, as it is usually affected by multiple other 
biologic processes [33]. The model presented achieved an AUC 
of 0.97.

Bigorra et al. [34] investigated the use of ML to build a model that 
can use cell population data parameters to improve the detection of 
liver disease and anemia in samples with abnormal scattergrams. 
Multiple algorithms have been used, including random forests, 
naive Bayes classifiers, k-NN, neural networks, and SVM. The later 
achieved the highest accuracy. Guncar et al. [35] have used the 
random forest method to create a model that is able to analyze pat-
terns between the different blood indices (which are usually over-
looked) to guide clinicians to the five most possible hematologic 
diagnoses (both benign and malignant) at an early stage of investi-
gation. The model’s accuracy outperformed the evaluation by inter-
nal medicine specialists, and was comparable to that of hematology 
specialists. The random forest algorithm is another supervised ML 
algorithm that combines multiple decision trees.

There are also data on the utility of flow cytometry-based ML algo-
rithms yielding diagnostic and prognostic information [36,37]. In 
one study, the authors used SVM to develop multiple algorithms 
that can detect minimal residual disease in AML and myelodys-
plastic syndrome, using data from multiparameter flow cytometry 
[36]. The model utilized results from 5000 bone marrow samples 
from 1700 patients, and achieved an AUC of higher than 0.90. 
Other applications included using mass spectrum as in Deulofeu 
et al. [38] along with DL (using artificial neural networks) to 
achieve 100% sensitivity and 95% specificity in diagnosing multi-
ple myeloma.

3.3.  Applications of ML in Genomics

With the integration of genomics in cancer diagnosis, prognosis, 
and treatment, ML and DL have been utilized in improving the 
diagnosis of multiple cancers, including hematologic malignancies. 
For instance, Warnet-Herresthal et al. [39] used gene expression 
profiling to create a system that is able to diagnose AML with no 
expertise intervention. The authors have used multi-dimensional 
data with multiple algorithms achieving AUC and accuracy of more 
than 90%. However, as with many other ML articles, the approach 
was preliminary, and more prospective studies are needed to estab-
lish the utility of these models.

Machine learning and DL approaches have also been utilized in the 
classification of lymphoma using gene expression profile and DNA 
microarrays [40,41]. On one study, gene expression profiling was 

used to classify large B-cell lymphoma into its different molecular 
subtypes using SVM. The model was able to classify the data into 
germinal center B-cell like (GCB) and non-GCB with an accuracy 
of more than 90% in the validation cohort [40].

Given the advancements in genomics and the amount of data 
generated by the cutting-edge technologies, ML and DL offer the 
analytical tools to approach and use these data in clinical practice. 
However, high-quality studies and well-established databases will 
be needed to build models that will be clinically relevant.

3.4.  Other Clinical Uses of ML and DL

The previous discussion has highlighted multiple uses of ML and 
DL in the diagnosis of hematologic diseases. However, ML and DL 
tools have been used in various other applications, including prog-
nostic models. These applications are beyond the scope of this arti-
cle; however, below is a discussion of some examples.

The utilization of AI in hematopoietic cell transplantation (HCT) is 
increasing [42]. The majority of ML and DL studies in HCT are for 
prognostication, but multiple studies have tried to tackle other prob-
lems, including pre-transplant patient’s selection. Donor/recipient 
and transplantation characteristics were used to create algorithms 
to improve pre-transplant match results [43,44]. Nonetheless, AI/
ML is complex and dependent on multiple factors; thus, some algo-
rithms had suboptimal accuracy or failed validation [43,45]. Graft 
vs host disease (GvHD) is a significant cause of morbidity after 
allogeneic HCT. However, the use of ML and DL models in GvHD 
diagnosis/prediction is still minimal. Current studies demonstrate 
these approaches’ potential in improving the accuracy of predict-
ing GvHD and its associated prognosis [46,47]. In a study by Lee  
et al. [48], a super-learner (combining multiple algorithms) was 
used to create a model to predict acute GvHD. The algorithm 
achieved a modest AUC of around 0.60, indicating the importance 
of data selection in building models.

