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A b s t r a c t

A redatuming operation is used to simulate the acquisition of data

in new levels, avoiding distortions produced by near-surface irregularities

related to either geometric or material property heterogeneities. In this

work, the application of the true-amplitude Kirchhoff redatuming (TAKR)

operator on homogeneous media is compared with conventional Kirchhoff

redatuming (KR) operator restricted to the zero-offset case. The TAKR and

the KR operators are analytically and numerically compared in order to

verify their impacts on the data at a new level. Analyses of amplitude and

velocity sensitivity of the TAKR and KR were performed: one concerning

the difference between the weight functions and the other related to the

velocity variation. The comparisons between operators were performed

using numerical examples. The feasibility of the KR and TAKR operators

was demonstrated not only kinematically but also dynamically for their

purposes. In other words, one preserves amplitude (KR), and the other

corrects the amplitude (TAKR). In the end, we applied the operators to

a GPR data set.

Key words: Kirchhoff redatuming, true-amplitude Kirchhoff redatuming,
amplitude analysis, travel-time analysis.
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1. INTRODUCTION

Wavefield redatuming is an operation that transforms seismic data based on
the assumption of a new measurement surface. In other words, given a data
set acquired on an initial surface, it generates a simulated data set as if it were
measured on another surface. Among its applications, we have near-surface cor-
rections (Cox 1999), OBC processing (Jin et al. 2011), dual-sensor streamer
de-ghosting (Klüver 2009), and multiple attenuation (Wiggins 1988).

The wave-equation based redatuming operators are the most accurate ones.
Over the years several approaches have been proposed: based on the Kirchhoff
integral (Berryhill 1984), using the phase-shift method (Margrave and Ferguson
1999) and based on the common-focus point (CFP) technology.

The redatuming operators are especially costly in the pre-stack domain in
which most applications occur. Though the Kirchhoff method is rather straight-
forward and efficient, it is still expensive compared to static correction and
requires an accurate interval velocity field above the datum. In addition, the
Kirchhoff scheme is applied to common source and receiver gathers; in other
to relocate sources and receivers, respectively. An analytical Kirchhoff-type re-
datuming operator, based on straight ray approximation (SRD) (Alkhalifah and
Bagaini 2006) fills the gaps between static correction and wave-equation re-
datuming. It uses the assumption of local homogeneity, potentially useful for
most media. The small size of the operator and its analytical expression pro-
vides cost-effectiveness and little sensitivity to velocity errors.

Toward a true-amplitude Kirchhoff-type operator, particular cases of the
migration to zero-offset (MZO) operator proposed by Tygel et al. (1998) were
analytically formulated for zero-offset configuration on homogeneous models
and compiled into a true-amplitude Kirchhoff redatuming (TAKR) operator
(Oliveira et al. 2009, Pila et al. 2014). This operator provides correct kine-
matic and dynamic redatumed traces. The reader should notice that the term
true-amplitude is used here on a more strict sense, beyond amplitude relativity
preservation. More specifically, the amplitude is not only preserved within a
given event for different offsets. In this case, the amplitude has its geometrical
spreading component adjusted to honor the new measurement surface.

For seismic data processing, the restriction to zero-offset configuration lim-
its the applicability of a redatuming operator to event repositioning (e.g., in
moving a stack from floating to final datum). However, as described by Liu
et al. (2007), zero-offset redatuming plays a more important role in imaging
GRP profiles. Moreover, an amplitude-friendly processing sequence is of great
importance since amplitude analysis of GPR profiles has applications in shallow
aquifers characterization (Bradford 1999), determination of subsurface contam-
inant (Schmalza and Lennartzb 2002) and soil water content variations (Cassidy
2007) in hydrological studies, and archaeological prospection (Khwanmuang
and Udphuay 2012, Zhao et al. 2013).
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In this work, we analyze the amplitude behavior of two Kirchhoff-based
redatuming operators through homogeneous media for the zero-offset case: the
operator described by Berryhill (1984) and the true-amplitude operator pro-
posed by Pila et al. (2014). We illustrate the feasibility of our analysis for a
couple of numerical examples and for the application in a GPR data set from
Siple Dome-Antarctica.

