Skip to main content
Log in

Genetic variation of blue-tongue skinks of the genus Tiliqua (Squamata: Scincidae) from New Guinea and Wallacea

  • Review
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Populations of blue-tongue skinks inhabiting eastern Wallacea and New Guinea are traditionally assigned to either Tiliqua gigas, which is endemic to this area, or to Tiliqua scincoides that extends its range from the Australian continent. Despite a wide morphological variation among local populations, genetic data from non-Australian populations were almost absent. We examined 128 specimens and sequenced mitochondrial ND4, 12rRNA and nuclear cmos genes. A phylogenetic analysis revealed the presence of two main clades corresponding to species Tiliqua scincoides and Tiliqua gigas. We provide the first report of Tiliqua scincoides from the Aru Island and confirm that it is genetically related to the Tanimbar populations reported as Tiliqua scincoides chimaerea. The other samples belonged to Tiliqua gigas, which also shows a distinct phylogenetic structure congruent with the geographic origin of the samples. The main split conforms to the north-south pattern of genetic variation, which was also reported in other animal species in New Guinea. (1) Samples from the northern coast of Irian Jaya, Seram, and Kai Islands belong to a distinct clade, which further splits supporting the recognition of the Tiliqua gigas keyensis subspecies. (2) Samples from the Bird’s Head and southern coast of the Irian Jaya and Halmahera Island form the other clade within Tiliqua gigas, in which the Halmahera samples formed a shallow, but clearly distinct branch. The haplotype network analysis of mitochondrial ND4 gene in Tiliqua gigas samples suggests a strong differentiation among major population groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Austin CC, Jordan J, McVay JD, Peterson S, Spataro M (2010) Conservation genetics of Boelen’s python (Morelia boeleni) from New Guinea: reduced genetic diversity and divergence of captive and wild animals. Conserv Genet 11(3):889–896. https://doi.org/10.1007/s10592-009-9931-z

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  • Chambers EA, Hebert PDN, Rogozin IB (2016) Assessing DNA barcodes for species identification in North American reptiles and amphibians in natural history collections. PLoS one 11(4):e0154363

  • Cogger H (2000) Reptiles and amphibians of Australia. New Holland Publishers, Sydney

    Google Scholar 

  • De Lang R (2011) The snakes of the lesser Sunda Islands (Nusa Tenggara), Indonesia. Edition Chimaira, Frankfurt am Main, Germany

  • Donnellan SC, Aplin KP (1989) Resolution of cryptic species in the new Guinean lizard, Sphenomorphus jobiensis (Scincidae) by electrophoresis. Copeia 1989(1):81–88. https://doi.org/10.2307/1445608

  • Dumbacher JP, Fleischer RC (2001) Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds? Proc R Soc Lond B Biol 268(1480):1971–1976. https://doi.org/10.1098/rspb.2001.1717

  • Forstner MR, Arévalo E, Davis SK (1995) Support for the hypothesis of anguimorph ancestry for the suborder Serpentes from phylogenetic analysis of mitochondrial DNA sequences. Mol Phylogenet Evol 4(1):93–102. https://doi.org/10.1006/mpev.1995.1010

    Article  CAS  PubMed  Google Scholar 

  • Gardner MG, Dudaniec RY, Rheinberger L, Saint KM, Sanchez JJ, Smith AL (2008a) Tiliqua rugosa microsatellites: isolation via enrichment and characterisation of loci for multiplex PCR in T. rugosa and the endangered T. adelaidensis. Conserv Genet 9(1):233–237. https://doi.org/10.1007/s10592-007-9316-0

    Article  Google Scholar 

  • Gardner MG, Donnellan SC, Foster R, Hugall AF, Hutchinson MN (2008b) Molecular systematics of social skinks: phylogeny and taxonomy of the Egernia group (Reptilia: Scincidae). Zool J Linn Soc Lond 154(4):781–794. https://doi.org/10.1111/j.1096-3642.2008.00422.x