Several HCT-related databases have been established. They 
are being used in ML and DL studies, mostly by the European 
Society for Blood and Marrow Transplantation and the Center 
for International Blood and Marrow Transplant Research [45,49]. 
Although they are still in their initial phases, these databases’ use 
and investment might improve ML and DL utilization [50].

Gal et al. [51] used ML to predict complete remission in AML 
patients utilizing around 75 genes. The k-NN algorithm was used, 
and the model was able to achieve an AUC of 0.81. Other examples 
of prognostic models were published in the literature, including 
the use of single-nucleotide polymorphism data for the progno-
sis of MM [52], gene expression to predict prognosis in Hodgkin 
lymphoma [53], and an ensemble algorithm to develop a model to 
predict the risk of infection complications in chronic lymphocytic 
leukemia patients [54].

4.  FUTURE DIRECTIONS

The field of AI and ML is a promising field that would help to 
evolve our practice. This review highlights the different trends and 
applications in the hematology literature. AI uses are so far lim-
ited in terms of quality and quantity [4,18]. “Big data” is difficult 
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to obtain with no sufficient databases with internally homogenous 
data, particularly in histopathology diagnosis where digital histo-
pathology is still in its childhood. New databases should be devel-
oped with governance and data collection processes that allow for 
optimal use of ML algorithms. In a promising step, the American 
Society of Hematology has announced the development of a data 
hub to harness big data [55].

The incorporation of ML tools in medical practice faces many 
challenges. Technical hurdles include data collection and the need 
for ‘big data’ to create representative algorithms. However, the 
challenges facing ML integration are multi-faceted. When data 
are available, creating a model might be technically feasible, but 
many other issues must be taken into consideration. For instance, 
the ethics of data sharing and the use of patient information is a 
significant issue to be addressed. A similar concern is the possibil-
ity of, models’ bias, which may deepen health-care disparities by 
representing only certain groups and increasing racial biases, has 
aspects which have been previously reported [56]. These issues will 
require regulations and guidelines to avoid the misuse of data or 
an increase in bias. Lastly, to be able to meaningfully implement 
ML models, there is a growing need for them and their tools to be 
technically well-performing, transparent and explainable to both 
providers and patients [57].

The currently available data show a limited number of prospective 
studies in the field of AI, with no evidence to improve clinical out-
comes. The ML models reported on different studies lack repro-
ducibility, limiting their applicability. An accurate ML algorithm 
may not be reproducible on another population/dataset [58]. The 
costs of reproducing/replicating ML algorithms are huge, intro-
ducing a challenging aspect of implementing them in real-practice 
[59]. Moreover, current utilization of ML does not always yield sig-
nificantly better clinical outcomes and results, as demonstrated by 
a recent review of algorithms in the field of heart failure, indicating 
that more work is needed to unlock the power of ML [60].

The field ML, particularly in hematology, holds the potential for 
future impact. This should be facilitated by developing databases/
hubs, better governance of data collection, and improving current 
research practices.

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

AUTHORS’ CONTRIBUTION

INM and SKH wrote the first draft of the manuscript. All authors 
vouched for the accuracy and contents of the manuscript.

DISCLOSURES

SKH has received honorarium from Mallinckrodt, Janssen, 
Novartis and Pfizer & travel grants from Merck, Takeda, Sanofi and 
Gilead. ADS has received research support from Merck & Co. and 
Novartis.

REFERENCES

[1]	 Patel VL, Shortliffe EH, Stefanelli M, Szolovits P, Berthold MR, 
Bellazzi R, et al. The coming of age of artificial intelligence in 
medicine. Artif Intell Med 2009;46;5–17. 

[2]	 Kantarjian H, Yu PP. Artificial intelligence, big data, and cancer. 
JAMA Oncol 2015;1;573–4. 

[3]	 Beam AL, Kohane IS. Big data and machine learning in health 
care. JAMA 2018;319;1317–18. 

[4]	 Topol EJ. High‐performance medicine: the convergence of 
human and artificial intelligence. Nat Med 2019;25;44–56. 

