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Abstract: The ability to respond to magnetic fields is ubiquitous among the five kingdoms of organisms.
Apart from the mechanisms that are at work in bacterial magnetotaxis, none of the innumerable
magnetobiological effects are as yet completely understood in terms of their underlying physical principles.
Physical theories on magnetoreception, which draw on classical electrodynamics as well as on quantum
electrodynamics, have greatly advanced during the past twenty years, and provide a basis for biological
experimentation. This review places major emphasis on theories, and magnetobiological effects that
occur in response to weak and moderate magnetic fields, and that are not related to magnetotaxis and
magnetosomes. While knowledge relating to bacterial magnetotaxis has advanced considerably during
the past 27 years, the biology of other magnetic effects has remained largely on a phenomenological level,
a fact that is partly due to a lack of model organisms and model responses; and in great part also to the
circumstance that the biological community at large takes little notice of the field, and in particular of
the available physical theories. We review the known magnetobiological effects for bacteria, protists and
fungi, and try to show how the variegated empirical material could be approached in the framework of
the available physical models.
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Abbreviations

B magnetic flux density (magnetic induction)

BAC alternating magnetic field (generated by alternating current)
BDC static magnetic field (generated by directed current)

CD  coherent domain

ELF  extremely low frequency (i.e. magnetic field, ~3-300 Hz)
EMF electromagnetic field

H magnetic field strength

IIM  ion interference mechanism

ISC  intersystem crossing

ICR  ion cyclotron resonance

IPR  ion parametric resonance

LF low frequency (i.e. magnetic field)

MF  magnetic field

1 Introduction

The earliest studies on the influence of electromagnetism on organisms date back to the
late 19" century, probably beginning in St. Petersburg [1]. A larger, more general interest
arose only some decades later, coinciding with worldwide electrification and telecommuni-
cation. Although microorganisms play a major role in the global ecosystem, the number
of publications covering magnetoreception in fungi, protists and non-magnetotactic bac-
teria is small compared to similar reports on humans and animals [1-6]; and is perhaps
comparable to the state of knowledge in plants [7]. The magnetoorientation of mag-
netotactic bacteria [8], as well as that of migrating birds and insects, belongs to the
best understood and most intensely studied phenomena of magnetoreception [6, 9, 10].
Recently Ritz et al. [11, 12] suggested a light-driven, radical-pair mechanism for the mag-
netoreception of birds mediated by cryptochrome [13, 14]. There is evidence that even
plant cryptochromes are involved in the magnetoreception of Arabidopsis [15]. Bacterial
magnetotaxis is based on the magnetoorientation of magnetite crystals; thus representing
the only magnetoreception mechanism completely elucidated up to now [8, 16-18].

The two central questions in this context: (i) whether or not microorganisms are
able to perceive geomagnetic fields, and (ii) whether or not magnetoreception is an es-
sential and vital environmental factor for survival, have remained largely unanswered,
even though magnetoreception must be regarded as an established fact. Furthermore,
we contend that the recent discussion regarding the mechanisms of climate change and
global warming should consider other, non-anthropogenic contributions, e.g. the altered
gas exchange of microorganisms as a consequence of the steadily changing geomagnetic
field.

Despite the numerous magnetobiological effects that have been described in the per-
tinent literature, there is an apparent lack of model organisms, model responses and
genetic approaches; tools that are typical for modern research strategies commonly found
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in other biological fields. The problem is compounded by the fact that magnetic effects
are observed for a huge range of magnetic flux densities, which cover more than 10 or-
ders of magnitude. To come to grips with such a huge dynamic range, that is similar to
that of human vision, one would expect the study of dose-response relationships to be
of paramount importance. It thus comes as a surprise that there exists only one dose-
response curve for a biomagnetic effect in DC fields [19], and only a limited number of
dose-response studies for AC-fields. Despite the limited information it is nevertheless ap-
parent that magnetobiological dose-response relationships differ drastically from the ones
usually found in physiology, where one typically finds exponential rise or decay curves,
and in some cases optimum curves. Magnetoresponses, in contrast, show certain “win-
dows” of magnetic flux densities, or, in the case of AC-fields, windows of frequencies for
which a response is obtained. Applying a higher field strength may thus not necessarily
guarantee a stronger response. As a consequence, some of the apparent contradictory
results in the magnetism literature could be explained by the fact that different authors
often used different magnetic flux densities that were within or outside these windows.

Research on biological magnetoresponses can be roughly divided into experiments
that employ static magnetic fields (Bp¢), or alternating fields (Ba¢), or as in most cases,
a combination of both (Bsc+ Bpe). The body of literature on AC fields and their
concomitant effects dominates by far that of DC fields. This appears surprising in view
of the fact that DC experiment is required to find out how geomagnetic fields influence
life.

Most experiments with AC fields are done with frequencies near 50 or 60 Hz, i.e.
frequencies akin to that of ubiquitous electric appliances. Much of this type of research
was historically motivated by the wish to find out whether or not our electric environment
influences life, and specifically, human health. Even though this line of research may
not directly contribute to the understanding of how static geomagnetic fields influence
life, it nevertheless represents a powerful technical tool to investigate the involvement of
specific ions in a given biomagnetic response. It had earlier been noticed that AC fields
elicit responses most prominently at the cyclotron resonance frequencies (including their
harmonics and subharmonics) of biologically important ions, in particular Ca®". This
pattern gives rise to dose-response curves with several minima and maxima. Therefore
it is not difficult to understand why explaining this type of dose-response relationship is
the subject of several theories (ion-cyclotron resonance, ion-parametric resonance, ion-
interference mechanism, coherence mechanism; see below).

One of the reasons that magnetobiological responses frequently meet with reserva-
tions is based on the fact that the energy content of biologically actinic magnetic fields
can be several orders of magnitude below their thermal energy content (k7' problem).
We will show how the problem can be addressed within the framework of modern the-
ories. Also the hunt for “the” magnetoreceptor remains presently an unresolved task
(with the exception of magnetite in bacterial magnetotaxis, see below). As function of
fact, it is contested as to whether or not there exists only one type of magnetoreceptor;
the requisite literature rather indicates that in prokaryotic and eukaryotic cells several
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magnetosensitive molecules, and physically distinct mechanisms, exist that could mediate
magnetoreception. Because cell membranes do not constitute barriers for magnetic fields,
magnetoreception could in theory occur on many different levels. For example, DNA it-
self, and the transcription and translation machineries, have been proposed as targets.
It is thus noteworthy that even cell-free systems of protein biosynthesis are receptive to
magnetic fields (see below).

2 Magnetic effects on solutes

Magnetic fields can affect organisms not only directly, but also indirectly, by changing
the physical properties of solutes and growth media. For example, a 1 minute magnetic
pretreatment of culture media stimulated the subsequent growth of Escherichia coli in a
geomagnetic field [20]. Magnetically treated water inhibits the germination of the micro-
fungus Alternaria alternata [21], and treatment of nutritional media affects the subse-
quent growth of Saccharomyces fragilis, Brevibacterium and Bacillus mucilaginosus [22].
Such effects are possible because magnetic treatments alters solutes, for example the
formation of calcium carbonate [23], water vaporization [24], ion hydration and resin
absorption [25]. Indeed effects on Ca®" hydration after short treatment with a weak
magnetic field or pulses, applicable, for example, to organismal growth stimulation, is
reported by Goldsworthy et al. [26]. As these effects were usually achieved with very
strong magnetic fields in the mT to T range, they may not be pertinent for experiments
done in very weak or geomagnetic fields.

3 Bacterial magnetotaxis

3.1 Magnetosomes and their role in magnetoreception

Apart from the general effects of all types of magnetic fields on growth and morphogen-
esis, some organisms have succeeded in employing the directional qualities of magnetic
fields for orientation purposes. Animals using geomagnetic fields for navigation are either
long-distance travellers, such as migratory birds, whales, sharks, turtles and butterflies,
or depend for other reasons on the ability for exact orientation, e.g. honeybees. Clearly,
microorgansims do not fall into a category where magnetoorientation would be expected.
Nonetheless this behaviour, known as magnetotaxis, is the best studied of the magnetore-
sponses [27-29]. This reaction has been globally observed in a number of marine [30, 31]
and freshwater bacteria [32-34], as well as in several types of unicellular eukaryotic mi-
croorganisms. The latter are rarely observed, probably because they are easily overlooked
in samples teeming with bacteria. Due to their overall high fragility and sensitivity, eu-
karyotic laboratory strains usable for detailed analyses have not yet been established; yet
the occurrence of magnetoperception in eukaryotes may be rather widely distributed, as
magnetotactic species have been detected in a number of major groups, such as dinoflag-
ellates, ciliates, cryptophytes [35, 36].
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3.2 Magnetotactic microorganisms

Research into magnetoresponsive prokaryotes began with the discovery that certain bac-
teria consistently preferred one geomagnetic pole over the other, and therefore always
swam to the same side of a water droplet on microscopic slides [16]. Magnetotaxis, al-
though biased for fast-swimming organisms, provided a handy tool for the isolation of
several similar species [4, 37-39, 41-45]; and moreover also allows for the enrichment
and studies of unculturable strains and communities [46, 47]. Magnetotactic bacteria are
flagellated chemolithoautotrophs exhibiting various morphotypes; to date cocci, spirilla,
rod-shaped, and vibroid or helical forms have been described [47, 48]. They inhabit the
oxygen-anoxygen transition zone of marine or freshwater sediments or chemically strati-
fied water columns, where they occasionally occur in high cell densities [31, 49] and are
either obligate anaerobes [30, 45] or facultatively anaerobic microaerophils [50-53]. Al-
though likely to be of polyphyletic origin [54], most of the characterized morphotypes
have been grouped into the Proteobacteria, with a distinct subcluster present in its al-
pha subgroup [32, 42, 46, 55, 56] (Table 1). Genome data are available from Magne-
tospirillum magnetotacticum MS-1 (GenBank accession AAAP00000000, Magnetospir-
illum gryphiswaldense MSR-1A [57]; GenBank acc. BX571797) and Magnetospirillum
magneticum AMB-1 (GenBank acc. AP007626). Highly organized aggregates of magne-
totactic cells have also been described from a variety of other locations [28, 58-61].

