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A b s t r a c t  

An analytical solution of a two-dimensional advection diffusion 
equation with time dependent coefficients is obtained by using Laplace 
Integral Transformation Technique. The horizontal medium of solute 
transport is considered of semi-infinite extent along both the longitudinal 
and lateral directions. The input concentration is assumed at an interme-
diate position of the domain. It helps to evaluate concentration level 
along the flow as well as against the flow through one model only. The 
source of the input concentration is considered to be of pulse type. In the 
presence of the source, it is assumed to be decreasing very slowly with 
time, and just after the elimination of the source it is assumed to be zero. 
The dispersion coefficient and the advection parameter are considered di-
rectly proportional to each other. The analytical solution may be used to 
predict the solute concentration level with position and time in an open 
medium as well as in a porous medium. The effect of heterogeneity on 
the solute transport may also be predicted.  

Keywords: solute transport, aquifer, input concentration, heterogeneity, 
Cartesian system. 
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1. INTRODUCTION 
Pollutant mass originating from a variety of natural and anthropogenic 
sources (volcano, industries, factories, refineries, sewage systems, garbage 
disposal sites, mines, etc.) is a major cause of degradation of the environ-
ment of air, surface water, soil, and groundwater. Mathematical modelers 
use the advection diffusion equation (ADE) to describe the concentration 
level of the pollutant mass at different position and time, away from its 
source, through its analytical and numerical solutions. In one-dimensional 
Cartesian system of coordinates, ADE is as follows 

 ,c cD uc
t x x
5 5 5� �� 	� �5 5 5� �

 (1) 

where c [ML–3] denotes the solute concentration in the medium at any time  
t[T], and at a position x[L]; D[L2T–1] and u [LT–1] represent the dispersion 
coefficient and the advection parameter, respectively, along the longitudinal 
direction (x axis) of the medium. There are basic theories which relate the 
dispersion coefficient D and velocity u occurring as the two coefficients in 
the one-dimensional ADE (Eq. 1): (i) Ebach and White (1958) and Bear 
(1972) in their one-dimensional analysis suggested that D is proportional to 
u, and (ii) Taylor (1953) in his one-dimensional analysis obtained D propor-
tional to u2. Further on, Scheidegger (1957) summarized his analysis on the 
two possible relationships between D and u according to the role played by 
molecular diffusion: (i) D 3 � u2, where �, a constant of the porous medium 
alone (dynamic dispersivity), is derived by a dynamic procedure applicable 
when there is enough time in each flow channel for appreciable mixing to 
take place by molecular transverse diffusion; and (ii) D 3 � u2, where �, 
 another constant of the porous medium (geometric dispersivity), is derived 
by a geometric procedure applicable where there is no appreciable molecular 
transverse diffusion from one streamline into another. Later on, Freeze and 
Cherry (1979) have modified these dispersion theories by showing that if the 
dispersion parameter is proportional to the n-th power of the velocity, then n 
ranges between 1 and 2. 

Dispersion in porous media was significantly discussed by Fried and 
Combarnous (1971) and groundwater pollution was explored by Fried 
(1975). The occurrence of anomalous diffusion behavior of an upscaled dis-
persion coefficient, for a transport process driven locally by a normal diffu-
sion was explained by Matheron and De Marsily (1980). Solute transport in 
heterogeneous porous formations was discussed by Dagan (1984). An anom-
alous diffusion model of the local dispersion was also considered for porous 
media with special properties (Suciu 2014). The apparent behavior of the 
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dispersion at larger scales was discussed by Fried (1975), Matheron and  
De Marsily (1980), Dagan (1984), Suciu (2010, 2014). 