2. THEORETICAL BACKGROUND

In this section, we show our mathematical analysis for amplitude and travel-time
attributes at redatuming operation. Our analysis relies on the stationary phase
method to analytically solve the Kirchhoff redatuming in 2.5 D homogeneous
media restricted to a zero-offset configuration.

2.1 2.5 D Kirchhof-based redatuming

Kirchhoff redatuming is based on the integral formulation of Kirchhoff migra-
tion (Schneider 1978). Like its migration counterpart, the redatumed wavefield
Uo is calculated by successive weighted summations of input wavefield Ui

along proper trajectories. More specifically,

Uo(ξo, to) =
1√
2π

∫
Zi

Wd1/2Ui(ξi, to ± τ)dξi , (1)

where ξi and ξo are the horizontal coordinates of the input and output da-
tums Zi and Zo, d1/2 denotes the half-derivative of the input wavefield Ui,
τ is the travel-time between the output location (ξo, Zo(ξo)) and input loca-
tion (ξi, Zi(ξi)), W is a properly chosen weight. In frequency domain, d1/2

corresponds to iω. Note that the ± sign is chosen appropriately whether the
output datum is above (− ) or below (+ ) the input datum.

In this work, we analyse the amplitude behavior of two Kirchhoff-based re-
datuming operators through homogeneous media for the zero-offset case: the
preserving operator described by Berryhill (1984) and the true-amplitude op-
erator proposed by Pila et al. (2014).

These operators are kinematically identical. As expected, when redatuming
from datum Zi to Zo, through a homogeneous medium with velocity v, the
travel-time τ is directly calculated from the distance between input and output
locations d(ξi, ξo), namely

d(ξi, ξo) =
√

(ξo − ξi)2 + (Zo(ξo)− Zi(ξi))2] . (2)
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However, while the former aims to preserve relative amplitudes by direct appli-
cation of the Kirchhoff integral, the latter aims to adjust the geometrical spread-
ing by direct application of the MZO operator. These objectives are reached by
using different stacking weights. The amplitudes are preserved using the weight
Wpa given by

Wpa =
φ(ξi, ξo)√

vd
, (3)

where
φ(ξi, ξo) = d−1 [Zo(ξo)− Zi(ξi)− (ξo − ξi)Z

′
i(ξi)] (4)

accounts for the incidence correction. On the other hand, the true-amplitudes
are achieved incorporating a geometrical spreading adjusting term

G(ξi, ξo, to, v) = 2d

vto
(5)

into the summation weights, generating the true-amplitude weight Wta given
by

Wta = (1± G)Wpa =

(
1± 2d

vto

)
φ(ξi, ξo)√

vd
, (6)

where t0 is the output time and d is the distance between input and output
locations.

2.2 Analytical analysis of velocity sensitiveness
A first understanding of the impact of velocity errors on both operators can
be obtained by analytical analysis of a simple case. In order to achieve that,
we derive the stationary phase approximation (Bleistein 1986) of Eq. 1 in the
case of horizontal plane input and output datums and a horizontal reflector in a
constant velocity medium.

In the case of a reflector located at depth D and with unitary reflectivity,
the zero-offset input data set Ui(ξi, t) is given by

Ui(ξi, ω) =
1

4πD
e−iω2D/v , (7)

where v is the medium velocity. Therefore, when using a redatuming veloc-
ity ν, Eq. 1 can be replaced by

Uo(ξo, ω) =
1√
2π

∫
Zi

W (ξi; ξo)

(√
iω

4πD
e−iω2D/v

)
e±iω2d(ξi;ξo)/νdξi

=
1√
2π

∫
Zi

(
W (ξi; ξo)

√
iω

4πD

)
e−iωφ(ξi;ξo)dξi , (8)
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where φ(ξi; ξo) = 2D/v±2d(ξi; ξo)/ν. For this simple case, it is easy to note
that the phase φ(ξi; ξo) is stationary when ξi = ξo. The redatumed sample
Uo(ξo, ω) can then be approximated by

Uo(ξo, ω) ≈
√

1

iωφ′′(ξo; ξo)

(
W (ξo; ξo)

√
iω

4πD

)
e−iωφ(ξo;ξo)

≈
√

νz

2iω

(
W (ξo; ξo)

√
iω

4πD

)
e−iω2(D/v±z/ν)

≈ W (ξo; ξo)

( √
νz

4πD
√
2

)
e−iω2(D/v±z/ν) . (9)

In the case of preserving amplitudes we use W = Wpa (Eq. 5), after which
we have

Uo(ξo, ω) ≈ Wpa(ξo; ξo)

√
νz

4πD
√
2
e−iω2(D/v±z/ν)

≈
( √

2√
νz

) √
νz

4πD
√
2
e−iω2(D/v±z/ν)

≈ 1

4πD
e−iω2(D/v±z/ν) .