3.3 Magnetotaxis

Magnetotaxis is defined as movement parallel to the field lines of an external magnetic
field. Nevertheless it is not a taxis in the strictest sense as the organisms are not following
the direction of the magnetic field itself, but rather ultilize the directional information
to support other orientation mechanisms. It was generally assumed that they navigate
along the inclination of the magnetic field lines to locate a suitable environment within an
oxygen (magneto-aerotaxis), or other chemical, gradient; thus reducing search movement
in turbid surroundings to just one dimension - up and down [62]. The key benefit of
magnetotaxis in this process is the enhancement of the bacterium’s ability to detect
oxygen, not an increase in average speed of reaction [29]. Movement along a straight
path allows for earlier detection of an existing oxigen gradient, and thus enhances the
flight from oxygen. One study suggests a role for magnetosome formation in mediating
the response to gravity, as magnetosomes and magnetotaxis were shown to be completely
absent in prolonged microgravity [63]. In magnetotaxis, polar and axial magnetotactic
strains can be discriminated between. Bipolar flagellated cells display axial behavior by
swimming back and forth within a local applied magnetic field. In polar magnetotaxis, the
cells follow a preferential direction and swim away when the local field is reversed [64].
This classification apparently results from cellular morphology, and has no impact on
orientation efficiencies in natural environments. The observation that polar magnetotactic
cells in the southern hemisphere predominantly exhibited a south-seeking behavior in
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laboratory tests was taken as support for the importance of the magnetic field line for
magnetotaxis [65]. The recent discovery of seasonally occurring, predominantly south-
seeking polar bacteria, in populations from the northern hemisphere call this explanation
into question. Instead, the oxidation-reduction potential at any given position of a water
column seems to influence the polarity of movement [31, 49].

3.4 Magnetosomes

All magnetotactic cells contain magnetosomes. These organelles consist of a ferrimagnetic
crystal surrounded by a specialized membrane. In prokaryotes, the magnetosome crys-
tals result from the controlled biomineralization of either magnetite (Fe3Oy), or greigite
(FesS,) [66-69]. Additionally one single strain has been found that contains iron pyrite
(FeSs) [67]. A few morphotypes mineralize magnetite and greigite within the same cell,
and even within the same crystal aggregate [70, 71].

In both magnetite and greigite, crystal structures follow the spinel type, consisting of
two interlocking grid systems with different numbers of grid coordinates (nodes). Mag-
netite, as well as greigite, contains a mixture of two- and three-valent iron, with each
form occupying specific nodes. This leads to the complete extinction of the atomic mag-
netic dipol moments of Fe3*. The magnetic properties, therefore, are solely attributed to
Fe?*. Each morphotype is usually associated with a particular crystalline habit of mag-
netite, whereas greigite crystals of different shapes may occur simultaneously [48, 72-74].
Cuboid, bullet-, tooth- and drop-shaped crystals have been described [45, 73, 75, 76].

Besides eukaryotic microorganisms, magnetite crystals that are similar in appearance
and structure to those of bacteria were also found in animal cells [77]; however no infor-
mation exists on their origin and biosynthesis. Ferrimagnetic crystals interact in excess of
a million times more strongly with magnetic fields than do diamagnetic or paramagnetic
materials. If a ferrimagnetic nanocrystal were fixed to an ion channel - an assumption
that has not been verified yet - it would generate torque in a weak geomagnetic field that
would suffice to alter ion movement across a membrane. Such considerations show that
magnetites hold, at least in theory, the potential to directly influence ion transport [77].
It has also been pointed out that trace amounts of magnetite may be ubiquitous, and
that a single 100-nm magnetite crystal, exposed to a 60 Hz, 0.1 mT magnetic field, could
absorb sufficient energy to supersede several times the thermal background noise [78].
Magnetite particles can have dramatic effects on the dynamics of photogenerated free
radicals [79]. It is thus pertinent to reckon with a modulating effect of magnetites if
present, particularly in context of the radical pair mechanism (see below).

Fossil records of magnetosome crystals date back to the Precambrian time; while sim-
ilar crystals have been detected in 4 billion year-old carbonate blebs of martian meteorite
fragments [80-82]. Although controversely discussed [83, 84], it appears possible that the
martian magnetites are of a biogenic origin. This would also imply that these martian
minerals constitute the oldest fossils on Earth, and at the same time provide evidence for
the possibility of panspermia [85].
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The number of magnetosomes within a single cell ranges from a few large structures
in cryptophyte cells [35] to several hundred [73, 86], with 10 — 20 the average number
in magnetotactic spirilla [8, 16, 72]. Crystal sizes range from 35 to 200 nm, which in-
dicates their single-domain status [86-88]. The size of a magnetic domain depends on
the material, and can be roughly calculated. According to such estimations, a domain
of magnetite corresponds to a size between 35 and 75 nm, and in elongated crystals up
to 120 nm [89-91]. As single domain crystals, the magnetosome cystals are especially
susceptible to efficient magnetization and alignment, and they produce stable magnetic
fields. Exceptions have been published by Farina et al. [92] and Spring et al. [56], who
demonstrated that at least two strains isolated from the Itaipu lagoon in Brazil contained
magnetosomes with dimensions up to, and even exceeding, 200 nm, a size that could eas-
ily harbour two magnetic domains. In such large crystals a metastable, single-domain
state is only possible when the crystals are aligned within a chain [93]. The extracellu-
lar formation of single-domain magnetite for biotechnological applications has also been
performed by a biologically-induced, biomineralization process of non-magnetotactic bac-
teria [94, 95]; and by the aerobic fungi Fusarium oxysporum and Verticillium sp. [96].

3.5  Magnetosome organization and synthesis

In some morphotypes magnetosomes form loose aggregates within the cell [60, 97], how-
ever in the majority of strains studied they are arranged in one or more chains spanning
the cytoplasm. The magnetosomes within a given chain are separated by a gap containing
no particulate structures, as observed in transmission electron micrographs [98]. In Mag-
netospirillum species, the single magnetosome chain is usually located close to the inner
membrane [98, 99]. The combination of disposition in chains, and size control, results in
a high magnetic to thermal energy ratio. The total magnetic moment of a magnetosome
chain equals the sum of the individual particle moments [100], and substantially surpasses
thermal noise [73, 101].

Organization into chains implicates the crystals in magnetizing each other, and align-
ing their magnetic dipole moments with each other. These processes start at synthesis,
thus each newly formed magnetosome crystal is influenced by the pre-existing chain. Bio-
logically controlled biomineralization is a highly precise process, and is necessarily subject
to very exacting control. Therefore the organism first creates a matrix, delimiting the
space within which the mineral will grow. The form and size of the nascent crystals
depend on the interactions between organic and inorganic phases, and are influenced by
parameters such as pH, redox conditions, ionic strength, lattice geometry, polarity, stereo-
chemistry and topography. The biomineralization of greigite is less well studied than that
of magnetite. It seems to be less organized, and to require considerably more time [102].
Similar to magnetite biomineralization, it requires several mineralization steps, leading
from the non-magnetic precursors, mackinawite and cubis FeS [103], to the final prod-
uct over a transition period of several days or weeks. During this latter period, iron atoms
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are rearranged between adjacent sulfur layers, and some of the iron is lost and likely
deposited as amorphous iron oxide aggregates.

The processes leading towards the formation of magnetite have been reviewed by
Schiiler [64, 72, 76, 104-106]. At the onset, a low oxygen potential is likely to be a
regulatory signal for metabolic induction of biomineralization, as in Magnetospirillum
gryphiswaldense, M. magnetotacticum and Magnetospirillum sp. AMB-1. Thus biominer-
alization only occurs at pO, values below a threshold of 20 mbar [107]. Biomineralization
occurs inside a specialized organella, the magnetosome, providing a scaffold organized by
membrane proteins which ensures the spatial and temporal accuracy of the process. The
scaffold need not be proteinaceous: it can also be thought of as a matrix of amporphous
mineral precursors [108]. Indeed amorphous iron oxide has been found to form a layer sur-
rounding maturing crystal [102]. Magnetosomes are enmeshed in a network of cytoskeletal
filaments [99], and provides a surrounding for the precise coordination of events involved
in magnetite biomineralization [109]. The whole complex consists of several structural
entities: the magnetite crystal, magnetosome membrane, surrounding matrix, and, as
described for Magnetospirillum magnetotacticum MS-1, an interparticle connection [110].
It has been assumed that magnetosomes are invaginations of the cell membrane; indeed
proteins probably involved in such an invagination process have in fact been identified in
the magnetosome membrane [111]. Recently electron cryotomography revealed that the
membrane surrounding magnetite crystals is continuous with the inner membrane [99].
Nevertheless, some questions remain. The process of iron acquisition and biomineraliza-
tion would require a closed compartment. Also, in the electron cryotomography picture
series, the connection of magnetosomes with the inner membrane was only visible for
the innermost structures; the largest magnetosomes seemingly already contained finished
crystals. The small, incomplete magnetosomes at the chain ends were completely inside
the cytoplasm, with no apparent contact with the inner membrane. Moreover, the lipid
and protein composition of the magnetosome membrane differed from all of the other
membrane systems of the cell [112]. If it really does originates from the inner membrane,
then it is at the very least least subject to extensive modifications. The hitherto iden-
tified proteins are apparently involved in iron import, iron conversion and in magnetite
synthesis [57, 113, 114].

