Skip to main content
Log in

cDNA cloning of the phytoene synthase (PSY) and expression analysis of PSY and carotenoid cleavage dioxygenase genes in Osmanthus fragrans

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

In the carotenoid biosynthesis pathway, phytoene synthase (PSY) catalyzes the dimerization of two molecules of geranylgeranyl pyrophosphate (GGPP) to phytoene and has been shown to be a rate-limiting enzyme for the synthesis of carotenoids. In this study, a PCR approach was used to isolate a phytoene synthase cDNA from flower of Osmanthus fragrans. It contained a 1314 bp CDS. The predicted protein (49.4 kDa) displayed a sequence of 438 amino acid residues. Phylogenetic analysis demonstrated that the O. fragrans PSY gene (OfPSY) clustered with Gardenia jasminoides, Coffea canephora, Lycium barbarum and Mespilus germanica. Moreover, the OfPSY sequence relates closely with other PSY sequences of higher plants. We detected flower’s carotenoid content and analysed OfPSY and carotenoid cleavage dioxygenase genes (OfCCD1 and OfCCD4) in two cultivars of O. fragrans with varied coloration, including O. fragrans “Yingui” (light yellow) and “Dangui” (orange) at different floral stages. We observed that “Dangui” can accumulate carotenoids when OfPSY transcript was already constant, and this showed that the OfPSY does not play a role in the accumulation of total carotenoid in this cultivar. However, the transcripts of OfCCD4 in “Yingui” flower petals were clearly higher than that in “Dangui”. This was consistent with the ionone content in “Yingui” flower petals, which was significantly higher than that in “Dangui”. This response could contribute to explain the different accumulation of carotenoids in petals of the 2 cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldermann S. 2008. Carotenoid oxygenases from Camellia sinensis, Osmanthus fragrans, and Prunus persica nucipersica. PhD thesis, Technische Universitat Braunschweig, Germany, pp. 51–52.

    Google Scholar 

  • Baldermann S., Kato M., Fleischmann P. & Watanabe N. 2009. Biosynthesis of α- and β-ionone, prominent scent compounds, in flowers of Osmanthus fragrans. Acta Biochim. Pol. 59: 79–81.

    Google Scholar 

  • Baldermann S., Kato M., Kurosawa M., Kurobayashi Y., Fujita A., Fleischmann P. & Watanabe N. 2010. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. J. Exp. Bot. 11: 2967–2977.

    Article  Google Scholar 

  • Bouvier F., Hugueney P., d’Harlingue A., Kuntz M. & Camara B. 1994. Xanthophyll biosynthesis in chromoplast: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. Plant J. 6: 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Bramley P.M. 2002. Regulation of carotenoid formation during tomato fruit ripening and development. J. Exp. Bot. 377: 2107–2113.

    Article  Google Scholar 

  • Cunningham F.X. & Gantt E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Phys. 49: 557–583.

    Article  CAS  Google Scholar 

  • de Carvalho L.M.J., Gomes P.B., de Oliveira Godoy R.L., Pacheco S., do Monte P.H.F., de Carvalho J.L.V., Nutti M.R., Neves A.C.L., Vieira A.C.R.A. & Ramos S.R.R. 2011. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res Int. 7: 1–4.

    Google Scholar 

  • Deng C.H., Song G.X. & Hu Y.M. 2004. Application of HS-SPME and GC-MS to characterization of volatile compounds emitted from Osmanthus flowers. Annali di Chimica 94: 921–927.

    Article  PubMed  CAS  Google Scholar 

  • Fraser P.D., Truesdale M.R., Bird C.R., Schuch W. & Bramley P.M. 1994. Carotenoid biosynthesis during tomato fruit development. Evidence for tissue specific gene expression. Plant Physiol. 105: 405–13.

    PubMed  CAS  Google Scholar 

  • Giuliano G., Bartley G.E. & Scolnik P.A. 1993. Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5: 379–387.

    PubMed  CAS  Google Scholar 

  • Giuliano G., Giliberto L. & Rosati C. 2002. Carotenoid isomerase: a tale of light and isomers. Trends Plant Sci. 7: 427–429.

    Article  PubMed  CAS  Google Scholar 

  • Huang F.C., Molnár P. & Schwab W. 2009. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J. Exp. Bot. 11: 3011–3022.