The source of advective-diffusive solute mass transport may be a point 
source, e.g., garbage disposal sites, mines, etc., a line source, e.g., interface 
of sea water in aquifer or a surface source, e.g., along agriculture field with 
high doses of chemical fertilizers (Marshal et al. 1996). A point source may 
be of continuous type or pulse type. In either case, the point source may be 
uniform or of varying nature. In the latter type, the input concentration may 
be uniform or of increasing nature in the presence of its source. As soon as 
the source of pollution is eliminated, the input concentration becomes zero 
or starts decreasing. Solution of an ADE for a pulse type point source is use- 
ful for predicting the rehabilitation time period of a polluted domain once its 
source is eliminated. Smokes coming out of a chimney, wastes from a drain- 
age system reaching a particular location in rivers, lakes, are examples of 
uniform pulse-type point sources. As soon as the source is eliminated, the 
input becomes zero. Infiltration from the ground surface point sources (gar- 
bage disposal sites), reaches groundwater level or oil reservoirs, degrading 
their quality (an example of varying pulse-type point source), where as soon 
as the source is eliminated, the input, starts decreasing, instead of becoming 
zero. Only in particular cases it is possible to solve ADE analytically. In  
a more general situation, numerical techniques are required. The literature 
presenting most of the analytical methods has been reviewed in a recent 
work by Guerrero et al. (2009). Many analytical solutions of Eq. 1  in ideal 
conditions (the two coefficients are independent of the position and time) 
with growth and decay terms, subject to various initial and boundary condi-
tions in semi-infinite or finite media have been complied (van Genuchten 
and Alves 1982, Javandel et al. 1984, Domenico and Schwartz 1997). Pre- 
dicting the fate of pollutants in natural environments, such as rivers and 
man-made channels, is one of the major concerns. Approximate solutions 
first began to appear (Banks and Jerasate 1962, Warrick et al. 1971), in 
which a time-dependent dispersion coefficient was used. Usually, the solute 
transport models assume a constant dispersion coefficient that is calibrated 
separately for each different downstream sample location, resulting in differ-
ent dispersion coefficients for the same flow problem. In an attempt to over-
come this, the dispersion coefficient was considered as a function of the 
mean travel distance successfully (Pickens and Grisak 1981). Another  
approach is to model dispersivity as a time-dependent function. Based on the 
observation of numerical results (Suresh Kumar et al. 2008), dispersivity has 
been suggested to have a time-dependent behavior which reaches asymptotic 
values after a long time. Additionally, worth mentioning are some of the 
works solving ADE with variable coefficients analytically in one-dimension 
(Sander and Braddock 2005, Singh et al. 2008, Chen and Liu 2011, Kumar 
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et al. 2011, Chen et al. 2012a, b) and in two- and three-dimensions (Wilson 
and Miller 1978, Carnahan and Remer 1984, Goltz and Roberts 1986, Yates 
1988, Batu 1989, 1993; Leij et al. 1991, Serrano 1995, Aral and Liao 1996, 
Zou et al. 1996, Zoppou and Knight 1997, Tartakovasky 2000, Singh et al. 
2010, Jaiswal et al. 2011, Sudicky et al. 2013). 