These membrane vesicles precede magnetite biomineralization and may exist inde-
pendently [109]. When cells grown under iron limitation are changed to iron sufficiency,
biomineralization occurs simultaneously in many pre-formed vesicles, and from the same
location within each vesicle. In cells with sufficient iron supply, new magnetite crystals
are formed in vesicles at the end of the fully developed magnetosome chain [109]. Usually,
the magnetosome chain is distributed to daugther cells at the point of cell division, and
during cellular growth. However complete de novo synthesis is also possible [71].

As a prerequisite for biomineralization, iron needs to be imported into the cell. This
is a very fast process, for example in iron depleted cells of Magnetospirillum sp. AMB-1
iron uptake is complete within 10 minutes [115], and in Magnetospirillum gryphiswaldense
an increase in magnetite measured as intracellular insoluble iron can also be found within
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10 minutes [116]. Indeed a recent microarray analysis of iron-inducible genes demon-
strated the up-regulation of Fe?" transporters in iron-rich conditions [115].

Soluble Fe(Il) may be taken up by the cells by unspecific mechanisms. In these cells,
Fe?* was found asssociated with the cell envelope, whereas the free Fe?™ was associated
with the magnetosomes [117]. Other strains use Fe(III), and require more complicated
translocation systems. Magnetospirillum magnetotacticum, which has an iron content
approaching 2% of its total dry weight, incorporates iron as Fe3* [37] using a siderophore
transport system [118]. A ferric iron reductase was purified and characterized by Noguchi
et al. [119] and may well be involved in the subsequent periplasmatic reduction of Fe?T.
Iron oxidation in Magnetospirillum magnetotacticum MS-1 is an aerobic respiratory pro-
cess, and is also necessary for magnetite synthesis [120]. In a generalized scheme, Fe(III)
becomes reduced upon entering the cell. The resulting Fe(II) is then incorporated into
empty magnetosome vesicles, already possessed of its specific protein components. Inside
the magnetosome Fe(II) becomes oxidized again. From this process hydratized Fe(III)-
oxides result, which are dehydratized step by step. Just before the last dehydration step,
at the final position within the crystal, one third of all of the Fe(III) is reduced again to
form Fe(IT). The final dehydration step then leads to the product, magnetite [121].

The magnetosome is connected via a membrane protein to the cytoskeleton, and is
thus fixed at a distinct postion within the cell [99, 122]. The chain results from the
magnetosomes being attached to filaments of the actin homologon, MamK [99, 122].
This close contact between magnetosomes and the cell membrane may provide additional
stability to the chain [123].

The genes encoding proteins of the magnetosome membrane, or those otherwise in-
volved in magnetosome formation, are concentrated in several clusters [124-126]. Within
the magnetotoactic bacteria, the homology of individual genes is high, and their positions
within clusters are well conserved. Some of the genes have been identified and are com-
prised of several that would encode proteins with protein-protein interaction domains,
e.g. tetratricopepetide-repeat-proteins. Thus protein complexes may be necessary for
events in the biomineralization process.

Other groups encompass genes specifying proteins involved in: metal transport, other
forms of transport, and those for protein processing, e.g. chaperones or specific proteases.
Within these clusters the gene for the actin homolog is also present. The magnetosome
gene clusters are themselves concentrated on a genomic island, a region of about 130 kb
existing exclusively in magnetotactic bacteria. Deletion of this region leads to the com-
plete loss of magnetosomes and magnetotaxis [57, 124, 126]; yet curiously the functional
magnetosome island alone is insufficient for magnetosome formation. Thus orthologs
present outside of this discrete genetic island are also necessary for this process [126].
Within this region, a conspicuous number of insertion elements, transposases, integrases
and other phage - associated genes abounds [124]. This accumulation, and the high and
retained homology between different strains, hints at the probability that the magneto-
some gene island was acquired via phage-mediated, horizontal gene transfer. The region



606 A. Pazur et al. / Central European Journal of Biology 2(4) 2007 597-659

was also found to be hypervariable, as spontaneous mutations displaying various phe-
notypes often occur, especially during stationary growth.

Within the magnetosome chains, the individual units attract each other via their im-
manent magnetic forces. This implies that their opposite magnetic poles are facing each
other, and thus their magnetic dipole moments are mutually enhancing each other. Chain
formation is influenced by the shape of the crystals, with rigid chains more easily main-
tained by cubic shapes, as compared to tear-shaped magnetite [123]. In fact, a chain of
magnetosomes corresponds to an equivalently sized bar magnet spanning the whole cell
which generates a permanent magnetic dipole moment [100]. The magnetic field within
a magnetite crystal chain can even be visualized using modern electron microscopical
techniques [91, 127].

The crystal chain is rigid within the cell, and is fixed in position. As a bar magnet,
the magnetic moment is sufficiently large to align with the geomagnetic field. The cell
is drawn with the magnetosome chain, and thus becomes aligned passively and parallel
to geomagnetic field lines [100]. This phenomenon also occurs with dead cells, although
only living ones may move along magnetic field lines. Passive attraction to a magnetic
pole is also possible [128].

4 Zero and weak magnetic fields

To asses the role of magnetic fields in nature, one depends on investigations done at
geomagnetic field strengths (75 pT at the poles - 25 pT at the equator), and, in addition,
also under conditions without a magnetic field (zero field = magnetic vacuum). Apart
from studies on bacterial magnetotaxis, such investigations are, however, extremely rare;
and it remains largely unknown what role geomagnetic fields plays in nature.

Weak static MFs (0 — 110 pT) affect the “anomalous viscosity time dependence” of
E. coli, a parameter that reflects the status of DNA-protein complexes [19]. Interestingly,
dose-response curves for this effect show several minima and maxima. These observations
were explained using the framework of the ion interference mechanism, and were linked
to the dissociation of ion-protein complexes that rotate at a speed of about 18 revolutions
per second. The authors believe that the carrier for the rotating, ion-protein complexes
is DNA [19]. E. coli, Pseudomonas and Enterobacter display, in a zero-magnetic field,
modified resistance to various antibiotics [129, 130]. Surprisingly, even the extremely low
magnetic flux densities generated by the human body can affect bacteria, because E. coli
and Staphylococcus aureus have altered functional activities [131]. For fungi and protists
no studies on the effect of zero magnetic fields are presently available.

Geomagnetic storms can lead to a small increase in geomagnetic fields by some 1—5%.
This increase seems to be sufficient to prolong the photobioluminescence of Photobac-
terium [132]. In the slime mold, Physarum polycephalum, a weak field of 100 uT elicits
a mitotic delay, and decrease of respiration [133]. At a magnetic flux density of 100 uT,
the growth of the phytopathogenic fungi, Alternaria alternata, Curvularia inaequalis and
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Fusarium oxysporum, decreased by some 10%. At the same time the MF caused an
increase of conidia formation in A. alternata and C. inaequalis by some 68 — 133% [134].

5 Effects on growth and cell division

5.1 DC-fields

Very strong magnetic fields (5.2 — 6.1 T) are able to delay cell death in stationary cul-
tures of Bacillus subtilis [135]. A field of 14.1 T had, however, no substantial effect
on the growth of Shewanella oneidensis, even though several genes were up- or down-
regulated [136]. The latter result shows that growth can be highly inappropriate for
evaluating the magnetosensitivity of an organism.

Moderate static magnetic fields (0.1 — 1 mT) stimulated, both in liquid and solid
media, the growth and metabolism of Pseudomanas fluorescens, Staphylococcus albus
and Aspergillus niger [137]. In contrast, three species of Acanthamoeba responded with
a growth decrease at modest static fields of 71 and 106 mT [138]. A weak static field
(400 pT, i.e. about 8 times the geomagnetic field) elicits, in Saccharomyces cerevisiae,
a 30% inhibition of bud formation [139]. Colonial growth of Alternaria alternata and
Curvularia inaequalis decreased by a mere 10% during exposure to weak magnetic fields
between 0.1 and 1 mT [140]. An inhibition of growth was reported for Anabaena doliolum
for a moderate DC field of 300 mT [141].

5.2 AC-fields

Numerous investigators have reported magnetic effects on development of bacteria, which
includes an increase in mass and / or cell division. Escherichia coli, for example, when
exposed to an AC field (0—22 mT, 16 and 50 Hz), shows a shortened generation time [142].
The dose-response relationships for this effect were complex, they occurred only at certain
flux densities between 0 and 22 mT. AC fields (0.8, 2.5 mT, 0.8 and 1 kHz) and increased
the growth of Bacillus subtilis, as it caused a growth increase and interestingly also a loss
of intercellular cohesion, which is characteristic for cells raised in a geomagnetic field [143].