As expected, the redatumed signal has the same amplitude as the input data
(Eq. 7), it does not depend on the chosen redatuming velocity ν, and its phase
is shifted by z/ν.

In the case of taking into account the geometrical spreading factor we use
W = Wta into the Fourier inverse of Eq. 9:

Uo(ξo, to) ≈ Wta(ξo; ξo)

√
νz

4πD
√
2
δ (to − 2(D/v ± z/ν))

≈
[(

1± 2z

νto

) √
2√
νz

] √
νz

4πD
√
2
δ (to − 2(D/v ± z/ν))

≈
(
1± 2z

νto

)
1

4πD
δ (to − 2(D/v ± z/ν)) . (10)

Note that in order to keep consistency, the ± operator, chosen according
to the redatuming direction, has an opposite meaning in the last equation. For
example, when redatuming upwards, the first occurrence is − and the other
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is +. Namely, at the redatumed reflector we have

Uo(ξo, to = 2(D/v ± z/ν)) ≈
(
1− z

Dν/v + z
,

)
1

4πD

≈
(ν
v

) 1

4π(Dν/v + z)
,

≈ 1

4π(D + zv/ν)
. (11)

The true-amplitude redatuming operator, in order to properly account for
geometrical spreading, relies on a proper choice of the redatuming velocity ν.
The redatumed amplitude is strongly dependent on the relation between the
chosen redatuming velocity ν and the medium velocity v.

3. RESULTS

The validity of the analysis of amplitude and travel-time with a variation in the
velocity model was confirmed by numerical and real data sets. In this section,
we have performed our analysis on three homogeneous numerical examples and
on a real GPR data set.

3.1 Model I: two horizontal layers

In this synthetic example, we apply redatuming operators in a horizontally lay-
ered model with two horizontal homogeneous layers, where the first acoustic
wave velocity background was υ1 = 2000 m/s and the second was υ2 =
2200 m/s. The model that consists of two horizontal homogeneous layers is
depicted in Fig. 1. The zero-offset data set (Fig. 2a), was simulated with a 25
Hz Ricker wavelet by Kirchhoff modeling and sampled at 4 ms every 10 m. Its
measurement level is constant at level z = 0 m. Another data set, to be used as
reference, was simulated with the measurement level equal to the target output
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Fig. 1. Velocity model with two homogeneous layers (Model I). The first layer velocity

is 2000 m/s and the second 2200 m/s.
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Fig. 2. Model I data sets: (a) input, (b) reference and outputs of (c) amplitude-

preserving, and (d) true-amplitude redatuming operators.

datum ( z = 1000 m) with identical parameters (see Fig. 2b). This datum level
corresponds to 50% of the first layer depth.

The output of both true-amplitude and conventional redatuming operators
is presented in Fig. 2c, d. A single-trace detailed comparison is presented in
Fig. 3a. As expected, both operators result in traces kinematically equal to the
reference trace. On the other hand, while the output from the conventional
operator has the same amplitude as the input, the true-amplitude operator
yields traces with the same amplitude as the reference trace. As we can no-
tice in Fig. 3b, the amplitude erros are low and probably due to numerical
issues.