  • Hall TA (1999) BioEdit a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

  • Hall R (2002) Cenozoic reconstructions of SE Asia and the SW Pacific: changing patterns of land and sea. In: Metcalfe I, Smith JMB, Morwood M, Davidson ID, (eds.), Faunal and Floral Migrations and Evolution in SE Asia-Australasia, Swets & Zeitlinger, Lisse, pp 35–56

  • Hall R, Holloway JD (1998) Biogeography and geological evolution of SE Asia. Backhuys Publishers, Leiden

    Google Scholar 

  • Harvey MB, Barker DG, Ammerman LK, Chippindale PT (2000) Systematics of pythons of the Morelia amethistina complex (Serpentes: Boidae) with the description of three new species. Herpetol Monogr 14:139–185. https://doi.org/10.2307/1467047

  • Hauschild A, Hitz R, Henle K, Shea GM, Werning H (2000) Blue-tongued skinks: contributions to Tiliqua and Cyclodomorphus. Natur und Tier-Verlag, Münster

    Google Scholar 

  • Hitz R, Hauschild A (2000) Neue" Blauzungenskinke der Gattung Tiliqua aus Indonesien. In: Hauschild A, Henle K, Hitz R, Shea GM, Werning H (eds.) Blauzungenskinke. Beiträge zu Tiliqua und Cyclodomorphus, Natur und Tier Verlag, Münster, pp 195–204

  • Honda M, Ota H, Kobayashi M, Nabhitabhata J, Yong HS, Hikida T (2000) Phylogenetic relationships, character evolution, and biogeography of the subfamily Lygosominae (Reptilia: Scincidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 15:452–461. https://doi.org/10.1006/mpev.1999.0767

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314. https://doi.org/10.1126/science.1065889

    Article  CAS  PubMed  Google Scholar 

  • Hugall AF, Foster R, Hutchinson M, Lee MS (2008) Phylogeny of Australasian agamid lizards based on nuclear and mitochondrial genes: implications for morphological evolution and biogeography. Biol J Linn Soc 93:343–358. https://doi.org/10.1111/j.1095-8312.2007.00911.x

    Article  Google Scholar 

  • Jančúchová-Lásková J, Landová E, Frynta D (2015a) Are genetically distinct lizard species able to hybridize? A review. Curr Zool 61:155–180. https://doi.org/10.1093/czoolo/61.1.155

    Article  Google Scholar 

  • Jančúchová-Lásková J, Landová E, Frynta D (2015b) Experimental crossing of two distinct species of leopard geckos, Eublepharis angramainyu and E. macularius: viability, fertility and phenotypic variation of the hybrids. PLoS One 10:e0143630. https://doi.org/10.1371/journal.pone.0143630

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451-1452

  • Koch A (2012) Discovery. diversity, and distribution of the amphibians and reptiles of Sulawesi and its offshore Islands. Edition Chimaira, Frankfurt am Main

  • Koch A, Arida E, Schmitz A, Böhme W, Ziegler T (2009) Refining the polytypic species concept of mangrove monitors (Squamata: Varanus indicus group): a new cryptic species from the Talaud Islands, Indonesia, reveals the underestimated diversity of indo-Australian monitor lizards. Aust J Zool 57:29–40. https://doi.org/10.1071/ZO08072

    Article  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Päbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86(16):6196–6200. https://doi.org/10.1073/pnas.86.16.6196

  • Natusch DJ, Esquerré D, Lyons JA, Hamidy A, Lemmon AR, Lemmon EM, Donnellan S et al (2020) Species delimitation and systematics of the green pythons (Morelia viridis complex) of melanesia and Australia. Mol Phylogenet Evol 142:106640. https://doi.org/10.1016/j.ympev.2019.106640

    Article  PubMed  Google Scholar 

  • Noel V (2014) Les scinques à langue bleue, Tiliqua scincoides, Tiliqua gigas et Tiliqua sp. Irian Jaya, second edition, e-book. http://tiliqua.wifeo.com