Whether or not an AC magnetic field exerts an inhibitory or else a stimulatory mode
of action depends in a complex manner on the frequency and the field strength. For
example, Moore [144] observed elevated or even diminished growth rates for Bacillus
subtilis, Candida albicans, Halobacterium, Salmonella typhimurium, and Staphylococci in
dependence of AC frequencies ranging from 0 - 0.3 Hz and magnetic flux densities of
5—90 mT. In contrast, magnetic square wave signals (0.05 — 1 mT, 50 Hz) had no effect
on the growth of E. coli [145]. The viability of Escherichia coli, Leclercia adecarboxylata
and Staphylococcus aureus was negatively affected by prolonged exposures to AC fields
of 10 mT, 50 Hz) [146].

In Paramecium tetraurelia, AC fields (1.8 mT, 72 Hz) caused increased cell division
rates, a response that was Ca?* specific, and absent in the presence of a Ca?* blocker.
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The magnetic treatment also caused alterations in membrane fluidity [147]. Physarum
polycephalum responds to weak AC fields (0.2 mT, 60, 75 Hz) with a delay in its mitotic
cycle [133, 148], exhibited by an increased mitotic cycle length at 0.2 mT and 75 Hz [149-
151].

The mechanism for magnetotactic effects at ELF-frequencies (e.g. 50, 60, or 75 Hz) is
not completely clear, however energy conversion to heat can likely be ruled out because
of the low induction of living matter. Conversely higher frequency, long wave band fields
(160 mT, 62 kHz) are in fact lethal for E. coli [152]. After an exposure time of 16 h
only a small fraction (10~* organisms) survive. Under these conditions, the dissipation
to heat is likely not to be increasingly negligible, and, in general, these results are not
comparable with findings for the ELF band in any case.

6 Effects on DNA: mutagenicity, repair, transposition

Weak, static magnetic fields (0—110 pT) affect DNA-protein conformations in E. coli [19].
This analysis represents the only dose-response curve for a static magnetic field. The
peculiarity of this curve stems from the fact that it has three prominent maxima, a
feature that makes it very different from other dose-response curves in nature that often
follow rising or decaying exponential functions. The shape of this curve is explained in
the context of the ion interference mechanism [19].

AC fields (14.6 mT, 60 Hz) have been shown not to cause DNA breaks in a Salmonella
test system [153]. Various strains of Escherichia coli, including DNA-repair mutants,
showed no evidence of increased DNA damage when exposed to very strong magnetic
fields (0.5 and 3 T) [154].

The transposition frequency of Tnl0 in E. coli is enhanced by pulsed, square-wave
AC fields [145], but is diminished by sinusoidal AC fields [155]. Increased transposition
activity was also obtained for Tnb, after the exposure of E. coli to AC magnetic fields
(1.2 mT, 50 Hz). Concomitantly, DNA repair was enhanced [156], an event that was
seemingly mediated by the overexpression of Dnal(/J [157].

AC fields (0.2 mT, 60 Hz) can increase in Salmonella typhimurium, azide-induced
revertants [158]. The enhanced DNA repair of hydroxylamine-mutagenized plasmid pUC8
occurred in E. coli in AC magnetic fields (0 — 1.2 mT, 50 Hz) via the induction of heat-
shock proteins Hsp 70 and Hsp 40 (DnaK and DnaJ) [156]. Since it is known that DnaK
can upregulate UvrA, it is understandable that magnetic field stress causes improved
DNA repair. An AC magnetic field also (120 pT, 50 Hz) caused a reduction in the
survival of Saccharomyces cerevisiae after UV irradiation, whilst sustaining no effect on
cell cycle kinetics [159)].

Most of the effects listed in Tables 2-5 are generally modest, i.e. often amounting
to a response of some 10% to maximally 50%. A notable exception is the response of
E. coli to strong unhomogenous fields (5.2 — 6.1 T); in the presence of glutamic acid,
stationary phase cells display up to a 100,000 times survival elevation in comparison
to cells maintained in the geomagnetic field. Concurrently, strong fields also cause an
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increase in expression of the sigma factor, Sigma S (rpoS) [160]. As glutamic acid causes
cell death in stationary phase, it appears likely that the magnetic field is modulating
glutamic acid metabolizing enzymes.

7 Effects on gene expression: transcription and translation

AC MFs of moderate flux density (200 — 660 pT, 50 Hz) alter the transcription rate of
the lac operon in E. coli [161]. Sharp “amplitude windows” are observed for this effect,
which are a hint on a non-linear dose dependence. Furthermore while a field strength
of 300 u'T suppresses transcription, a field strength of 550 u'T results in a substantial
increase. These antagonistic interactions have been attributed to the involvement of
different ions, i.e. Ca?" and Mg?" competing for protein-binding sites [162, 163].

AC magnetic fields can induce specific sets of genes. In E. coli an increase in o3
mRNA (transcription factor) was found for 1.1 mT and 60 Hz [164]. Pulsed square fields
(1.5 mT) elicit an increase in the « subunit of RNA polymerase, and also NusA, in
E. coli. The protein biosynthesis was studied by gel electrophoresis. Thirty proteins were
identified, which were up- or down- regulated by approximately a factor of two [165]. An
important observation in this context is the fact that AC fields can enhance translation,
even in an in vitro system [166]. This shows that the translation machinery itself must be
magnetosensitive, and is not, for example, dependent on the existance of a biomembrane.
Investigations using HeLa cells, though of human origin, generated data that was highly
pertinent to the problem of magnetically induced gene expression. Lin et al. [167] were
able to show that weak, alternating, magnetic fields (8 and 80 uT, 60 Hz) increased the
transcription of mouse or human c-myc genes. This effect was dependent on the presence
of specific electromagnetic response elements located between —353 and —1257 bp relative
to the promoter [168]. Similar response elements were also detected in the promoter region
of the heat shock gene hsp70 [169].

Strong magnetic fields (14.1 T) caused the transcriptional up-regulation of 21 genes,
and the down-regulation of 44 genes, in Shewanella oneidensis; while at the same time
causing no substantial alterations in growth [136]. No alteration in the profile of stress
proteins occurred after exposing E. coli to AC fields (7.8 — 14 mT, 5 — 100 Hz) [170].
Furthermore, no changes in differential gene expression (microarray analysis) or protein
profile (2-D gel analysis) were obtained with Saccharomyces cerevisiae exposed to AC
magnetic fields (10 — 300 mT, 50 Hz) [171].

In the photosynthetic bacterium, Rhodobacter sphaeroides, magnetic fields of
0.13 — 0.3 T induced a 5-fold increase in porphyrin synthesis, and enhanced expression
of the enzyme 5-aminolevulinic acid dehydratase, which may be caused by elevated gene
expression [172]. AC MFs can modulate the activity of enolase in E. coli; at 16 Hz a
stimulation is observed, while at 60 Hz a suppression of enolase activity occurs [173].
Propionylcholinesterase activity in the amoebae Dictyostelium was lowered upon expo-
sure to an AC magnetic field of 200 pT and 50 Hz [174]; while at the same time the
fission rate was reduced. This magnetoresponse was, interestingly, adaptive, as it dis-
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appeared after a 24-h, lasting exposure. Very strong DC fields (0.13 — 0.3 T) induce, in
Rhodobacter sphaeroides, an increase of 5-aminolevulinic acid dehydratase concentration
predominantly at the magnetic North pole, an effect that was paralleled by increased
porphyrin production [172].

8 Effects on enzyme activity

The fact that MFs can modulate enzyme activities in vitro is a crucial observation, be-
cause it indicates that enzymes may function as magnetoreceptors. Even though several of
the studies listed in Table 6 used enzymes derived from animals or plants, they neverthe-
less show that enzymes have the potential to function as magnetoreceptors. For example,
a static MF of 20 uT alters the in wvitro activity of Ca*" /calmodulin-dependent cyclic
nucleotide phosphodiesterase in a Ca?*-dependent manner. This effect shows that the
earth’s magnetic field could be biologically relevant in calcium-dependent reactions [175].
Weak MF's ranging from 0—200 T modulate the phosphorylation rate of the 20 kDa light
chain of myosin by affecting Ca®" /calmodulin-dependent myosin light chain kinase [176-
179], an observation that remains, however, unconfirmed by other researchers [180]. A
moderate increase or decrease in the geomagnetic field modulates, in vivo and in vitro,
the activity of hydroxyindole-O-methyltransferase (HIOMT, EC 2.1.1.4) and N-acetyl-
serotonin transferase (NAT, EC 2.3.1.5); two key enzymes in the biosynthesis of mela-
tonin in the pineal gland and retina [181]. A 50% increase or decrease in the geomagnetic
field strength caused a decrease of HIOMT activity. NAT responded differently in that
a 50% increase in magnetic field increased activity in the pineal organ, but not in the
retina. The enzyme was unresponsive to a decrease in field strength. These observations
are particularly pertinent in view of a series of investigations on the effects of static and
alternating magnetic fields on human and animal behaviour, and melatonin synthesis.
Numerous studies have shown that magnetic fields can substantially alter circadian mela-
tonin levels [182-185]. One such example is the brook trout (Salvelinus fontinalis), in
which AC-fields (40 mT, 1 Hz) elicit an increased night-time, pineal and serum melatonin
levels [186]. In pigeons the activity of the melatonin-synthesizing enzyme NAT was sub-
stantially reduced in the pineal glands of pigeons exposed, for 30 min at midnight, to a
50 degree rotation in the horizontal component of the earth’s magnetic field [187].