[5]	 Char D, Shah N, Magnus D. Implementing machine learning 
in health care — addressing ethical challenges. N Engl J Med 
2018;378;981–3. 

[6]	 Donald Harvey R. New drug updates in hematologic malignan-
cies: CAR-T, targeted therapeutics, and other agents. J Adv Pract 
Oncol 2018;9;282–6.

[7]	 Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A 
primer on deep learning in genomics. Nat Genet 2018;51;12–18. 

[8]	 Liu Y, Chen PHC, Krause J, Peng L. How to read articles that use 
machine learning: users’ guides to the medical literature. JAMA 
2019;322;1806–16. 

[9]	 Kohli M, Prevedello L, Filice R, Geis J. Implementing machine 
learning in radiology practice and research. AJR Am J Roentgenol 
2017;208;754–60. 

[10]	 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 
521;436–44. 

[11]	 Handelman GS, Kok HK, Chandra RV, Razavi AH, Huang S, 
Brooks M, et al. Peering into the black box of artificial intelli-
gence: evaluation metrics of machine learning methods. AJR Am 
J Roentgenol 2019;212;38–43. 

[12]	 Jaeschke R, Guyatt G, Sackett DL. Users’ guides to the medical 
literature. III. How to use an article about a diagnostic test, A. 
Are the results of the study valid? The Evidence-Based Medicine 
Working Group. JAMA 1994;271;389–91. 

[13]	 Jaeschke R, Guyatt GH, Sackett DL. Users’ guides to the medi-
cal literature. III. How to use an article about a diagnostic test, 
B. What are the results, and will they help me in caring for my 
patients? The Evidence-Based Medicine Working Group. JAMA 
1994;271;703–7. 

[14]	 Hanley JA, McNeil BJ. The meaning and use of the area under 
a receiver operating characteristic (ROC) curve. Radiology 
1982;143;29–36. 

[15]	 Ghaznavi F, Evans A, Madabhushi A, Feldman M. Digital imag-
ing in pathology: whole‐slide imaging and beyond. Annu Rev 
Pathol 2013;24;331–59. 

[16]	 Acs B, Rimm DL. Not just digital pathology, intelligent digital 
pathology. JAMA Oncol 2018;4;403–4. 

[17]	 Tizhoosh HR, Pantanowitz L. Artificial intelligence and dig-
ital pathology: challenges and opportunities. J Pathol Inform 
2018;9;38. 

[18]	 Salah HT, Muhsen IN, Salama ME, Owaidah T, Hashmi SK. 
Machine learning applications in the diagnosis of leukemia: 
current trends and future directions. Int J Lab Hematol 2019;41; 
717–25. 

[19]	 Achi HE, Belousova T, Chen L, Wahed A, Wang I, Hu Z, et al. 
Automated diagnosis of lymphoma with digital pathology images 
using deep learning. Ann Clin Lab Sci 2019;49;153–60.

