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Abstract: In this paper we present how the main parameters of an optimal velocity model, the velocity adaptation time,
τ, and the desired time gap between consecutive vehicles (time headway), T , control the structure of vehicular
traffic flow. We show that the ratio between the desired time gap and the velocity adaptation time, T /τ, establishes
the pattern formation in congested traffic flow. This ratio controls both the collective behavior and the individual
response of vehicles in traffic. We also introduced a response (transfer) function, which shows how perturbation
is transmitted between adjacent vehicles and permits the study of collective stability of traffic flow.
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1. Introduction

The large number of vehicles generates today a problem
that has to be managed: traffic congestion. This problem
is detected on modern roads with sensors that measure
flux and speed of the vehicles at specific locations and
their density is found as the ratio of the two quantities.
On spatio-temporal diagrams generated with these data
(density and speed are color-coded) typical patterns ap-
pear. In certain regions the velocity is high and almost
homogeneous; there it is a uniform flow or a free flow. In
other regions the velocity changes in space and time, e.g.
waves of congestion travel upstream with a characteristic
speed of 15-20 km/h [1]. A major goal in traffic research
is to understand the mechanisms of formation and prop-
agation of these stop-and-go waves or wide moving jams
that structure the traffic flow. Engineering, mathematics
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or physics researchers analyze the traffic problem using
tools from their own area of expertise. Analogies between
traffic flow and other flows (fluid flow, gas flow and granu-
lar flow) help scientists to gain understanding of vehicular
systems [1]. Current traffic models use a mixture of empir-
ical and theoretical techniques. These models are used
for traffic forecasts and control, considering local or major
changes in mode of transportation and identifying areas
of congestion where the traffic needs to be adjusted. For
very simple models ("toy models"), we can do analytical
calculations and find the stylized facts that are not ana-
lytically accessible in a more realistic model [2]. For such
a simple case we present how the main parameters of an
optimal velocity model influence the structure of vehicular
traffic flow. Here we can reduce the vehicle dynamics to its
essence and find which parameters of the self-organized
traffic flow are significant.
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Figure 1. The car-following model data.

2. Optimal Velocity Model
The model we will use is the optimal velocity model by
Bando [3], which provides us with the possibility of a uni-
fied understanding of both free and congested traffic flows
from common basic dynamical equations. Optimal veloc-
ity models are a technical variant of the microscopic car-
following approach [4], where the vehicle acceleration is
determined by a behavioral model, e.g. acceleration is
proportional with the difference between the velocity of
the vehicle vn(t) and an optimal velocity V , which is a
function specified for every particular model [5]. We con-
sider here a single lane of traffic with identical vehicles
labeled 1, 2, etc., in the upstream direction. As shown
in figure 1, positions and velocities are denoted xn(t) and
vn(t) respectively, and the headway or the front-to-front
spacing of consecutive vehicles is:

hn = xn−1 − xn > 0. (1)

In practice, we are most interested in the clearance or gap
between consecutive vehicles:

gn(t) = hn(t)− Ln−1 ≥ 0. (2)

where Ln−1 could be just the preceding vehicle’s length,
but preferably it also incorporates a minimal safety dis-
tance between vehicles. Because we consider here only
identical vehicles, the quantity Ln−1 represents the same
length L despite of index it has.
Our general form for car-following model consists of a
set of coupled differential equations, where the kinematic
equations:

dxm/dt = νn(t) (3)

are supplemented with a behavioral model for accelera-
tion:

dνn/dt = [V − νn(t)]/τ (4)

Here τ is a time constant that quantifies the speed of
velocity adjustment, the velocity adaptation time, and V is

Figure 2. The dependence of the optimal velocity function on gap
magnitude between consecutive vehicles.

the optimal velocity function, see figure 2, which depends
on the gap between consecutive vehicles as:

V (t) = gn(t)/T . for V ≤ u else V (t) = u. (5)

where u is the maximum legal velocity, and T is the de-
sired time gap or time headway, usually 1-2 s, i.e. the
time distance drivers would like to keep when following
a leader [1, 5, 6]. This kind of optimal velocity function
is analytically tractable [7] and it is the basis for the
Newell’s model [1, 8, 9]. Newell’s model is remarkable
among car-following models because it uses only three
observable parameters: free-flow speed u, wave speed
w and jam density k; it gives the exact solution of the
classical Lighthill, Whitham and Richards theory and the
acceleration and deceleration waves travel upstream at
a nearly constant speed and without rarefaction fans, as
empirically observed [9].
Combining equations (2), (3), (4) and (5) we obtain the
equation of motion:

d2xp/dt2 + (1/τ)dxp/dt + xn/(tτ) = (xn−1 − L)/(Tτ) (6)

Substracting equation (6) from the similar equation for
xn−1 we obtain an equation for gaps instead of positions:

d2xp/dt2 + (1/τ)dxp/dt + xn/(tτ) = gn−1/(Tτ) (7)

Equations (6) and (7) are the basic equations of this paper.