The threshold for stimulation of the Na, K-ATPase by electromagnetic fields is ex-
tremely low, i.e. 0.2 - 0.3 pT [188], a value close to the threshold for transcriptional
stimulation in human cell cultures [189].

Strong MFs (6 T, uniform field) reduced the activity of L-glutamic dehydrogenase by
some 10%, whilst in a non-uniform field of 7 T it was reduced up to 93% [190]. Catalase
was similarly modulated by strong magnetic fields [190]. The activity of carboxydismu-
tase from spinach chloroplasts exposed to a strong magnetic field of 2 T was substantially
enhanced [191]. The activities of trypsin [192] and ornithine decarboxylase [193] can be
enhanced in strong magnetic fields. Weak and moderate, static and alternating, mag-
netic fields (50 Hz) influence the redox activity of cytochrome-C oxidase [194]. Triticum



A. Pazur et al. / Central European Journal of Biology 2(4) 2007 597-659 611

responds to treatment with 30 mT (50 Hz) with increased esterase activity and proton
extrusion [195]. The activity of horseradish peroxydase (1 mT, 50 — 400 Hz) depends
substantially on the frequency of the applied magnetic field [196].

9 Effects on metabolism

AC fields (14.6 mT, 60 Hz) can provide protection for Salmonella typhimurium from heat
stress [153]. This observation is particularly interesting in view of the fact that magnetic
field exposure can induce the heatshock protein HSP70 in Drosophila [197].

Magnetic fields can exert substantial effects on the metabolic rates of organisms. For
example, Saccharomyces cerevisiae, when exposed to an AC field (0.5 pT, 100 — 200 Hz),
responded with a 30% reduction in respiration [198]. Corynebacterium glutamicum in-
creases ATP levels by about 30% in an AC field (4.9 mT, 50 Hz) [199]. In the cyanobac-
terium, Spirulina platensis, a DC field of moderate strength (10 mT) enhanced growth,
O4 evolution, and pigment synthesis; at 70 mT however, a repression, rather than stimula-
tion, was observed [200]. AC fields (0.1 mT, 60 Hz) caused lower ATP levels in Physarum
polycephalum, but no decreased respiration [201]. Reduced respiration was, however,
found with 0.2 mT and 60 and 75 Hz [133]. Tetrahymena pyriformis responds to an AC
field (10 mT, 60 Hz) with delayed cell division and increased oxygen uptake [202].

10 Effects on differentiation: growth patterns and germination

The dimorphic fungus Mycotypha africana can exist in a myceliar or yeast-like form.
Weak ELF magnetic fields shift development towards the yeast form [203]. Weak AC
fields (0 — 1.2 nT, 0.8 — 50 Hz) further increase this germination rate [204]. Very strong
DC fields (5.2 —6.1 T) suppress spore formation from vegetative cells of Bacillus subtilis,
an effect that was paralleled with the diminished activity of alkaline phosphatase [135].

11 Effects on behaviour: gravitaxis and bioluminescence

AC fields (0.5 — 2.0 mT, 50 Hz) elicit in the ciliates Paramecium biaurelia, Lozodes
striatus and Tetrahymena thermophila increased swimming velocities and a decrease in
the linearity of cell tracks. At least in the case of Paramecium, this response must be
Ca?" specific as it is abnormal in Ca®"-channel mutants [205]. Paramecium multimi-
cronucleatum transiently responds to an AC field (600 mT, 60 Hz) with an enhanced
gravitaxis [206]. Nakaoka et al. [207] found no effect of an AC field (650 mT, 60 Hz) on
swimming orientation of Paramecium tetraurelia. The fact that some of these responses
are Ca®T-specific and -dependent is highly relevant in view of the observation that several
magnetic phenomena in animals, such as morphine-induced analgesia in mice [208, 209]
and pineal melatonin synthesis in teleost fish [186], are also related to Ca*" channels.
Contradictory data exist regarding magnetic effects on bioluminescence. No effect was
found for AC fields for Vibrio fisheri [210], while enhanced bioluminescence was described
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for Vibrio quinghaiensis after exposure to AC fields (0.1 — 9.6 mT, 50 Hz) [211]. Geo-
magnetic storms were reported to prolong bioluminescence in Photobacterium [132].

12 Effects on ecology: aquatic systems

The migration and distribution of magnetotactic bacteria in marine and freshwater aquatic
systems is dependent on the magnetization of the local environment [212]. On one hand
this is determined by the petromagnetic properties of benthic deposits, reflecting the
paleo-ecological history of this aquatic biotope [213]. On the other hand, short- and
medium-term variations of the geomagnetic field, e.g. caused by increased solar activ-
ity, are superimposed. A variation of biological productivity, which correlates with the
occurrence of biogenic magnetite, was found in the Rybinsk Reservoir [214]. In the lit-
toral of the same artificial biotope, a correlation between geomagnetic activity, water
transparency and photosynthesis intensity of phytoplankton was investigated [215]. The
ecological role of magnetotactic bacteria in coastal salt ponds, whose spatial and temporal
distribution is affected by the geomagnetic field, is described by Sakaguchi et al. [31].

Liquids, in organisms and natural waters, generally contains colloids, consisting of
dissolved gases, dispersed biological material, small soluble carbonates and other similar
components; all of which contribute to a multitude of boundary layers with concomitant
zeta potentials that originate from these space-charge areas. Exposure of such solutes to
weak MF and EMF caused altered solvation properties for carbonates and gases, and,
in addition, also affected surface tension, viscosity and pH [216, 217]. Furthermore,
the observation that pH alterations in soils, which always contain a wide spectrum of
biocolloids, correlate with geomagnetic events [218] could be explained along these lines.
These findings could be highly relevant for assessing the consequences of the decreases
in main geomagnetic field strength [219] that has been occurring for about 150 years.
This could also likely affect the solubility of COs, Os, and CHy, as well as the solution
equilibrium of carbonates in the oceans [220-222]. Thus it would be an essential factor
regarding marine carbon cycles.

13 Mechanisms and models for magnetoreception

Models of magnetoreception need to explain sensitivity to: (i) static magnetic fields, (ii)
alternating magnetic fields; and (iii) resolve the paradox that the thermal energy content
of (living) matter exceeds, by many orders of magnitudes, that of the magnetic field.
Chemical reaction rates depend on temperature, and the existence of liquid water, and
occur typically at temperatures of T > 273 K (0°C), which correspond to a thermal energy
of E > 3.76-1072! J. Weak magnetic fields of far lower energies can nevertheless affect life
processes, which implies that they generate molecular order and overcome the thermal
barrier, i.e. entropy. A theoretical limit for the threshold of a biomagnetic response is
determined by the fact that the magnetic flux is always quantized [223], the magnitude
of the magnetic flux quantum being 2.07 - 107! Tm~2. The lowest thresholds that have
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been reported for magnetobiological responses approach this value, an observation that
represents a formidable challenge to any theory of magnetoreception [142].

13.1 Ferrimagnetism

Ferrimagnetic magnetoreceptors consist of magnetic minerals like magnetite (Fe3O4) and
greigite (FesS,), and act as the magnetoreceptors for bacterial magnetotaxis. In contrast
to ordinary magnets (ferromagnetism), in which the individual magnetic moments of the
electron spins are aligned in parallel, the magnetic moments are antiparallel for ferri-
magnetic materials. Magnetite, which is more precisely written as (Fe?*Fe?) Fe3* OF~,
is characterized by a spinell type of crystal structure, i.e. it possesses two unequivalent
lattice positions, tetraedrically coordinated A-positions and octaedrically coordinated
B-positions. The A-positions are occupied exclusively by Fe?T-ions, while the B-positions
are equally occupied by Fe3*- and Fe*'-ions (inverse spinell). In this structure the mag-
netic moments of the Fe?T-ions cancel each other and the residual magnetic moments
derive from the Fe?-ions. Ferrimagnetism is thus much weaker than that observed for
ferromagnetic materials. On the other hand, the force generated by ferrimagnetic materi-
als exceeds those of dia- or paramagnetic materials by more than 6 orders of magnitude.

Magnetite crystals are organized in magnetosomes, which assemble chains along the
motility axis of the bacterium, generating a permanent magnetic dipole moment and
aligning the cells parallel to the geomagnetic field lines (see above). Magnetites are able
to transport electrons, and thus to conduct current. Whether or not this property plays
a role in biology remains presently unknown. Because magnetite is ubiquitous in the
animal kingdom, it is possible that ferrimagnetic nanocrystals also play a vital role in
organisms other than magnetotactic bacteria. One possibility could be that nanocrystals
fixed to ion channels modulate ion movement across membranes [77]. The energy that
would be absorbed by a single 100-nm magnetite crystal exposed to 0.1 mT at 60 Hz is,
in theory, sufficient to exceed the thermal noise [78].

13.2 Radical-pair mechanism

When two radical molecules stay, for a short time, in close proximity displaying spin cor-
relation, they form a radical pair. This spin correlation of radical pairs implies a normally
forbidden state of equal spin quantum numbers (“parallel spins”, Figure 1), resulting in
a net paramagnetic momentum. There exists a multitude of ways to generate radical
pairs. One possible way is through homolysis of a molecule of 1A-D that is split into two
radicals, A® and D®, creating at first a pair ![A® D®] in the singlet state (Wigner conser-
vation rule; the single bond in 1A-D also being in a singlet state). Under the influence
of such a magnetic field (including the weak field of a nuclei), the radical pair undergoes
intersystem crossing (ISC) to form a pair *[A® D*] in the triplet state. Singlet and triplet
radical pairs have different fates: while the singlet pair can recombine directly to the
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original donor 'A-D, the triplet cannot and will often take indirect routes. Since a mag-
netic field induces the generation of triplet pairs, the magnetic field effectively causes a
longer lifespan for the radicals. A donor molecule 'A-D may also give rise to a radical
pair made up of cationic and anionic radicals, as shown in Figure 1. Other modes of
radical-pair formation may involve other reaction partners, and redox reactions, as in the
case of cryptochrome (see below). A great advantage of the radical-pair mechanism is
the fact that magnetically modulated ISC and radical pair recombination are inherently
temperature independent, so that no k7T-problem arises.