https://doi.org/10.1016/j.artmed.2008.07.017
https://doi.org/10.1016/j.artmed.2008.07.017
https://doi.org/10.1016/j.artmed.2008.07.017
https://doi.org/10.1001/jamaoncol.2015.1203
https://doi.org/10.1001/jamaoncol.2015.1203
https://doi.org/10.1001/jama.2017.18391
https://doi.org/10.1001/jama.2017.18391
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1056/NEJMp1714229
https://doi.org/10.1056/NEJMp1714229
https://doi.org/10.1056/NEJMp1714229
https://doi.org/10.1038/s41588-018-0295-5
https://doi.org/10.1038/s41588-018-0295-5
https://doi.org/10.1001/jama.2019.16489
https://doi.org/10.1001/jama.2019.16489
https://doi.org/10.1001/jama.2019.16489
https://doi.org/10.2214/AJR.16.17224
https://doi.org/10.2214/AJR.16.17224
https://doi.org/10.2214/AJR.16.17224
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.2214/AJR.18.20224
https://doi.org/10.2214/AJR.18.20224
https://doi.org/10.2214/AJR.18.20224
https://doi.org/10.2214/AJR.18.20224
https://doi.org/10.1001/jama.1994.03510290071040
https://doi.org/10.1001/jama.1994.03510290071040
https://doi.org/10.1001/jama.1994.03510290071040
https://doi.org/10.1001/jama.1994.03510290071040
https://pubmed.ncbi.nlm.nih.gov/8309035/
https://pubmed.ncbi.nlm.nih.gov/8309035/
https://pubmed.ncbi.nlm.nih.gov/8309035/
https://pubmed.ncbi.nlm.nih.gov/8309035/
https://pubmed.ncbi.nlm.nih.gov/8309035/
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1146/annurev-pathol-011811-120902
https://doi.org/10.1146/annurev-pathol-011811-120902
https://doi.org/10.1146/annurev-pathol-011811-120902
https://doi.org/10.1001/jamaoncol.2017.5449
https://doi.org/10.1001/jamaoncol.2017.5449
https://doi.org/10.4103/jpi.jpi_53_18
https://doi.org/10.4103/jpi.jpi_53_18
https://doi.org/10.4103/jpi.jpi_53_18
https://doi.org/10.1111/ijlh.13089
https://doi.org/10.1111/ijlh.13089
https://doi.org/10.1111/ijlh.13089
https://doi.org/10.1111/ijlh.13089
https://pubmed.ncbi.nlm.nih.gov/31028058/
https://pubmed.ncbi.nlm.nih.gov/31028058/
https://pubmed.ncbi.nlm.nih.gov/31028058/


	 I.N. Muhsen et al. / Clinical Hematology International 3(1) 13–20	 19

[20]	 Fauzi MFA, Pennell M, Sahiner B, Chen W, Shana’ah A, 
Hemminger J, et al. Classification of follicular lymphoma: the 
effect of computer aid on pathologists grading. BMC Med Inform 
Decis Mak 2015;15;115. 

[21]	 Bigorra L, Merino A, Alférez S, Rodellar J. Feature analysis and 
automatic identification of leukemic lineage blast cells and reac-
tive lymphoid cells from peripheral blood cell images. J Clin Lab 
Anal 2016;31;e22024. 

[22]	 Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS. 
Classification of acute lymphoblastic leukaemia using hybrid 
hierarchical classifiers. Multimedia Tools Appl 2017;76;19057–85.

[23]	 Kazemi F, Najafabadi TA, Araabi BN. Automatic recognition of 
acute myelogenous leukemia in blood microscopic images using 
K‐means clustering and support vector machine. J Med Signals 
Sens 2016;6;183–93.

[24]	 Shafique S, Tehsin S. Acute lymphoblastic leukemia detec-
tion and classification of its subtypes using pretrained deep 
convolutional neural networks. Technol Cancer Res Treat 
2018;17;1533033818802789. 

[25]	 Rehman A, Abbas N, Saba T, Rahman S, Mehmood Z, Kolivand 
H. Classification of acute lymphoblastic leukemia using deep 
learning. Microsc Res Tech 2018;81;1310–17. 

[26]	 Mitani A, Huang A, Venugopalan S, Corrado GS, Peng L, Webster 
DR, et al. Detection of anaemia from retinal fundus images via 
deep learning. Nat Biomed Eng 2019;4;18–27. 

[27]	 Xu L, Tetteh G, Lipkova J, Zhao Y, Li H, Christ P, et al. Automated 
whole-body bone lesion detection for multiple myeloma on 
68Ga-Pentixafor PET/CT imaging using deep learning methods. 
Contrast Media Mol Imaging 2018;2018;2391925. 

[28]	 Schenone D, Lai R, Cea M, Rossi F, Torri L, Bignotti B, et al. 
Radiomics and artificial intelligence analysis of CT data for the 
identification of prognostic features in multiple myeloma, vol. 
11314. Houston, USA: Medical Imaging 2020: Computer-Aided 
Diagnosis; 2020, p. 113144A.

[29]	 Zini G. Artificial intelligence in Hematology. Hematology 
2005;10;393–400.