In the tropical regions, like Indian sub-continent, the water table in the 
rivers and in the aquifers and its flow is the minimum before the rainy sea- 
son and is the maximum after the rainy season. But the pollution reaching 
the river water table through the waste water drainage system or reaching 
aquifer through infiltration from garbage disposal sites, mines, remain uni-
form throughout the year. The dispersion of pollutants down the stream and 
against the stream have a lateral component too, though much weaker in 
comparison of the longitudinal part. The present study formulates this sce-
nario through a two-dimensional ADE, an initial condition, and boundary 
conditions, one of which being a pulse type input concentration (the concen-
tration of pollutant at the meeting point in the water table). It is solved using 
Laplace integral transformation technique. A sinusoidal form of temporally 
dependent velocity is considered. It represents the minimum and maximum 
velocity in aquifers as well as in river beds, during the months of summer 
season (June) and peak of the winter season (December), respectively, in 
successive years. Of the three dispersion theories discussed in the above  
paragraph, the dispersion coefficient is considered to be directly proportional 
to the velocity along both directions. It makes the coefficients of the ADE 
time-dependent. Such dependence may be used to describe the heterogeneity 
of the medium and its effect on the solute dispersion. It is valid in porous 
domain like aquifer and on a surface water body like rivers and lakes. The 
longitudinal and lateral directions are considered to extend up to infinity. In 
the presence of the source, the input concentration (due to the source) is con-
sidered time-dependent of decreasing nature. The source of pollution is 
meeting the water medium at a point. To study its concentration distribution 
behavior along the flow (that is, on the right side domain of the point 
source), and against the flow (that is, in the domain on the left side), its loca-
tion is not considered at the origin of the medium as taken in most of the 
works. It is assumed at an intermediate position of the medium nearer to the 
origin. In this way, concentration distribution in both situations is studied 
through one model only. The time-dependent coefficients of the ADE are  
reduced into constant coefficients by modulating the time variable which 
takes care of the time-dependent sinusoidal expression. Further on, the two 
space variables are unified into one space variable and it reduces the two-
dimensional ADE into one-dimension. 
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2. MATHEMATICAL  FORMULATION  AND   
ANALYTICAL  SOLUTION 

The two-dimensional ADE with time dependent coefficients may be written 
as follows: 

 
2 2

2 2( ) ( ) ( ) ( ) .x y
c c c c cD t D t u t v t
t x yx y
5 5 5 5 5

� � 	 	
5 5 55 5

 (2) 

The coefficients of second order derivatives are diffusion coefficients 
and those of first order space derivatives are velocity components along lon-
gitudinal and lateral directions, respectively. Let u and v be expressed as  

 0 0( ) and ( ) ,u u V mt v v V mt� �  (3) 

where m[T–1] may be referred to as unsteady parameter, and u0 and v0 may be 
referred to as initial values of u and v, respectively. We consider the sinusoi-
dal form of velocity  
 ( ) 1 sin .V mt mt� 	  (4) 

The different time-dependent forms of velocity expression may also be 
considered similar to Aral and Liao (1996), based on the properties of alge-
braic sigmoid function which include the error function. It starts a progress 
from small beginning, accelerates in the rainy season and reaches up to a 
limit over a period of time. As the dispersion coefficient is considered direct-
ly proportional to velocity, we write  

 
0 0

( ) and ( ) ,x x y yD D V mt D D V mt� �  (5) 

where 
0 0xD au�  and 

0 0yD av�  are the initial values of Dx and Dy , respec-
tively. Here, a is the dispersivity [L] that depends upon the pore size and ge-
ometry. As a result, Eq. 2 may be written as  

 
0 0

2 2

0 02 2
1 .

( ) x y
c c c c cD D u v

V mt t x yx y
5 5 5 5 5

� � 	 	
5 5 55 5

 (6) 

It is assumed that before the introduction of input concentration, the do-
main is not solute free. It is uniformly polluted though its level is considered 
very low. The initial condition is 

 � � ;, ,     0 ,  0 ,  0 .ic x y t c x y t� � 2 � � 2 � �  (7) 

The pulse type input concentration at an intermediate location is defined as 

 � � � �0 0
0 0

0

1 exp ; 0
, , at , ,   

0 ;

c qt t t
c x y t x x y y

t t

=! "� 	 2 � >% &� � �@
 >B

 (8) 
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where t = t0 is the time when the source of the input concentration is re-
moved forever, and q[T–1] is a decay parameter. The second boundary condi-
tion at the two extreme ends of horizontal medium is considered of homoge-
neous flux type, as  

 0 and 0 ; , , 0 .c c x y t
x y
5 5

� � E� E� F
5 5

 (9) 

Using an integral transformation (Crank 1975) 

 
0

( ) ,
t

T V mt dtG � 1  (10) 

the left hand side term of Eq. 6 becomes (5c /5T*). T* is a new time variable, 
as m (of dimension being inverse of that of the time variable) will appear in 
the denominator of its expression. V(mt) is so chosen that this new time vari-
able becomes zero for t = 0; otherwise, the nature of the initial condition in 
new time domain will alter. It may be verified for its expression in Eq. 4. 
Further coordinate transformations  