3. Individual Response
If the gap to the vehicle ahead, gn−1, is constant we have
a homogenous equation for the new variable ∆gn = gn −
gn−1:
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d2∆gn/dt2 + (1/τ)d∆gn/dt + ∆gn/(Tτ) = 0 (8)

with the generic solution:

∆gn = A1 exp(z1t) + A2 exp(z2t) (9)

where z1 and z2 are the roots of the quadratic equation:

z2 + z/τ + 1/(Tτ) = 0 (10)

namely

z1,2 = −1/(2τ)[1± (1− 4τ/T )1/2] (11)

Because both solutions z1,2 have negative real parts, the
model has local stability or it is platoon-stable for the
uniform flow as described by Wilson [10], i.e. the fluc-
tuations that the vehicle n feels fade away exponentially
as time progresses, thus the original uniform flow situa-
tion is recovered. It is worth mentioning that the solu-
tions (11) are real and strictly negative for 4 ≤ T , which
means a purely exponential decay, and for 4τ > T the
solutions are complex, which means the original uniform
flow is recovered through damped oscillations. Also worth
mentioning that at critical damping, i.e. 4τ = T , the sys-
tem returns to original uniform flow, after a perturbation,
in the least possible time [11].
The same situation can be seen as the ahead vehicle is
moving with a constant speed, ν ′, lower than the maximum
speed u, then xn1 = νprimet and from (6) we have:

d2xp/dt2 + (1/τ)dxp/dt + xn/(tτ) = (ν ′t − L)/(Tτ) (12)

Substituting the assumed ansatz for the solution xn=
Aezt+ Bt +C into (12) gives:

Aest [z2+z/τ+1/(Tτ)]+[B−ν ′]t/(Tτ)+(BT+C+L)/(Tτ) = 0
(13)

which must be an identity for any t, this means B=ν ′,
C=−L−ν ′T and z must be a root of the quadratic equation
(10), i.e. z1,2 = −1/(2τ)[1 ± (1 − 4τ/T )1/2], the solutions
(11). The generic solution for equation (12) is the sum
of two terms, the first term is a specific solution for the
nonhomogenous equation of motion:

x∗n(t) = ν ′t − L− ν ′T , (14)

and the second term is a solution for the homogenous
equation of motion:

x◦n(t) = A1 exp(z1t) + A2 exp(z2t) (15)

namely

x(t) = ν ′t − L− ν ′T + A1 exp(z1t) + A2 exp(z2t) (16)

The constants A1 and A2 can be found from the initial
conditions x(0) = xo and ν(0) = νo, explicitly:

A1 = [νo − ν ′ − z2(xo + L+ ν ′T )]/(z1 − z2) (17a)

A2 = −[νo − ν ′ − z1(xo + L+ ν ′T )]/(z1 − z2) (17b)

4. Collective Behavior
As already shown, this model is platoon-stable, i.e. a per-
turbation on an individual vehicle will fade away in time,
but we are also interested in collective behavior of in-
teracting vehicles, namely string stability [10], i.e. how
a fluctuation grows or decays as it travels upstream the
chain of vehicles. The standard approach [3, 10] is to con-
sider small perturbations to the uniform flow equilibrium
(12) by setting:

xn = x∗ + sn(t) (18)

where x∗ is the uniform flow solution and sn is small. Be-
cause our model is already linear, this yields:

d2sp/dt62 + (1/τ)dsn/dt + sn/(Tτ) = sn−1/(Tτ) (19)

We construct an ansatz to equation (19) which respects
the periodicity of the ring-road, i.e. after counting N ve-
hicles around the circular road, we must return to where
we started, sn+N ≡ sn:

sn = Re(Aeinθezt), (20)

where "i" is the imaginary unit, A is a complex constant
(independent of n and t), θ = 2πk/N is a discrete wave-
number, where k = 1, 2, ..., N, and "Re" denotes real part.
Substituting relation (20) into (19) yields:

z2 + z/τ + (1− e−iθ)/(Tτ) = 0. (21)