[30]	 Diamond LW, Mishka VG, Seal AH, Nguyen DT. Multiparameter 
interpretative reporting in diagnostic laboratory hematology. Int 
J Biomed Comput 1994;37;211–24. 

[31]	 Kratz A, Lee SH, Zini G, Riedl JA, Hur M, Machin S, et al. Digital 
morphology analyzers in hematology: ICSH review and recom-
mendations. Int J Lab Hematol 2019;41;437–47. 

[32]	 Dogan S, Turkoglu I. Iron-deficiency anemia detection from 
hematology parameters by using decision trees. Int J Sci Technol 
2008;3;85–92.

[33]	 Luo Y, Szolovits P, Dighe AS, Baron JM. Using machine learning to 
predict laboratory test results. Am J Clin Pathol 2016;145;778–88. 

[34]	 Bigorra L, Larriba I, Gutiérrez-Gallego R. Machine learning algo-
rithms for the detection of spurious white blood cell differentials 
due to erythrocyte lysis resistance. J Clin Pathol 2019;72;431–7. 

[35]	 Gunčar G, Kukar M, Notar M, Brvar M, Černelč P, Notar M, et al. 
An application of machine learning to haematological diagnosis. 
Sci Rep 2018;8;411. 

[36]	 Ko BS, Wang YF, Li JL, Li CC, Weng PF, Hsu SC, et al. Clinically 
validated machine learning algorithm for detecting resid-
ual diseases with multicolor flow cytometry analysis in acute 
myeloid leukemia and myelodysplastic syndrome. EBioMedicine 
2018;37;91–100. 

[37]	 Lakoumentas J, Drakos J, Karakantza M, Nikiforidis GC, 
Sakellaropoulos GC. Bayesian clustering of flow cytometry data 
for the diagnosis of B‐Chronic Lymphocytic Leukemia. J Biomed 
Inform 2009;42;251–61. 

[38]	 Deulofeu M, Kolářová L, Salvadó V, Peña-Méndez EM, Almáši M, 
Štork M, et al. Rapid discrimination of multiple myeloma patients 
by artificial neural networks coupled with mass spectrometry of 
peripheral blood plasma. Sci Rep 2019;9;7975. 

[39]	 Warnat-Herresthal S, Perrakis K, Taschler B, Becker M, Baßler 
K, Beyer M, et al. Scalable prediction of acute myeloid leukemia 
using high-dimensional machine learning and blood transcrip-
tomics. iScience 2020;23;100780. 

[40]	 Zhao S, Dong X, Shen W, Ye Z, Xiang R. Machine learning-based 
classification of diffuse large B-cell lymphoma patients by eight 
gene expression profiles. Cancer Med 2016;5;837–52. 

[41]	 Hong JH, Cho SB. Lymphoma cancer classification using genetic 
programming with SNR features. EuroGP 2004;3003;78–88.

[42]	 Muhsen IN, Elhassan T, Hasmhi SK. Artificial intelligence 
approaches in hematopoietic cell transplantation: a review of 
the current status and future directions. Turk J Hematol 2018; 
35;152–7. 

[43]	 Marino SR, Lee SM, Binkowski TA, Wang T, Haagenson M, Wang 
HL, et al. Identification of high-risk amino-acid substitutions 
in hematopoietic cell transplantation: a challenging task. Bone 
Marrow Transplant 2016;51;1342–9. 

[44]	 Buturovic L, Shelton J, Spellman SR, Wang T, Friedman L, Loftus 
D, et al. Evaluation of a machine learning-based prognostic 
model for unrelated hematopoietic cell transplantation donor 
selection. Biol Blood Marrow Transplant 2018;24;1299–306. 

[45]	 Shouval R, Labopin M, Unger R, Giebel S, Ciceri F, Schmid 
C, et al. Prediction of hematopoietic stem cell transplantation 
related mortality- lessons learned from the in-silico approach: 
a European Society for Blood and Marrow Transplantation 
Acute Leukemia Working Party data mining study. PLoS One 
2016;11;e0150637. 