 0 0,X x x Y y y� 	 � 	  (11) 

convert the location (x = x0, y = y0) of the input concentration to (X = 0, 
Y = 0). Also Eq. 6 may be obtained in the form   

 
0 0

2 2

0 02 2 .x y
c c c c cD D u v

X YT X YG

5 5 5 5 5
� � 	 	

5 55 5 5
 (12) 

Similarly, the conditions given by Eqs. 7-9 may be written in new inde-
pendent variables (X, Y, T*). Further, using another coordinate transfor-
mation 

 0

0

0

0
   or    ,y

x

D v
z X Y X Y

D u
� � �  (13) 

the two dimensional Eq.  12 is reduced into a one-dimensional equation  

 
2

2 ,c c cD U
zT zG

5 5 5
� 	

55 5
 (14) 

where 0

0

0

2
0

0 02
0

1  and y
x

x

D vD D U u v
uD

� � � �
� �� � � �� �� �� � � �� �

. Equation 13 is similar to 

the one used by Carnahan and Remer (1984). The point (X = 0, Y = 0) corre-
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sponds to (z = 0). The initial and boundary conditions, Eqs. 7-9, will  
assume the respective form as 

 � �, ;     0 ,  0 ,ic z T c z TG G� F �  (15) 

 � � 0 0

0

(2 ) ; 0
, ; 0 ,

0 ;

c qT T T
c z T z

T T

G G G
G

G G

=	 2 � >� �@
 >B

 (16) 

 0 ; , 0 .c z T
z

G5
� E � F

5
 (17) 

As the coefficients of ADE in (z, T*) domain are constants so Laplace in-
tegral transformation technique may be used to get the analytical solution of 
the initial and boundary value problem defined by Eqs. 14-17 (van 
Genuchten and Alves 1982), as (see the Appendix) 

 
� � � � � �

2

0 0

0

( , ) exp 2 , , ;
2 4

0

i i
Uz U Tc z T c c c F z T qc G z T

D D

T T

G
G G G

G G

� � ! "� � 	 	 	� � % &� �
2 �

 
(18a)

 

 
� � � � � �H I

� � � � � �H I

2
*

0 0 0

0 0 0

( , ) exp 2 , ,
2 4

, , , ;

i

i

Uz U Tc z T c c qT F z T F z T T
D D

c F z T qc G z T G z T T T T

G
G G G G

G G G G G

� � !� � 	 � 	 	� � %� �
"	 	 	 	  &

 
(18b)

 

where 

 
� �

2

2

1, exp erfc
2 4 2 2 2

1 exp erfc ,
2 4 2 2 2

U T Uz z UTF z T
D D DT DT

U T Uz z UT
D D DT DT

G G
G

G G

G G

G G

� �� �
� 	 	� �� �� � � �� � � �

� �� �
� � �� �� �� � � �� � � �

 

(18c)

 

 
� � � �

� �

2

2

1, exp erfc
2 4 2 2 2

1 exp erfc .
2 4 2 2 2

U T Uz z UTG z T UT z
U D D DT DT

U T Uz z UTUT z
U D D DT DT

G G
G G

G G

G G
G

G G

� �� �
� 	 	 	� �� �� � � �� � � �

� �� �
� � � �� �� �� � � �� � � �

 

(18d) 

One can express this solution in terms of the original independent varia-
bles (x, y, t) by using the appropriate transformation equations introduced at 
the different stages. By using Eqs. 4 and 10, the new time variable will have 
the expression 
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 � �1 1 cos .T mt mt
m

G ! "� 	 	% &  (19) 