Figure 1 shows an example how homolysis of a donor molecule, *A-D, leads, via the ex-
cited singlet state ' A-D*, to the formation of a cation-anion radical pair '[A** D*]. As a
rule, the mobility of the single radicals - in the specific case A** and D*~ - is, immediately
after its generation, restricted, because of their size and the viscosity of the environment.
Remaining close together, the partners exist in the singlet state, ![A** D*7], and have
antiparallel spins. ISC provides a paramagnetic state by the spin-orbit coupling of elec-
trons, with the consequence that it can be modulated by an external magnetic field (MF).
This isoenergetic, radiationless transition between two electronic states has different mul-
tiplicities, and enables the interconversion of the pair to the triplet state, [A*T D*7], in
which the single radicals can have parallel and antiparallel spins, implying four possible
states with a probability of 25% each (1], ]7,71,1]). Here, only the hyperfine-niveaus,
with parallel spins, are paramagnetic and can interact with a moderate magnetic flux.
In the presence of a MF (B > 0), the triplet states, with parallel spins T, T_;, have a
probability of 50%, and do not contribute to the subsequent reaction.

As long as the external MF is zero or very weak, the three triplet states: Ty, Ty,
T_4, of the radical pair 3[A*t D*"] can recombine to *AD. In bacterial photosynthetic
reaction centers this allows for the conversion of 0Oy to 'O, (Figure 1). With increasing
magnetic field strength (B > hyerfine interaction), and concomitant Zeeman splitting,
the probability for recombination of the T,; or T_; states decreases, and only the T
state recombines (Figure 2). For very weak magnetic fields, in the range of the hyperfine
interaction, the yield of the singlet state decreases, while it increases for elevated magnetic
flux densities (Figure 3).

In the framework of the radical-pair mechanism magnetobiological effects are ex-
plained in the following way: (i) external magnetic fields shift the equlibria of singlet and
triplet radical pairs, (ii) the primary magnetobiological response occurs either from the
singlet or else from the triplet radical pair, and (iii) because the fates of the singlet and
the triplet radical pairs are different (Figure 1), it is expected that the requisite biolog-
ical responses are equally different, i.e. dependent on the magnetic flux density. It is
irrelevant in this context whether or not the magnetobiological response occurs from the
singlet or else from the triplet state of the radical pair.
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Fig. 1 Generation of cation-anion radical pairs, and ISC (intersystem crossing) under
the influence of a magnetic field. Without a MF (B = 0) the three triplet states may
recombine to the triplet radical 3AD. For B > 0 (Zeeman splitting) only the Ty pairs can
recombine to *AD, while T,; and T_; are excluded from recombination. In photosyn-
thetic reaction centers this leads to the formation of singlet-oxygen (305 —105). Other
radical-pair reactions do not, of course, necessarily lead to the generation of 'O,, and the
singlet and triplet radical pairs can have different fates and decay products. Modified
after Liu et al. [237].
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Fig. 2 Energy states and spin multiplicities in dependence of the magnetic flux density.
When the energy separation exceeds that of the hyperfine interaction, radicals in the T
and T, state are excluded from the spin flip, and as a consequence, the singlet yield
increases (Figure 3).
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The MF-dependent interconversion rate between the singlet and triplet radical pairs
can be described by the Zeeman interaction. The energy difference AE for the two
splitting Zeeman niveaus by a MF (B > 0) is given by the equation:

AFE = g8B (1)

where ¢ is the Lande factor (near 2 for free electron radicals), B is the magnetic flux
density, and (3 is the Bohr magneton (9.274 x 1072* J T~1) [224].
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Fig. 3 Dependence of the singlet yield of radical pairs in dependence of the magnetic field.
The magnetic flux density, B, is expressed in relative units as multiples of a, the average
strength of the hyperfine interaction. Modified after Timmel and Henbest [354]. LFE:
low-field effect; 'normal” MFE: normal magnetic field effects often occur in the mT-range.

Depending on external MF strengths, lifetimes of the occurring spin dynamics (spin
flip) may last up to some pus, and compete with radical separation [225]. ISC is further-
more influenced by hyperfine coupling of the MF with the nucleic magnetic momentum.
Because of the spin relaxation times of about 1 us, the effects of ELF magnetic fields are
frequency independent up to a few MHz. For a MF of 50 uT to be biologically effective
one requires a cage time of about 50 ns, during which the two partners stay in close
proximity. During this time the hyperfine field of the radicals must allow at least one
precession period; in addition, also the recombination time must be of the same order as
the cage time [226]. Cage times critically depend on the molecular environment; macro-
molecules with cavities or pockets such as nucleic acids or proteins extend the cage times
of radical pairs, and contribute in this way to sensitizing living matter to magnetic fields
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of moderate strength [227]. For lower magnetic fluxes, these time windows become still
more critical, so that MFs substantially smaller than the geomagnetic field can hardly
mediate biological effects solely by this mechanism [226]. On the other hand a relief of
MF impacts, by partial thermal decoupling of the electron spins, is suggested by several
authors [226, 228, 229].

In some cases photogenerated radical pairs seem to be involved in magnetoreception,
e.g. for bird orientation [11, 12]. The magnetoreception of migratory birds depends on the
presence of cryptochrome, a FAD-containing, blue-light receptor in the retina [13, 14], that
probably undergoes a photoreduction with concomitant generation of FADH® radicals,
and radical-pair formation. Blue light-mediated, hypocotyl shortening of Arabidopsis
thaliana is clearly influenced by a weak MF of 400 uT [15]. Because double mutants
lacking cryptochromes 1 and 2 do not respond to such fields, this magnetoresponse also
depends on functioning cryptochrome (Figure 4). Because Arabidopsis cryptochrome
generates, upon blue-light absorption, a [FADH® Trp®| radical pair [230], it is very likely
that cryptochrome operates as a magnetoreceptor only in its radical-pair state [15]. In
line with this assumption is the observation that Arabidopsis reacts to a magnetic field
only upon blue-light irradiation, but not, however, in darkness [15].

In the reaction centers of photosynthetic bacteria or plants, absorption of light leads
to the formation of 'Chl, and subsequent charge separation, which includes electron
transfer to a second pigment (PheoChl), thus forming a radical pair in the singlet state,
i.e. Y[Chl™® Pheo~*]. Only relatively strong magnetic fields in the range of several hun-
dred mT can affect the singlet-triplet mixing of the radical pair, because the pair is
rather shortlived. The short half-live of the radical pair is due to the fact that the pair
rapidly donates an electron to a quinone. Technically the described magnetic effects
are monitored by measuring the triplet yield and the fluorescence emission intensity of
the bacterial photosynthetic reaction center [231, 232]. Because the magnetically modu-
lated charge separation processes of bacterial photosynthesis [231, 233], or photosystems
I and IT of green plants [234-236], require rather high magnetic flux densities between 10
to several hundred mT, one can conclude that the geomagnetic field does not influence
photosynthetic electron transport.

A very elegant system to study the radical-pair mechanism is a mutant of the purple
bacterium Rhodobacter sphaeroides that lacks carotenoids, so that photosynthetically
generated singlet oxygen is longer lived than in the wild-type strain (1O, being quenched
by carotenoids). At magnetic flux densities between 0 to 100 mT, the yield of 'O,
decreases in the mutant from 100% to about 50% [237]. The response is predicted by
the model shown in Figure 1. Because of the magnetically-induced Zeeman splitting
for B > 0, only the T, state is available for recombination and formation of 'O,, while
the triplet states T,; and T_; do not contribute (Figure 1). Flash-induced bleaching of
the photosynthetic reaction centers is likewise dependent on magnetic flux densities; for
example, the bleaching at 800 nm at 15 mT is 45% smaller than that in a zero field [237].



618 A. Pazur et al. / Central European Journal of Biology 2(4) 2007 597-659

Evidence for radical-pair mechanisms were also obtained for some retinoids and por-
phyrins involved in the mitochondrial respiratory chain, where radical pairs could enhance
the synthesis of reactive oxygen species (ROS) [238]. Intermediates of enzyme reactions
may involve the formation of radical pairs. An enzyme that has been investigated in detail
is By ethanolamine ammonia lyase [224, 239, 240]. Further cases of radical pair mecha-
nisms include ionizing radiation damage, and its concomitant repair. Dicarlo et al. [241]
report increased repair rates after ultraviolet light (UV) exposure and subsequent treat-
ment with a 60 Hz EMF of only 8 uT field strength, an observation that confirmed earlier
results [242-244]. Magnetic fields also substantially influence antioxidant scavenging of
ROS [245].
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Fig. 4 Radical-pair formation of the blue-light receptor cryptochrome upon absorption of
near-UV or blue light. The excited chromophore, 'FAD, undergoes a photoreduction to
form, with a tryptophanyl residue (Trp) from the apoprotein, a radical pair; the electron
and proton donors are omitted. The radical pairs can recombine to form S°FAD, or triplet
products. The biological effector molecule may be derived either from the singlet radical
pair (as shown in the figure) or else from the triplet radical pair (not shown). Modified
after Ahmad et al. [15].