[46]	 Caocci G, Baccoli R, Vacca A, Mastronuzzi A, Bertaina A, Piras 
E, et al. Comparison between an artificial neural network and 
logistic regression in predicting acute graft-vs-host disease after 
unrelated donor hematopoietic stem cell transplantation in thal-
assemia patients. Exp Hematol 2010;38;426–33. 

[47]	 Elhassan T, Chaudhri N, Ahmed SO, Rasheed W, Alsharif F, Al 
Zahrani H. Predicting day-100 TRM in patients with acute leuke-
mia who received myloablative (MA) conditioning regimen and 
transplanted using matched related donor Allo-HCT: a machine 
learning study [abstract B455]. In: 44th Annual Meeting of the 
European Society for Bone Marrow Transplant. Lisbon: EBMT; 
2018.

[48]	 Lee C, Haneuse S, Wang HL, Rose S, Spellman SR, Verneris M, 
et al. Prediction of absolute risk of acute graft-versus-host dis-
ease following hematopoietic cell transplantation. PLoS One 
2018;13;e0190610. 

[49]	 Shouval R, Labopin M, Bondi O, Mishan-Shamay H, Shimoni 
A, Ciceri Jordi Esteve F, et al. Prediction of allogeneic hemato-
poietic stem-cell transplantation mortality 100 days after trans-
plantation using a machine learning algorithm: a European 
Group for Blood and Marrow Transplantation Acute Leukemia 
Working Party retrospective data mining study. J Clin Oncol 
2015;33;3144–51. 