Taking into account that:

z = r + iw and eiθ = cosθ − isinθ (22)
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Figure 3. Qualitative behavior of Rez, r, versus discrete wave-
number θ, with T /τ as a parameter.

we decompose equation (21) into a real part and an imag-
inary part:

r2 − w2 + r/τ + 2sin2(θ/2)(Tτ) = 0 (23)

w/τ + 2rw + sinθ/(Tτ) = 0 (24)

For Im(z)=w, we obtain from (24):

w = −sinθ/[T (1 + 2τr)] ≈ −(1− 2τr)sinθ/T . (25)

where the approximation is done considering Re(z) = r
<< 1, this because we are interested in the threshold of
stability [12]. With the expresion (25) substituded in (23)
and neglecting r2 terms, we obtain:

r = 2 sin2(θ/2)[2 cos2(θ/2)−T /τ ]/(2τ sin2 θ+T 2/τ) (26)

It results from (26) that the sign of Re(z)=r is established
only by the expression "2cos2(θ/2) - T/θ". This means that
the critical condition r=0, i.e. the threshold of stability,
leads to:

T = 2τ cos2(θ/2) (27)

an expression similar to that of Bando [3]. For T >
2τcos2(θ/2) the model has string stability (r<0, no waves
on the string) and for T < 2τcos2(θ/2) the model has
string instability (r>0, waves can propagate on the string),
see figure 3. When the real part of z, r, is larger than
zero, the solution (20) is unstable, i.e. it grows in time
while traveling upstream the string of vehicles, leading
to a string instability. This instability gives rise to struc-
tures resembling traffic jams or stop-and-go waves, a phe-
nomenon that naturally arises in congested traffic [3, 10].

Despite of the approximations we made, the critical con-
dition (27) is exact, as shown in the Appendix.
We can look at the problem from another angle, asking
how the perturbations of various frequencies are transmit-
ted between vehicles, explicitly what response sn a per-
turbation sn−1 generates. We will use the same equation
(19) with the ansatz:

sn−1 = sn−1e
−ωt ; sn = sneiωt , (28)

where sn and sn−1 are complex amplitudes in general and
ω is the circular frequency of the perturbation. From (19)
we find that:

R = sn/sn−1 = ω2
o/(ω2

o − ω2 + iω/τ) (29)

where R is a kind of a response (transfer) function of the
system [1] and:

ω2
o = 1/(Tτ) (30)

We decompose the response function into modulus |R| and
phase φ:

R = |R |eiφ = eiφω2
o/[(ω2

o − ω2)2 + (ω/τ)2]1/2. (31)

tgφ = ImR/ReR = −ω/[τ(ω2
o − ω2)] (32)

If |R | > 1, the system is unstable, i.e. the initial pertur-
bation grows while passing from one vehicle to another,
namely:

|R | = ω2
o/[(ω2

o − ω2)2 + (ω/τ)2]1/2 > 1 (33)

or

0 > ω2(ω2 − 2ω2
o + 1/τ2) then ω2 < 2ω2

o − 1/τ2. (34)

and finally

ω < ωmax = 21/2ωpeek . (35)

where ωpeak is the circular frequency coresponding to the
maximum of the response function modulus |R |:

ωpeek = [ω2
o − 1/(2τ2)]1/2. = (τ/T − 1/2)1/2/τ (36)

As long as ωpeak > 0, namely T < 2τ , there is a range
of frequencies 0 < ω < ωmax where |R | > 1 and the
perturbation grows along the string of vehicles, see fig-
ure 4. This behavior is consistent with string instability
condition (27).
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Figure 4. Qualitative behavior of response function, |R |, versus cir-
cular frequency of perturbation, with T /τ as a parameter.