13.3  Ton cyclotron resonance

In the mid eighties it became increasingly clear that numerous biomagnetic responses
display characteristic dose-response relationships, with distinct amplitudes and frequency
“windows”. To explain these results, a physical phenomenon was taken into account, which
was long known from vacuum physics, and thinned gases. Charged particles moving
perpendicularly to a magnetic field are deflected by the Lorentz force on a circular path
perpendicular to the magnetic field lines. An electron orbiting around the nucleus has
a magnetic momentum, which is proportional to its angular momentum, L (Figure 5).
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An external MF affects L by an additional torque, AL, and forces the electron to precess
around the magnetic field, By. The resulting precession angular velocity, wrgrmor (Larmor
precession), can be written as:

dgb BQG
g 2

dt  2m. (2)
where e is the charge and m., the mass of the electron. There is substantial experimental

WLarmor =

evidence that magnetobiological effects are maximal when the frequency of an alternating
MF Bae, which is superposed to a static magnetic field, coincides with the Larmor
frequency of a biological relevant ion such as Ca*" or Na™. Because of this fundamental
relationship, dose-response curves display the characteristic presence of “windows”.

B
z

ILI=#Ia+1) #

I = orbital quantum
number

Fig. 5 The Lamor precession of a charged particle around a magnetic field, B, having
a rotating angular momentum vector, L, that circumscribes the surface of a cone. For
further explanation see text.

The field strength Bpc of the MF, the charge (), and mass m of the involved ion, as
well as the corresponding frequency (f) of the additional superimposed ELF-EMF can
be described by the “ion cyclotron resonance” (ICR) formula’™

BpcQ
2mm

f= (3)

Here, the specific charge (Q/m) of ions like Ca*", KT, Mgt is a unique material
constant, determining its circulation frequency on a forced orbit.

One of the first ICR models [246, 247] described Ca?* ions moving helically along the
geomagnetic field lines. A superposed ELF magnetic field of suitable frequency accelerates
the movement, purportedly resulting in an increase of Ca?' influx via calcium channels
that are aligned with the geomagnetic field. Biological relevant effects, and in vitro effects,
have been obtained for nearly any ion of characteristic ELF frequency, e.g. [248-250].
Significantly, the globally used powerline frequencies of 50 and 60 Hz are pertinent in this
context [251, 252], as they provide ICR for Ca?" and many other important ions. Relevant
effects can be obtained, for example, if a 50 Hz AC field of a moderate flux density of 65 uT
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superposes with a static field, BDC, that is comparable to the geomagnetic field [253].
One thus has to reckon with the possibility that ICR conditions, for Ca?* and other ions,
are ubiquitous in our technical environment, with an innate ability to influence health
and biological experiments. Further consequence are found with very weak natural AC
fields caused by the atmospheric Schumann-resonance [254], the circumpolar Birkeland
currents [255] from the auroral zones, and the van Allen radiation belts, each of which
have putatively been persistent ecological and evolutionary factors.

The criticism of earlier ICR models [256, 257] hinges on the problem, that the thermal
energy of biological matter (k7) is too high, by several orders of magnitude, to allow
the undisturbed movement of charged particles on classical Lorentzian orbits [251, 258,
259]. To resolve this dilemma, theoretical attempts were made to decouple micro-regions,
controlled by weak magnetic fields, from the thermal equilibrium. A possible decoupling
mechanism could consist in a transition zone between molecular layers of decreasing
refraction numbers, for example, water to oil interfaces. All ICR theories imply such
transition zones, typically lipid membranes, tertiary protein structures, cell organells, or
the two-phase state of water (Chapter 13.5 Quantum coherence).

It should be stressed, however, that ICR constitutes a phenomenon that exists even
in the absence of macromolecular structures, such as interface-forming proteins, lipid
membranes or microtubuli, as it occurs even in amino acid solutions exposed to suit-
able combination of Bpe and B fields [260]. The effect of such fields manifests as
an increase in electric conductivity when the ICR condition for the amino acid is met.
Interestingly, a splitting, in two closely adjacent conductivity bands, became apparent
when the magnitude of Bpe was scanned and the conductivity was monitored by an AC
synchronous to the frequency of By¢; an observation that could indicate a multi-term
energy scheme for the underlying process [261]. These experiments can be understood
in the framework of quantum electrodynamic models, which provide for coherence, and
collision-free movements of small ions [262].

To overcome the kT-problem interactions with electric fields were also taken into
account [263]. Tt was proposed, for example, that not only a parallel combination of Bp¢
and Bjc, but also a perpendicular arrangement, allows for ICR [264]; an observation
that could indicate rather stable energy states brought about by intrinsic alternating
electric fields, and the geomagnetic field. ICR could be the physical basis for perception
of weak EMF in biological matter, it could furthermore explain substrate specificity,
high sensitivity and unusual dose-response relationships, i.e. “effective windows”, that
are usually absent in other biological dose-response curves. It can also be helpful for
the interpretation of the effects caused by static MF; this would require, however, the
displacement or rotation of charged particles [265], to generate a local Bsc. An example
for such a mechanism is the magnetoresponse “anomalous viscosity time dependence” of
E. coli in static magnetic fields (0 — 110 pT). The dose-response curve for this response
shows several prominent maxima and minima (“windows”), which can be explained by
the rotation of ion-protein complexes [19].
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13.4 Ion parametric resonance, ion interference mechanism

The original ICR theory of Liboff [246, 247] was later modified by the ion paramag-
netic resonance (IPR) model. The former predicts ELF magnetic effects at the cyclotron
frequencies and their harmonics [266], the latter at the cyclotron frequencies and their
subharmonics [257, 267]. IPR, a generic name for a number of theoretical models based
on classical electrodynamics, as well as quantum electrodynamics, views biomagnetic ef-
fects largely as magnetically modulated ion binding, and thus provides a description for
ion-ligand interactions in MFs. The IPR model also applies to experimental situations in
which a static magnetic field (Bpc¢) is superposed to a parallel ELF magnetic field (B 4¢);
but theoretical considerations predict low sensitivities in the range of several hundred p'T

range [259, 264]. An experimental confirmation of the IPR model was attempted
by Smith et al. [249] with germination experiments, and by Berden et al. [268] using
bioluminescence of the dinoflagellate, Gonyaulaz scrippsae.

Ions caged in a protein domain can be described by a superposition of quantum states,
in which the contribution of quantum mechanical interference becomes relevant because
it results in uneven distribution of the ion inside the cage [162, 269]. According to this ion
interference mechanism (IIM), a static magnetic field induces an inhomogeneous density
pattern that begins to rotate with the cyclotron frequency. The addition of an AC MF
results in the cessation of rotation, and finally in the release of the bound ion; a process
that may elicit a biological response. IIM relates the magnetic field parameters to those
of dissociation of ion-protein complexes, and is able to explain a number electromagnetic
phenomena that also include the effect of MF on rotating ion-protein complexes, and the
concomitant dose dependency [19], as well as the effects of pulsed magnetic fields [163].

13.5  Quantum coherence

The quantum coherence mechanism can explain several paradoxical observations, among
which the so-called kT-problem stands most precipitously. The energy content, E, of an
EMF that elicits ICRs is several orders of magnitude smaller than the thermal energy
content (k7T) of the molecules in the EMF. In the case of water, for example, the thermal
energy content at 278.5 K is 1.17-10° J m~3, while the magnetic energy content at 0.8 uT
amounts to only 2.6 - 1077 J m~3. For fermions, i.e. particles, the relation between kT
and magnetic fields can be expressed as:

k-T>>E=B-v-1-Q (4)

where () is the charge moving along distance [, with speed v, inside a magnetic flux, B.
For bosons, i.e. photons, or likewise ELF-EMF, the relation can be expressed as:

k-T>>E=uv-h (5)

where T' is the absolute temperature, k£ the Boltzmann constant, v the frequency and h
the Planck constant. It is a well-known principle in physiology that a stimulus needs to
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exceed the kT limit in order to elicit a response. The probability (W) for overcoming
the Boltzmann-distributed thermal equilibrium at temperature 7" > 0 K, by an external
energy (FE) is approximated by:
W(E)~1—¢ it (6)

In photobiology, for example, the energy content of a single photon surpasses, many
times, k7', thus resulting in a value for W near unity; which in turn means that a response
is elicited. In magnetobiology, however, one encounters quite a different situation. If one
calculates W(E) for T = 293 K, and a MF of B = 40 uT (i.e. geomagnetic field), one
obtains for the spin-related energy of an electron a value for W as low as ~ 1077, This
means that statistically only one out of ten million free electrons contributes to a charge
transfer caused by MF interactions. It is apparent that such a low particle fraction could
not possibly elicit a biological reaction. Since weak fields do, however, elicit biological
reactions, it appears on the grounds of eq. 6, as if living matter behaves in a MF like
a subcooled gas at a temperature of ~ 5-107% K; which would result in a conduction
band of > 99% occupation, i.e. W(F) is approaching unity. Such behaviour is known for
Bose-Einstein-condensates, which represent matter states near 0 K, and that appear at
first sight to be incompatible with living matter. The coherence mechanism nevertheless
provides the possibility to resolve this paradoxical situation by providing a mechanism
by which the magnetic field action is thermally decoupled from its environment.