https://doi.org/10.1186/s12911-015-0235-6
https://doi.org/10.1186/s12911-015-0235-6
https://doi.org/10.1186/s12911-015-0235-6
https://doi.org/10.1186/s12911-015-0235-6
https://doi.org/10.1002/jcla.22024
https://doi.org/10.1002/jcla.22024
https://doi.org/10.1002/jcla.22024
https://doi.org/10.1002/jcla.22024
https://doi.org/10.1007/s11042-017-4478-3
https://doi.org/10.1007/s11042-017-4478-3
https://doi.org/10.1007/s11042-017-4478-3
https://pubmed.ncbi.nlm.nih.gov/27563575/
https://pubmed.ncbi.nlm.nih.gov/27563575/
https://pubmed.ncbi.nlm.nih.gov/27563575/
https://pubmed.ncbi.nlm.nih.gov/27563575/
https://doi.org/10.1177/1533033818802789
https://doi.org/10.1177/1533033818802789
https://doi.org/10.1177/1533033818802789
https://doi.org/10.1177/1533033818802789
https://doi.org/10.1002/jemt.23139
https://doi.org/10.1002/jemt.23139
https://doi.org/10.1002/jemt.23139
https://doi.org/10.1038/s41551-019-0487-z
https://doi.org/10.1038/s41551-019-0487-z
https://doi.org/10.1038/s41551-019-0487-z
https://doi.org/10.1155/2018/2391925
https://doi.org/10.1155/2018/2391925
https://doi.org/10.1155/2018/2391925
https://doi.org/10.1155/2018/2391925
https://doi.org/10.1016/0020-7101(94)90120-1
https://doi.org/10.1016/0020-7101(94)90120-1
https://doi.org/10.1016/0020-7101(94)90120-1
https://doi.org/10.1111/ijlh.13042
https://doi.org/10.1111/ijlh.13042
https://doi.org/10.1111/ijlh.13042
https://doi.org/10.1093/ajcp/aqw064
https://doi.org/10.1093/ajcp/aqw064
https://doi.org/10.1136/jclinpath-2019-205820
https://doi.org/10.1136/jclinpath-2019-205820
https://doi.org/10.1136/jclinpath-2019-205820
https://doi.org/10.1038/s41598-017-18564-8
https://doi.org/10.1038/s41598-017-18564-8
https://doi.org/10.1038/s41598-017-18564-8
https://doi.org/10.1016/j.ebiom.2018.10.042
https://doi.org/10.1016/j.ebiom.2018.10.042
https://doi.org/10.1016/j.ebiom.2018.10.042
https://doi.org/10.1016/j.ebiom.2018.10.042
https://doi.org/10.1016/j.ebiom.2018.10.042
https://doi.org/10.1016/j.jbi.2008.11.003
https://doi.org/10.1016/j.jbi.2008.11.003
https://doi.org/10.1016/j.jbi.2008.11.003
https://doi.org/10.1016/j.jbi.2008.11.003
https://doi.org/10.1038/s41598-019-44215-1
https://doi.org/10.1038/s41598-019-44215-1
https://doi.org/10.1038/s41598-019-44215-1
https://doi.org/10.1038/s41598-019-44215-1
https://doi.org/10.1016/j.isci.2019.100780
https://doi.org/10.1016/j.isci.2019.100780
https://doi.org/10.1016/j.isci.2019.100780
https://doi.org/10.1016/j.isci.2019.100780
https://doi.org/10.1002/cam4.650
https://doi.org/10.1002/cam4.650
https://doi.org/10.1002/cam4.650
https://doi.org/10.1007/978-3-540-24650-3_8
https://doi.org/10.1007/978-3-540-24650-3_8
https://doi.org/10.4274/tjh.2018.0123
https://doi.org/10.4274/tjh.2018.0123
https://doi.org/10.4274/tjh.2018.0123
https://doi.org/10.4274/tjh.2018.0123
https://doi.org/10.1038/bmt.2016.142
https://doi.org/10.1038/bmt.2016.142
https://doi.org/10.1038/bmt.2016.142
https://doi.org/10.1038/bmt.2016.142
https://doi.org/10.1016/j.bbmt.2018.01.038
https://doi.org/10.1016/j.bbmt.2018.01.038
https://doi.org/10.1016/j.bbmt.2018.01.038
https://doi.org/10.1016/j.bbmt.2018.01.038
https://doi.org/10.1371/journal.pone.0150637
https://doi.org/10.1371/journal.pone.0150637
https://doi.org/10.1371/journal.pone.0150637
https://doi.org/10.1371/journal.pone.0150637
https://doi.org/10.1371/journal.pone.0150637
https://doi.org/10.1371/journal.pone.0150637
https://doi.org/10.1016/j.exphem.2010.02.012
https://doi.org/10.1016/j.exphem.2010.02.012
https://doi.org/10.1016/j.exphem.2010.02.012
https://doi.org/10.1016/j.exphem.2010.02.012
https://doi.org/10.1016/j.exphem.2010.02.012
https://doi.org/10.1371/journal.pone.0190610
https://doi.org/10.1371/journal.pone.0190610
https://doi.org/10.1371/journal.pone.0190610
https://doi.org/10.1371/journal.pone.0190610
https://doi.org/10.1200/JCO.2014.59.1339
https://doi.org/10.1200/JCO.2014.59.1339
https://doi.org/10.1200/JCO.2014.59.1339
https://doi.org/10.1200/JCO.2014.59.1339
https://doi.org/10.1200/JCO.2014.59.1339
https://doi.org/10.1200/JCO.2014.59.1339
https://doi.org/10.1200/JCO.2014.59.1339


20	 I.N. Muhsen et al. / Clinical Hematology International 3(1) 13–20

[50]	 Muhsen IN, Jagasia M, Toor AA, Hashmi SK. Registries and arti-
ficial intelligence: investing in the future of hematopoietic cell 
transplantation. Bone Marrow Transplant 2018;54;477–80. 

[51]	 Gal O, Auslander N, Fan Y, Meerzaman D. Predicting 
complete remission of acute myeloid leukemia: machine 
learning applied to gene expression. Cancer Inform 
2019;18;1176935119835544. 

[52]	 Waddell M, Page D, Shaughnessy J. Predicting cancer suscepti-
bility from single-nucleotide polymorphism data: a case study 
in multiple myeloma. In: BIOKDD ‘05: Proceedings of the 5th 
International Workshop on Bioinformatics. Chicago, Illinois, 
USA: ACM; 2005, pp. 21–8.