  • Pigram CT, Davies HL (1987) Terranes and the accretion history of the New Guinea orogen. BMR J Aust Geol Geoph 10:193–211

    Google Scholar 

  • Pyron RA, Burbrink FT, Wiens JJ (2013) A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 13:93. https://doi.org/10.1186/1471-2148-13-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlings LH, Donnellan SC (2003) Phylogeographic analysis of the green python, Morelia viridis, reveals cryptic diversity. Mol Phylogenet Evol 27:36–44. https://doi.org/10.1016/S1055-7903(02)00396-2

    Article  CAS  PubMed  Google Scholar 

  • Rawlings LH, Barker D, Donnellan SC (2004) Phylogenetic relationships of the Australo-Papuan Liasis pythons (Reptilia: macrostomata), based on mitochondrial DNA. Aust J Zool 52:215–227. https://doi.org/10.1071/ZO03030

    Article  CAS  Google Scholar 

  • Reeder TW (2003) A phylogeny of the Australian Sphenomorphus group (Scincidae: Squamata) and the phylogenetic placement of the crocodile skinks (Tribolonotus): Bayesian approaches to assessing congruence and obtaining confidence in maximum likelihood inferred relationships. Mol Phylogenet Evol 27:384–397. https://doi.org/10.1016/S1055-7903(02)00448-7

    Article  CAS  PubMed  Google Scholar 

  • Ronquist FH (2003) MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  • Russell AL, Mendellín A, McCracken F (2005) Genetic variation and migration in the Mexican free-tailed bat (Tadarida brasiliensis mexicana). Mol Ecol 14:2207– 2222. https://doi.org/10.1111/j.1365-294X.2005.02552.x

  • Saint KM, Austin CC, Donnellan SC, Hutchinson MN (1998) C-Mos, a nuclear marker useful for squamate phylogenetic analysis. Mol Phylogenet Evol 10:259–263. https://doi.org/10.1006/mpev.1998.0515

    Article  CAS  PubMed  Google Scholar 

  • Shea GM (1992) The systematics and reproduction of bluetongue lizards of the genus Tiliqua (Squamata: Scinidae). PhD thesis. Department of Veterinary Anatomy, University of Sydney, Australia

  • Shea GM (2000) Die Neuguinea-Blauzunge, Tiliqua gigas (Schneider, 1801): Ökologie und Übersicht über die Unterarten nebst Beschreibung einer neuen Unterart, Tiliqua gigas evanescens subsp. nov. In: Hauschild A, Henle K, Hitz R, Shea GM, Werning H (eds.) Blauzungenskinke. Beiträge zu Tiliqua und Cyclodomorphus, Natur und Tier Verlag, Münster, pp 177–189

  • Skinner A (2007) Phylogenetic relationships and rate of early diversification of Australian Sphenomorphus group scincids (Scincoidea, Squamata). Biol J Linn Soc 92:347–366. https://doi.org/10.1111/j.1095-8312.2007.00843.x

    Article  Google Scholar 

  • Stuart BL, Parham JF (2004) Molecular phylogeny of the critically endangered Indochinese box turtle (Cuora galbinifrons). Mol Phylogenet Evol 31:164–177. https://doi.org/10.1016/S1055-7903(03)00258-6

    Article  CAS  PubMed  Google Scholar 

  • Swoford DL (2002) Phylogenetic analysis using parsimony (* and other methods). PAUP, 4, b10., Sinauer associates, Sunderland Massachusetts

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toussaint EF, Hall R, Monaghan MT, Sagata K, Ibalim S, Shaverdo HV, Vogler AP, Pons J, Balke M (2014) The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nat Commun 5:4001. https://doi.org/10.1038/ncomms5001

  • Uetz P, Freed P, Hošek J (eds.) (2019) The Reptile Database. http://www.reptile-database.org. Accessed 25.3.2020