A second experiment on the same model aimed to analyse the velocity sen-
sitivity on both redatuming operators. Since the operators are kinematically the
same, the errors in travel-time are identical (see Fig. 4a, b). On the other hand, as
commented in Subsection 2.2, while the amplitude of the conventional operator
is independent of the velocity error, the true-amplitude operator is considerably
sensitive to it. The errors of the amplitude-preserving operator remain at 7%
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Fig. 3: (a) Seismic trace of the input (purple), reference (black dashed), KR (red), and

TAKR (blue dashed). The KR and TAKR data were repositioned with the weight func-

tion (3) and (6), respectively, and the redatuming in this case recovered the correct

amplitude; (b) The relative amplitude errors between the TAKR data and the reference

(blue line) are around 3.5 %. The relative error between the KR and the reference data

(red line) is around 1%.
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Fig. 4. Velocity error plots: traveltime error for (a) amplitude-preserving and (b) true-

amplitude redatuming operators, and the respective amplitude errors shown in (c)

and (d).
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even for velocity errors of 40%, while the true-amplitude operator errors reach
27% in this case.

As it can be seen, both operators present accurate results, either preserv-
ing or adjusting the amplitude. However, in order to obtain an estimate of the
geometrical spreading, the true-amplitude operator relies on a proper velocity
model. Both analytic and numerical analyses show that the amplitude error for
this operator is strongly affected by errors in the velocity field.

3.2 Model II: four horizontal layers
Here, in order to verify the feasibility of both operators when VRMS velocities
are taken into account, we generated a second model which consists of four
horizontal homogeneous layers, as depicted in Fig. 5. The interval velocities of
this model were 1500, 2000, 2500, and 3000 m/s.

The source-receiver pairs were positioned at every 25 m. The data was mod-
elled by Trisies (from Seismic Unix) which uses a Gaussian beam operator to
produce true-amplitude synthetic seismograms with a Ricker wavelet of 25 Hz.
This seismogram was used as an input for KR operator in zero-offset. The zero-
offset data set, shown in Fig. 6a has a sampling ratio of 4 ms and its measure-
ment level is constant at z = 0 m. Another data set, to be used as reference,
was simulated having the measurement level equal to the target output datum
( z = 1000 m) with identical parameters (see Fig. 6b) also by Trisies.

The outputs of both true-amplitude and conventional redatuming opera-
tors are presented in Fig. 6c, d. One-trace detailed comparisons are presented
in Figs. 7 and 8. Just like the first experiment, both operators presented good
accuracy in their kinematic and dynamic purposes.

As we can see Fig. 8, even when the VRMS velocity is used in the reda-
tuming operation, the error between the KR and input data set is less than 1%
for all layers, even deepest. However, in case of TAKR redatuming operation
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Fig. 5. Velocity model with four homogeneous layers with velocities 1500, 2000, 2500,

and 3000 m/s (Model II).
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Fig. 6. Model II data sets: (a) input, (b) reference and outputs of (c) amplitude-

preserving, and (d) true-amplitude redatuming operators.
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Fig. 8. Detailed comparison: (a), (c), and (e) single-trace zoom for first, second, and

third events; (b), (d), and (f) multi-trace amplitude error plot for first, second, and third
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the error is more sensitive to differences between true and VRMS velocities.
Based on what Subsection 2.2 shows, the TAKR is more sensitive to velocity
error. The deeper the layer, the more VRMS moves away from interval veloc-
ity. It is expected the that TAKR operator is more sensitive to velocities of the
deeper layers.

3.3 Model III: four curved layers
The third model consists of four curved homogeneous layers as depicted in
Fig. 9. The zero-offset data set (Fig. 10a) was simulated with a 25 Hz Ricker
wavelet by Gaussian beam modelling, sampled at 4 ms and 10 m, and its mea-
surement level is constant at z = 0 m. Another data set, to be used as reference,
was simulated having the measurement level equal to the target output datum
( z = 200 m) with identical parameters (see Fig. 10b).

The output of both true-amplitude and conventional redatuming opera-
tors are presented in Fig. 10c, d. One-trace detailed comparison is presented in
Fig. 11.

Figure 11 compares the central trace of the KR and TAKR data with the
central trace of the input and the reference sections. Just like in the model with
four layers, this experiment showed that the difference in amplitude between the
KR response and the input data is still the same with the increase of depth, and
the TAKR response and reference data increased with the increase of depth.
However, when it comes to amplitude recovering, the TAKR profile has the
amplitude recovering factor.