5. Conclusions and Discussions

The main result of this paper is that the parameter T /τ
determines the pattern formation in congested traffic flow.
The ratio between the desired time gap and the veloc-
ity adaptation time, T /τ , controls both the individual re-
sponse and collective behavior of the vehicles. In this
model, values less than 2 of the ratioT /τ will generate
ring instability of the vehicles flow and consequently traf-
fic waves. The instability arises for perturbations with a
frequency less than a certain value, ωmax , for which the
amplitude of the perturbation grows as it travels upstream
the string of vehicles. It is important to emphasize that
the loss of stability is linked solely to the ratio of the two
time constants and not to their absolute values. As a con-
sequence, larger vehicles which are sluggish, with bigger
values of the velocity adaptation time, τ , must maintain a
larger value of the desired time gap, T , to keep their ratio
into the stability regime. From the point of view of lo-
cal interaction (following vehicle with ahead vehicle), the
ratio T /τ = 4 corresponds to the minimum time for a ve-
hicle to properly adjust its velocity to the leading vehicle
behavior. Lower values of the ratio T /τ increase the adap-
tation time and generate oscillations of the gap between
vehicles. The velocity adaptation time, τ , has a value be-
tween 0.5 s and 1 s [13], depending on driver’s skills and
vehicle capabilities. In order to reach a minimum time for
adjusting his velocity, the driver has to maintain a time
headway (desired time gap) between 2 to 4 s against the
vehicle ahead, which means 20 to 40 meters for every 36
km/h of velocity. For more realistic functions of optimal
velocity, e.g. that of Bando [3], the results emphasized
here are valid for the local linearized form of the optimal
velocity function. The derivative of the optimal velocity
function, dV /dg, is the inverse of the desired time gap,

Figure 5. A more realistic optimal velocity function and the domains
of traffic stability. Here g′ = uT is the gap between ve-
hicles that separates the free flow region from congested
traffic region.

1/T , as shown in figure 5. The stability of the traffic flow
is established by the same ratio T /τ , where T is linked
to the slope of the optimal function for that particular gap
or velocity. For this qualitative model, the instability of
the traffic flow arises somewhere in the middle of the ve-
locity range, a feature that is also found in experimental
data [13], around the inflexion point of the curve, where
the slope is maximum.
The influence of characteristic time constants on the dy-
namics and stability of traffic flow is recognized and stud-
ied, mainly by means of numerical simulations [14]. The
physics behind these time constants is revealed in such
simple models, like this one. The equations of this model
(6), (7) show that the system is basically a harmonic os-
cillator with damping, driven by an external "force", the
terms corresponding to the ahead vehicle. Such spring-
block chain models are used for computer simulation of
traffic [15] taking into account the inherent disorder of ve-
hicles properties and they show a complex behavior, with
dynamic phase-transition. It is of future interest to an-
alyze such a simple model that takes into account the
dispersion of vehicles properties [15] and the magnitude
of perturbations [2].

Appendix A: APPENDIX
For this simple model (19) we can compute the exact so-
lution for the quadratic equation (21) using the standard
formula:

z1,2 = −1/(2τ)± [1/(4τ2)− (1− e−iθ)/(Tτ)]1/2 (A1a)
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z1,2 = −1/(2τ)[1± (A+ iB)1/2]. (A1b)

We have used the following notations:

K = 4τ/T , A = 1− 2K sin2(θ/2), B = K sinθ (A2)

[A+iB]1/2 = (A2+B2)1/4eiφ/2 = (A2+B2)1/4[cos(φ/2)+i sin(φ/2)]
(A3)

where:

sinφ = B/(A2 + B2)1/2, cosφ = B/(A2 + B2)1/2 (A4a)

sin2(φ/2) = (1− cosφ)/2 = [1− A/(A2 +B2)1/2]/2 (A4b)

cos2(φ/2) = (1 + cosφ)/2 = [1− A/(A2 +B2)1/2]/2 (A4c)

we find:

[A+iB]1/2 = {[(A2+B2)1/2+A]1/2+i[(A2+B2)1/2−A]1/2}/21/2.
(A5)

Finaly the solution (A1b) can be writen as:

z1/2 = −1/(2/τ)[1±{[(A2+B2)1/2+A]1/2+i[(A2+B2)1/2−A]/12}21/2.
(A6)

or more compact as:

−2τz1/2 = 1±[(A2+B2)1/2+A]1/2/21/2+i[(A2+B2)1/2−A]/12/21/2.
(A7)

For the real part of z we can say that:

− 2τRez1,2 = 1± [(A2 + B2)1/2 + A]1/2/21/2 (A8)

From (A8) we realize that the solution with "+" sign is al-
ways negative (it has ring stability) and the solution with
"-" sign is more interesting because it may be positive or
negative. We find the critical condition, i.e. the threshold
of stability, by imposing Rez=0 to the solution (A8) with
"-" sign, namely:

1 = [(A2 +B2)1/2 +A]1/2/21/2 or (2−A)2 = A2 +B2. (A9)

Taking into account (A2), the critical condition (A9) finally
becomes:

T = 2τ cos2(θ/2) (A1)

This is the same condition as (27), but it is determined
without any approximation, validating the assumptions
made there
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