  • Unverzagt T (2004) The continuous keeping and breeding of Tiliqua scincoides scincoides (Hunter, 1790) in the terrarium.In: Hitz R, Shea G, Hauschild A, Henle K, Werning H (eds.) Blue-tongued skinks: contributions to Tiliqua and Cyclodomorphus. Matthias Schmidt Publications, Münster (Germany), pp 169–176

  • Villesen P (2007) FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 7:965–968. https://doi.org/10.1111/j.1471-8286.2007.01821.x

    Article  CAS  Google Scholar 

  • Voris HK (2000) Maps of Pleistocene Sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167. https://doi.org/10.1046/j.1365-2699.2000.00489.x

    Article  Google Scholar 

  • Wallace AR (1869) The Malay archipelago: the land of the orang-utan and the bird of paradise; a narrative of travel, with studies of man and nature. Courier Corporation

  • White J (1790) Journal of a voyage to new South Wales, with sixty-five plates of non descript animals, birds, lizards, serpents, curious cones of trees and other natural productions. Debrett, London

  • Whitten AJ, Mustafa M, Henderson GS (1987) The ecology of Sulawesi. Gadjah Mada University Press, Yogyakarta (Indonesia)

  • Wilson D, Heinsohn R (2007) Geographic range, population structure and conservation status of the green python (Morelia viridis), a popular snake in the captive pet trade. Aust J Zool 55:147–154. https://doi.org/10.1071/ZO06078

    Article  Google Scholar 

  • Ziegler T, Böhme W, Philipp KM (1999) Varanus caerulivirens sp. n., a new monitor lizard of the V. indicus group from Halmahera, Moluccas, Indonesia. Herpetozoa 12:45–56

  • Ziegler T, Schmitz A, Koch A, Boehme W (2007) A review of the subgenus Euprepiosaurus of Varanus (Squamata: Varanidae): morphological and molecular phylogeny, distribution and zoogeography, with an identification key for the members of the V. indicus and the V. prasinus species groups. Zootaxa 1472:1–28. https://doi.org/10.11646/zootaxa.1472.1.1

    Article  Google Scholar 

Download references

Funding

We would like to thank Tiliqua breeders and colleagues, especially Zoo Jihlava, Zoo Liberec, Zoo Dubeč, Tomáš Protiva, Anna Bauerová, Zdeněk Lerch, Michal Porteš, Petra Frýdlová, Kristýna Jachnická, Andran Abramjan, and Petra Suchomelová for providing samples and/or taking care of sampled animals. This project was supported by GAUK 754213/2016.

Author information

Authors and Affiliations

Authors

Contributions

Designed the research (FD and GD), provided the material (GD), designed and performed the laboratory work (SB), computed the trees and statistics (SB) and wrote the paper (FD and SB).

Corresponding author

Correspondence to Barbora Somerová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

In this article all applicable international, national, and/or institutional guidelines for the care and use of animals were followed. No animals were killed or harmed. In this study there were used the biological samples only.

Consent for publication

We consent with publication of this article and all supplementary materials.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Online resource 1

Primers used for PCR amplification and nucleotide sequencing. * Primer sources: 1 Forstner et al. (1995); 2 Stuart and Parham (2004); 3 Gardner et al. (2008b); 4 Kocher et al. (1989); 5 Saint et al. (1998) (PDF 114 kb)

Online resource 2

BA trees calculated using 1) ND4 alignment, total length 825 bp, 10,000,000 generations, 2) ND4 + 12S rRNA alignment, total length 1247 bp, 10,000,000 generations (PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frynta, D., Gunalen, D. & Somerová, B. Genetic variation of blue-tongue skinks of the genus Tiliqua (Squamata: Scincidae) from New Guinea and Wallacea. Biologia 76, 1445–1455 (2021). https://doi.org/10.2478/s11756-020-00646-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-020-00646-0

Keywords

Navigation