Fig. 9. Velocity model with four curved layers with velocities 1581 , 1690 , 1826 , and

2000 m/s (Model III).
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Fig. 10. Model III data sets: (a) input, (b) reference and outputs of (c) amplitude-

preserving, and (d) true-amplitude redatuming operators.
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4. FIELD DATA EXAMPLE:
GROUND PENETRATING RADAR (GPR) DATA SET

Siple Dome ( 81.65 S, 148.81 W) is an ice dome which is approximately
100 km wide and 100 km long, located 130 km east of Siple Coast in Antarctica.
This place is of particularly important on determining the current mass balance
of the West Antarctic ice sheet (WAIS).

The GPR survey was performed at a specific location indicated in Fig. 12a.
Figure 12b shows a slice of the 100 MHz GPR profile acquired in Siple Dome.
The distance between the transmitter and receiver antennas was 1.0 m (half-
offset, h = 0.50 m), and the interval between traces was 0.75 m. A total of
8000 traces was collected along the 6000 m survey line. But here, for obser-
vation issues we are showing a spatial window of 3000 m (see Fig. 12b). The
length of the time window was 913 ns and the number of samples per trace was
1870, resulting in a time sampling rate of 0.49 ns.

As an illustrative example, we applied both operators to the profile from
Fig. 12b, redatuming it to a flat output datum located at 15 m depth. On a first
example, we used ice velocity (0.16 m/ns) as redatuming velocity (Alley and
Bentley 1988). As expected, the difference between the two results is purely
dynamic (see Fig. 13). While the conventional amplitude-preserving operator
maintains the relativeness of the input profile (Fig. 13a), the true-amplitude op-
erator boosts up amplitudes on the first 300 ns of the section. This enhancement

(a) (b)

Fig. 12: (a) Map of location of Siple Dome in eastern Antarctica, Antarctic Explores;

(b) Input GPR data 100 MHz acquired in Siple Dome.
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(a) (b)

Fig. 13. Application of (a) amplitude-preserving, and (b) true-amplitude redatuming

operator to profile of Fig. 12b.

(c) (d)

Fig. 14. Illustration of using an inacurate velocity field for (a) amplitude-preserving,

and (b) true-amplitude redatuming.
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is more evident on the shallow part due to the bigger ratio between the acquired
and adjusted geometrical spreading factors.

On a second example, in order to simulate the use of a non accurate ve-
locity field, we chose a 50% higher redatuming velocity ( 0.24 m/ns) when
compared with ice velocity. As showed in the previous sections, Fig. 14 il-
lustrates the impact of velocity error on both redatuming operators. Note that
Figs. 13a and 14a present similar amplitude responses. On the other hand, the
amplitude response of the true-amplitude operator is affected by the velocity
error (see Figs. 13b and 14b).

As it can be seen, in both cases (with correct and wrong velocity) the am-
plitude at the deepest layers is highlighted for TAKR operation. In other words,
the events presented better lateral continuity when compared with the TK re-
sult. We can observe these characteristics on the first events on the top of the
data, on the left side around 300 ns, and at the end in 700 ns.

5. CONCLUSIONS

In this work, a comparative analysis was performed on two Kirchhoff redatum-
ing operators: conventional and true-amplitude. When formulating both oper-
ators as variations of the same Kirchhoff integral operator, it become obvious
that the difference between them is strictly dynamical and is due to a geometri-
cal spreading correction factor at the stacking weight. This factor is responsible
for replacing the input geometrical spreading by one adjusted to the new mea-
surement surface. This difference is illustrated by numerical examples and one
GPR field data set application. Using these examples, we illustrated that both
operators fulfil their purposes, either preserving or adjusting the amplitudes.

Velocity sensitiveness analysies were also performed both analytically and
numerically. We demonstrated that the true-amplitude operator is more sensi-
tive to inaccuracies in the velocity field. While the conventional (amplitude-
preserving) operator amplitude errors remain low, the true-amplitude operator
amplitude errors increase (reaching 27% when in presence of 40% of velocity
error).

The feasibility of our results were demonstrated through their application
in GPR data acquired in a profile in Siple Dome-Antarctica. The TAKR and
KR application to the GPR data showed that, in both cases, the reflectors were
better delineated, presented better lateral continuity and the improved resolution
of the main events, specially when the layers were deeper.
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