3. RESULTS  AND  DISCUSSION  
To illustrate the analytical solutions (Eq. 18a, b), the values of different pa-
rameters are chosen from the literature cited in the Introduction as: initial 
pollution level parameter ci = 0.01, reference concentration and the decay pa-
rameter, both in the input condition in Eq. 8, are chosen as c0 = 1.0, 
q = 0.0001(day)–1, respectively, the velocity components u0 = 0.09 km/day, 
v0 = 0.009 km/day, and the dispersion coefficient components 

0
0.1xD �  km2/day, 

0
0.01yD �  km2/day. The concentration values are evalu-

ated in the domain 0 � z, y [km] � 100. The location of the point source  
(input concentration) is assumed at x0 = 30 km, y0 = 30 km. Figure 1a depicts 
the concentration values obtained from the solution in Eq. 18a in the pres-
ence of the source, i.e., in the time domain t < t0 for mt = 8, 11, 14. The  
unsteady parameter is chosen as m = 0.0165 (day)–1. This value yields 
t = 484, 666, and 848 days . From Eq. 4 it may be observed that the velocity 
is alternatively minimum and maximum at these values of time; hence, they 
may be regarded as the time periods during the months of June of the second 
year, December of the same year and again June of the next year, from the 
introduction of the input concentration at t = 0. The source of the input con-
centration is assumed to be eliminated at t0 = 909 days, which corresponds to 
mt = 15. Beyond this time, the concentration values evaluated from solution 
in Eq. 18b are depicted in Fig. 1b, at t = 1030, 1212, and 1394 days, which 
corresponds to mt = 17, 20, 23, respectively, and represents the months of  
December of the third year, June and December of the next year, respective- 
ly. This scenario of velocity distribution either in aquifers or in rivers occurs 
in the tropical regions like India. Figure 1a shows that concentration values 
increase with position and time on either side of the point source (input con-
centration location), though the increase is much less in the left domain, that 
is, towards the origin (x = 0, y = 0) in comparison of that at the same dis-
tances on the right domain, that is, away from the origin. Figure 1b shows 
that, after the removal of the source of pollution, the concentration values at  
a particular position (x, y) in the already polluted domain decrease with time. 
The domain nearer to the location of the source gets rehabilitated faster than 
the positions far away. To have more clarity on the solute mass distribution 
pattern originating from the point source, the concentration values in both 
time domains (before and after the elimination of the source) are also pro-
vided in Tables 1 and 2, respectively. It may be observed that according to 
the pulse type condition given in Eq. 8, the input concentration evaluated 
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(a) 

(b) 

Fig.1. Solute mass horizontal dispersion pattern along and against the sinusoidally 
varying velocity: (a) in the presence of a point source, and (b) in the absence of a 
point source. 
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from the solutions in Eq. 18a, b decreases very slowly with time in the for-
mer time domain and is zero in the latter time domain.  

The new time variable T* has been computed from Eq. 19 for the values 
of old time variable t considered above, and unsteady parameter 
m = 0.0165 (day)–1. We have T* = 415, 606, 796, 802, 953, 1176, 1301 days, 
for t = 484, 666, 848, 909, 1030, 1212, and 1394, respectively. It is evident 
that a value of new time variable is much less than the respective value of 
the old time variable. It means the concentration level at a position (x, y) is 
obtained much earlier in case of sinusoidal flow domain than in case of uni-
form flow domain. The value of m decides upon the periodicity, as in the 
present example it is almost half of a year. Similarly, for m = 0.01 (day)–1, at 
mt = 0.05, and 1.5, the non-dimensional value of the velocity from Eq. 4 will 
be 0.95 and 0.002, respectively. In other words, the periodicity in this case 
occurs at the interval of approximately 15 days. The new time variable ob-
tained from Eq. 19 will again be less than the respective old time variable in 
this set too. In this way Eq. 18a, b may be used for sinusoidal form of veloci-
ty of different periodicity. 