Particle properties (e.g. the spin) are described by quantum mechanics by wavefunc-
tions, which express the probability for a certain quantum state with respect to location
and time. If several similar particles (e.g. photons or electrons), are related to the same
wavefunction in a fixed phase ratio (by analogy to synchronously swinging pendulums)
their state is said to represent “coherence”. The De Broglie equation describes the wave-
length A\ of such a matter-wave for a fermion particle (e.g. an electron). Because the
probability of location of the particle inside a distance (I) must be 1, it is the mini-
mum coherence length (zero order) for the particle at the same time. With the matter
wavelength \ > [, particle mass m, and kinetic energy FE, it will be written as:

h
N ®

If the location probabilities of at least two particles are coherently superimposed, one
obtains one common wavefunction, i.e. a loss of the individual (e.g. fermion) proper-
ties which leads to Schrodinger’s “entanglement” [270]. In this way a newly condensed
matter state originates in which individual particles appear to be “glued” together by
transposition forces like phonons or solitons (Cooper pairs in superconductivity theory).

At this point of the coherence mechanism, the universal mediator of biological pro-
cesses, water, comes into play. Water dipoles assemble spontaneously into self-organizing,
ordered clusters. Quantum electrodynamics predicts two-state aggregates for water con-
sisting of: (i) a bulk phase, which is determined by the thermal equilibrium (water in
Brownian motion), and (ii) ordered clusters (Figures 6-8) [262, 271, 272]. Clusters orig-
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inate spontaneously by an in-phase propagation of the oscillating quantum field of de-
localized orbitals of water molecules [273]. Ordered water clusters generate a 12.06 eV
(resp. 2.9-10% Hz) (Figure 6) superradiation-transition [274, 275], which corresponds to
an electromagnetic wavelength of approximately 100 nm, and a quantum coherence over
~ 1.36 - 10" water molecules which is likely mediated by excitons [272]. These “coher-
ence domains” (CD) should be spheres (Figures 6-8) with a uniform, zero-dimensional
wavefunction, i.e. they should be quantum dots. Seen from the surrounding environment
the CD appears as supramolecular structure with a molecular mass of 217.6 MDa; the
inside is inaccessible to ions except the hydronium-ion (H3O"), considered by energetic
relations. The oscillation strength is expected to reach 8.4-10'® V. m~! at the center [275],
a value which is two orders of magnitude in excess of that of biological membranes; as-
suming thereby a potential of 100 mV across the lipid bilayer. The spherical interface
region (Figures 6, 8) explains the sudden drop of dielectricity from the interior of the CD
(e, ~ 160) to the incoherent domain (e, < 80). This results in a mean in these values
that closely mirrors that found experimentally for water (g, ~ 80).

e
s delocalized
Water-MQOs

oscillating quantumfield
12 eV=2.9-10"5 Hz £<80

Fig. 6 Model of a water phase organized in spherical coherence domains (CD). Delocalized
molecule orbitals generate a radially oscillating quantum field with 12 eV, which leads to
a 100 nm spherical superradiation with an amplitude of 8.4 - 10 V m~?! in the center.
Further explanations in the text.

The 2 — 4 nm thick interface region of the CD (Figures 6-8) appears in many respects
akin to the water transition zone of lipid membranes. A potential trough of about 0.26 eV,
which is predicted by the Born-equation, constitutes a circular ion trap that is responsible
for the experimentally-observed, ICR effects in water. These ions are assembled in this
interface in a plane perpendicular to MF lines, up to a critical density that is reached when
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their Debye-Hiickel radii interact (Figure 8, left). This “ring” of ions, around the water
CD, represents a one-dimensional coherent particle system, in effect a quantum wire. For
glutamate solutions at 293 K such a quantum wire is composed of approximately 330
glutamate anions [260, 272]. Ionic current measurements have shown that about 36% of
the glutamate anions are organized in this coherent state. The Eigenvalue of the water
CD (eq. 8) matches the total rotation energy of the ion-ring mediated by the Bpe. Such a
coupling of a bosonic (CD) and fermionic (ions) quantum system is known as Freshbach-
resonance, which can be described by the Hartree-Fock-Bogoliubov equations [276, 277].

H20 CD
r,~50 nm ———_
= f~4nm
v . B P T
= y ; P o
Anion
s E=KT
o =
=1 p Incoherent
E‘ counterion
= environment
J Cation
State: Bose-Einstein-Condensate (0.dim) Luttinger liquid (1.dim) liquid / "gas"
Statistics: Bose-Einstein ; Fermi-Dirac Phonons?  Boltzmann
xcitons?
Potential: electron orbital u Potential trap 0.26 eV 4+— Concentration P.

Fig. 7 Schematic diagram of the coupling of a ring of ions to a water coherence domain
(CD): The zero dimensional water CD is a quantum dot and represents a Bose-Einstein-
condensate; the ions behave like a Luttinger liquid, settling around as (1-dimensional)
quantum wire, in a plain perpendicular to the direction of an external MF. Possible quan-
tum statistics, and exchange forces of the states, are demarcated below the pictogram.

Figure 7 sketches the potential interaction at the frontier region of the water CD, lead-
ing to a Freshbach-resonance. The potential trough that generates the ion ring (quantum
wire) surrounds the CD in its immediate vicinity, without any discontinuity or jump. As
a result the trap is constructed by the ions itself; the polarity of the potential depends on
the sign of the ion charge. This potential will be increasingly influenced by thermic noise
in the transition zone to the outer environment. The coherence mechanism also allows for
an alternative structure of the “quantum wire” as there is no absolute requirement for the
synchronous circulation of each ion. Alternatively, an equivalent effect could be achieved
by impulse-perturbation that would circulate along the ion-ring with the ICR frequency,
e.g. mediated by phonons. The ion-ring could also be stabilized by an equivalent number
of counterions (e.g. H3OT), which concentrate in the same plane outside in the surround-
ing, incoherent environment, comparable with the Stern-layer of lipid membranes. The
coherence condition inside the quantum wire itself will be given by the Debye-Hiickel radii



A. Pazur et al. / Central European Journal of Biology 2(4) 2007 597-659 625

r; (h = Planck constant, m;,, = ion mass, E.pe, = electrochemical energy given by the
potential, € = ¢, - g = permitivity of the solvent (water), N4 = Avogadro constant, the
ion strength [] is given by the ion-concentration ¢; and -charge z;):

h €kT . 1 ,
\/2 “Mion, * Echem ~ \/m 101 - Strenght H — 5 ZCZZZ (8)

With glutamate anions one obtains a radius r; of 1.04 nm using the conditions in the
in vitro ICR experiments of Zhadin et al. [260, 261]. How does the coherence mechanism
account for the observed biological effects of alternating MFs? Tons can access the inter-
face region of the water clusters (Figures 6, 8) and orbit (orbit frequency w) as long as
their Lorentz-radius, specified by the external magnetic flux density Bp¢c, matches (Fig-
ure 8, left). The superimposed, though substantially weaker, EMF B 4¢ with frequency
w, interferes constructively for w = €2, or one of its harmonics (Figure 8, middle). This
way it causes an interfering distortion of the trap geometry, which becomes time-invariant
for the ICR frequency w and its harmonics n, increasing the probability for decoherence
(Figure 8. center). Such a mechanism could explain the ICR effect for EMF-amplitudes
B¢, down to some nT. An additional electric field, E, amplifies this effect (Figure 8,
right), which causes transitions of the ions to the incoherent environment (Figure 8,
right). Such effects can be measured electrochemically by increases in the ionic current
through the electrolyte solution [261]. The release of ions to the incoherent environment
could elicit subsequent biological reactions. The coherence mechanism provides a good
approximation for the results of in vitro ICR experiments [256, 260-262].

Fig. 8 The coherent-domain model of water. Bpo = static magnetic field, B o = a much
weaker, superimposed electromagnetic field with frequency w. €2 is the orbit frequency
of the ion in the frontier region of the coherent region. Left: ICR in the undisturbed
circular ion trap without a superimposed field B4o. Center: a superimposed field B¢
with frequency distorts the circular ion trap, so that ions can “break out” to the incoherent
water phase. Right: complete decoherence and emptying of the ion trap by an additional
local electric field E. Modified after [262]; further explanations in the text.
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There remain open questions with respect to the fate of the CDs in ultra pure water,
and in the absence of any magnetic field. Also in pure water at room temperature, some
water molecules are dissociated by auto-protolysis, known as the “ion product of water”.
It is possible that these products serve as ions in order to sustain the Freshbach resonance
mechanism of the CDs. At a zero MF, the ICR frequency likewise reaches zero. Even
though a description for this case is not presently available, it is quite possible that CDs
cannot exist in the absence of a MF.

In addition to the coherent “water spheres” described above, cellular macromolecules
were also considered as coherence mediators for biological EMF effects. For example,
microtubules [278], as well as DNA [279], may function as one-dimensional, anisotropic
“quantum wires”. One should, however, keep in mind that the assumptions of these au-
thors were too specific to derive an ICR model of general applicability for living matter
and aqueous solutions. An ICR effect could also be possible at the boundary layers of
collodial solved particles. If the Lamor radii would approach the particle size, the Lorentz
forces would become parallel to the boundary charge layer, forcing it by the additional
magnetic pressure. Findings for the disappearance of the ICR effect in thoroughly de-
gassed, and ultrafiltrated solutions [280], suggest the existence of such a mechanism.
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