[53]	 Parodi S, Manneschi C, Verda D, Ferrari E, Muselli M. Logic 
Learning Machine and standard supervised methods for 
Hodgkin’s lymphoma prognosis using gene expression data and 
clinical variables. Health Inform J 2016;24;54–65. 

[54]	 Agius R, Brieghel C, Andersen MA, Pearson AT, Ledergerber B, 
Cozzi-Lepri A, et al. Machine learning can identify newly diag-
nosed patients with CLL at high risk of infection. Nat Commun 
2020;11;363. 

[55]	 Hematology.org. ASH announces its vision for hematologic big 
data [online]. 2017. Available from: https://ashpublications.org/
thehematologist/article/doi/10.1182/hem.V14.5.7608/462916/
ASH-Announces-Its-Vision-for-Hematologic-Big-Data.

[56]	 Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting 
racial bias in an algorithm used to manage the health of popula-
tions. Science 2019;366;447–53. 

[57]	 Lamy JB, Sekar B, Guezennec G, Bouaud J, Séroussi B. Explainable 
artificial intelligence for breast cancer: a visual case-based rea-
soning approach. Artif Intell Med 2019;94;42–53. 

[58]	 Li J, Liu L, Le TD, Liu J. Accurate data-driven prediction does not 
mean high reproducibility. Nat Mach Intell 2020;2;13–15.

[59]	 Beam AL, Manrai AK, Ghassemi M. Challenges to the repro-
ducibility of machine learning models in health care. JAMA 
2020;323;305–6. 

[60]	 Desai RJ, Wang SV, Vaduganathan M, Evers T, Schneeweiss 
S. Comparison of machine learning methods with traditional 
models for use of administrative claims with electronic medi-
cal records to predict heart failure outcomes. JAMA Netw Open 
2020;3;e1918962. 

https://doi.org/10.1038/s41409-018-0327-x
https://doi.org/10.1038/s41409-018-0327-x
https://doi.org/10.1038/s41409-018-0327-x
https://doi.org/10.1177/1176935119835544
https://doi.org/10.1177/1176935119835544
https://doi.org/10.1177/1176935119835544
https://doi.org/10.1177/1176935119835544
https://doi.org/10.1145/1134030.1134035
https://doi.org/10.1145/1134030.1134035
https://doi.org/10.1145/1134030.1134035
https://doi.org/10.1145/1134030.1134035
https://doi.org/10.1145/1134030.1134035
https://doi.org/10.1177/1460458216655188
https://doi.org/10.1177/1460458216655188
https://doi.org/10.1177/1460458216655188
https://doi.org/10.1177/1460458216655188
https://doi.org/10.1038/s41467-019-14225-8
https://doi.org/10.1038/s41467-019-14225-8
https://doi.org/10.1038/s41467-019-14225-8
https://doi.org/10.1038/s41467-019-14225-8
https://ashpublications.org/thehematologist/article/doi/10.1182/hem.V14.5.7608/462916/ASH-Announces-Its-Vision-for-Hematologic-Big-Data
https://ashpublications.org/thehematologist/article/doi/10.1182/hem.V14.5.7608/462916/ASH-Announces-Its-Vision-for-Hematologic-Big-Data
https://ashpublications.org/thehematologist/article/doi/10.1182/hem.V14.5.7608/462916/ASH-Announces-Its-Vision-for-Hematologic-Big-Data
https://doi.org/10.1126/science.aax2342
https://doi.org/10.1126/science.aax2342
https://doi.org/10.1126/science.aax2342
https://doi.org/10.1016/j.artmed.2019.01.001
https://doi.org/10.1016/j.artmed.2019.01.001
https://doi.org/10.1016/j.artmed.2019.01.001
https://doi.org/10.1038/s42256-019-0140-2
https://doi.org/10.1038/s42256-019-0140-2
https://doi.org/10.1001/jama.2019.20866
https://doi.org/10.1001/jama.2019.20866
https://doi.org/10.1001/jama.2019.20866
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.1001/jamanetworkopen.2019.18962