    Article  Google Scholar 

  • Ikoma Y., Komatsu A., Kita M., Ogawa K., Omura M., Yano M. & Moriguchi T. 2001. Expression of a phytoene synthase gene and characteristic carotenoid accumulation during citrus fruit development. Physiol. Plant. 111: 232–238.

    Article  CAS  Google Scholar 

  • Kato M., Ikoma Y., Matsumoto H., Sugiura M., Hyodo H. & Yano M. 2004. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in Citrus fruit. Plant Physiol. 134: 824–837.

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto S. & Ohmiya A. 2006. Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium Ramat.). Physiol Plant. 128: 436–447.

    Article  CAS  Google Scholar 

  • Linden H., Lucas M., de Felipe M.R. & Sandmann G. 1993. Immunological localization of phytoene desaturase in higher plant chloroplasts. Physiol. Plant. 88: 229–236.

    Article  CAS  Google Scholar 

  • Moehs C.P., Tian L., Osteryoung K.W. & Della Penna D. 2001. Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol. Biol. 45: 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Moran R. & Porath D. 1980. Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol. 65: 478–479.

    Article  PubMed  CAS  Google Scholar 

  • Ohmiya A., Kishimoto S., Aida R., Yoshioka S. & Sumitomo K. 2006. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol. 142: 1193–1201.

    Article  PubMed  CAS  Google Scholar 

  • Ray J., Moureau P., Bird C., Bird A., Grierson D., Maunders M., Truesdale M., Bramley M. & Schuch W. 1992. Cloning and characterization of gene involved in phytoene synthesis from tomato. Plant Mol. Biol. 19: 401–404.

    Article  PubMed  CAS  Google Scholar 

  • Rubio A., Rambla J.L., Santaella M., Gomez M.D., Orzaez D., Granell A. & Gomez-Gomez L. 2008. Cytosolic and plastoglobuletargeted carotenoid dioxygenases from Crocus sativus are both involved in b-ionone-release. J. Biol. Chem. 283: 24816–24825.

    Article  PubMed  CAS  Google Scholar 

  • Salvini M., Bernini A., Fambrini M. & Pugliesi C. 2005. cDNA cloning and expression of the phytoene synthase gene in sun-flower. J. Plant Physiol. 162: 479–484.

    Article  PubMed  CAS  Google Scholar 

  • Sandmann G. 2002. Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiol. Plant. 116: 431–440.

    Article  CAS  Google Scholar 

  • Schubert N., Garcia-Mendoza E. & Pacheco-Ruiz I. 2006. Carotenoid composition of marine red algae. J. Phycol. 42: 1208–1216.

    Article  CAS  Google Scholar 

  • Scolnik P.A. & Bartley G.E. 1994. Nucleotide sequence of an Arabidopsis cDNA for phytoene synthase. Plant Physiol. 104: 1471–1472.

    Article  PubMed  CAS  Google Scholar 

  • Shewmaker C.K., Sheehy J.A., Daley M., Colburn S. & Ke D.Y. 1999. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J. 20: 401–412.

    Article  PubMed  CAS  Google Scholar 

  • Simkin A.J., Underwood B.A., Auldridge M., Loucas H.M., Shibuya K., Schmelz E., Clark D.G. & Klee H.J. 2004. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of β-ionone, a fragrance volatile of petunia flowers. Plant Physiol. 136: 3504–3514.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y. & Ohmiya A. 2008. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr. Opin. Biotech. 19: 190–197.

    Article  PubMed  CAS  Google Scholar 

  • Thompson J., Higgins D. & Gibson T. 1994. Clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Wang L.M., Li M.T., Jin W.W., Li S., Zhang S.Q. & Yu L.J. 2010. Variations in the components of Osmanthus fragrans Lour. essential oil at different stages of flowering. Food Chem. 114: 233–236.

    Article  Google Scholar 

  • Yang K.M. & Zhu W.J. 2000. Osmanthus fragrans. Shanghai Press of Science and Technology, pp. 27–30.

    Google Scholar 

  • Zhu C., Yamamura S., Nishihara M., Koiwa H. & Sandmann G. 2002. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development. Biochim. Biophys. Acta 3: 305–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fude Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Li, L., Dong, M. et al. cDNA cloning of the phytoene synthase (PSY) and expression analysis of PSY and carotenoid cleavage dioxygenase genes in Osmanthus fragrans . Biologia 68, 258–263 (2013). https://doi.org/10.2478/s11756-013-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0002-z

Key words

Navigation