In real cases, the current through the medium is seldom unidirectional; 
hence, the solute mass disperses both longitudinally as well as laterally, 
though that along the lateral direction may be much less than that in the lon-
gitudinal direction. In this regard, the values of the lateral components of ve-
locity as well as of dispersion coefficient are considered much less (one-
tenth) of the respective longitudinal values but it is evident from the results 
that the concentration values along the lateral direction are significant. These 
results are compared with those of a one-dimensional model (Kumar and 
Kumar 1998) with the same assumptions. The concentration values on the 
same distance from the origin along the longitudinal direction have been 
found less in the two-dimensional model than those in the one-dimensional 
model. The solution given in Eq. 18a, b may also be used for other temporal 
dependent expressions of V(mt), for example, for exponentially increasing 
exp(mt) or decreasing function exp(–mt). Choosing the value of m appropri-
ately, the pattern of time-dependence may be varied according to the situa-
tion and need. The results delivered from the analytical solution (Eq. 18a, b) 
are validated by the results obtained by solving the same initial and bounda-
ry value problem by a two level explicit method under the stability criterion.  
A very good agreement between the analytical and numerical results has 
been found.  

The present dispersion problem has much deviation from idealistic con-
ditions and incorporates some features nearer to real situations. For example, 
in the real world nowadays the dispersion of pollutants along different media 
of air, water, and soil has become a matter of great concern and there is  
a need to study such a problem through the solutions of advection diffusion 
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equation. In a real situation, getting numerical solution is an easier way and 
cost effective but its validation by comparing it with an analytical solution of 
a similar problem is equally important. Therefore, it demands more and more 
analytical solutions of real problems and the present work is an effort in that 
direction. Analytical solutions have another advantage of providing better 
insight into the factors included in the problem, making it more realistic than 
any other solution. Most of the analytical solutions are approximate solu- 
tions, of which the Laplace transformation technique, as used in the present 
work, is the most viable method. In comparison to numerical models, analyt- 
ical models and their solution provide more physical insight into conceptual 
mathematical behavior of the system. The obtained analytical solution is  
a benchmark to develop numerical codes and solutions. For practical appli-
cation in subsurface hydrology, the local dispersion coefficients alone  
(eventually without molecular diffusion) may be used to a zeroth-order  
approximation of transport in mildly heterogeneous aquifers, consisting of  
a diffusion in the mean velocity field (Suciu 2010). A perfectly homogene-
ous aquifer is a highly idealized approximation of little practical relevance. 
The fitted diffusion coefficient larger than the local dispersion coefficient is 
only due to the scale effects induced by the spatial variability of the velocity 
field (Suciu 2014). 

4. CONCLUSIONS  
The main motive of the present work is to assess the concentration level in 
the vicinity as well as at far distances on both sides of the point source of a 
pollution mass, from one analytical solution. Another one was to use tempo-
ral dependence of dispersion coefficients in a two dimensional ADE while 
obtaining its analytical solution through Laplace Integral Transformation 
Technique. Such dependence may take care of the heterogeneity of the me-
dium too, in addition to representing the unsteadiness behavior of the diffus-
ing pollutant. It is always better to assess the pollution level more 
realistically by a two dimensional model than a one dimensional model. The 
solution obtained is based on the dispersion theory (Scheidegger 1957) valid 
in the water medium on the surface and in the aquifer. 

Acknowledgment .  The authors are thankful to the editors and re-
viewers for their constructive comments and valuable suggestions, which 
have helped improve the quality of the paper. 



 POLLUTANT’S  HORIZONTAL  DISPERSION 
 

227 

A p p e n d i x  

Using the following transformation 
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in Eq. 14 and the conditions given in Eqs. 15-17, we get a diffusive problem 
in new dependent variable as 
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 (A5) 

Applying Laplace integral transformation in Eqs. A2-A5, we may get the so-
lution ( , )K z p as follows: 
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and 
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Now taking the inverse Laplace transform of Eq. A6, the solution  
K(z, T*)can be obtained as follows:  
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where  
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and 

 � � � �4 , , .K z T F z TG G�  (A15) 

Applying the transformation A1 on this solution, the desired solution given 
in Eq. 18 may be obtained. 
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