Skip to main content
Log in

Antimicrobial activity of the protozoan toxin climacostol and its derivatives

  • Full Paper
  • Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Climacostol is a defense toxin produced by the ciliated protozoan Climacostomum virens and belongs to resorcinolic lipids, a group of compounds that shows antimicrobial, antiparasitic, and cytotoxic activities. In this study we investigate the antimicrobial activity of climacostol and its alkyl and alkynyl derivatives against a panel of bacterial and fungal pathogens. Our results show a good and comparable antimicrobial activity of the three compounds, which have resulted effective against Gram-positive bacteria and Candida with MIC and MBC ranging from 8 to 32 mg L−1, whereas no significant effect against Gram-negative species has been observed. Taken as a whole, the experimental data reported in the current study suggest that differences in the saturation rate of the lateral chain of climacostol are not related to the activity of the molecule. Therefore, it is likely that the general structure of the two moieties, i.e., the di-hydroxy-phenyl group and the alkenyl chains, contributes to the overall antibiotic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buonanno F., Guella G., Strim C. & Ortenzi C. 2012. Chemical defence by mono-prenyl hydroquinone in a freshwater ciliate, Spirostomum ambiguum. Hydrobiologia 684: 97–107. DOI: 10.1007/s10750-011-0972-1

    Article  CAS  Google Scholar 

  • Buonanno F. & Ortenzi C. 2010. The protozoan toxin climacostol and its derivatives: Cytotoxicity studies on 10 species of free-living ciliates. Biologia 65(4): 675–680. DOI: 10.2478/s11756-010-0071-1

    Article  CAS  Google Scholar 

  • Buonanno F., Quassinti L., Bramucci M., Amantini C., Lucciarini R., Santoni G., Iio H. & Ortenzi C. 2008. The protozoan toxin climacostol inhibits growth and induces apoptosis of human tumor cell lines. Chem. Biol. Interact. 176(2–3): 151–164. DOI: 10.1016/j.cbi.2008.07.007

    Article  PubMed  CAS  Google Scholar 

  • Cameron D.W. & Riches A.G. 1995. Synthesis of stentorin, Tetrahedron Lett. 36(13): 2331–2334. DOI: 10.1016/0040-4039(95)00248-B

    Article  CAS  Google Scholar 

  • Cervia D., Garcia-Gil M., Simonetti E., Di Giuseppe G., Guella G., Bagnoli P. & Dini F. 2007. Molecular mechanisms of euplotin C-induced apoptosis: involvement of mitochondrial dysfunction, oxidative stress and proteases. Apoptosis 12(8): 1349–1363. DOI: 10.1007/s10495-007-0075-7

    Article  PubMed  CAS  Google Scholar 

  • Cervia D., Martini D., Garcia-Gil M., Di Giuseppe G., Guella G., Dini F. & Bagnoli P. 2006. Cytotoxic effects and apoptotic signalling mechanisms of the sesquiterpenoid euplotin C, a secondary metabolite of the marine ciliate Euplotes crassus, in tumour cells. Apoptosis 11(5): 829–843. DOI: 10.1007/s10495-006-5700-3

    Article  PubMed  CAS  Google Scholar 

  • Checcucci G., Shoemaker R.S., Bini E., Cerny R., Tao N., Hyon J.-S., Gioffré D., Ghetti F., Lenci F. & Song P.-S. 1997. Chemical structure of blepharismin, the photosensor pigment for Blepharisma japonicum. J. Am. Chem. Soc. 119: 5762–5763. DOI: 10.1021/ja970713q

    Article  CAS  Google Scholar 

  • CLSI. M100-S19. 2009. Performance standards for antimicrobial susceptibility testing. 19th Informational Supplement. Clinical and Laboratory Standards Institute, Wayne, PA, USA, 152 pp. ISBN: 1-56238-690-5

  • Da Rocha A.B., Lopes R.M. & Schwartsmann G. 2001. Natural products in anticancer therapy. Curr. Opin. Pharmacol. 1(4): 364–369. PMID: 11710734

    Article  PubMed  Google Scholar 

  • Dini F., Guella G., Giubbilini I., Mancini I. & Pietra F. 1993. Control of interspecific relationships in marine ciliate protists by most evolved natural products, Naturwissenschaften 80(2): 84–86. DOI: 10.1007/BF01140423

    Article  CAS  Google Scholar 

  • Fiorini D., Giuli S., Marcantoni E., Quassinti L., Bramucci M., Amantini C., Santoni G., Buonanno F. & Ortenzi C. 2010. A straightforward diastereoselective synthesis and evaluation of climacostol, a natural product with anticancer activities. Synthesis 9: 1550–1556. DOI: 10.1055/s-0029-1218695

    Google Scholar 

  • Gioffré D., Ghetti F., Lenci F., Paradiso C., Dai R. & Song P.-S. 1993. Isolation and characterization of the presumed photoreceptor protein of Blepharisma japonicum, Photochem. Photobiol. 58(2): 275–279. DOI: 10.1111/j.1751-1097.1993. tb09561.x

    Article  Google Scholar 

  • Guella G., Dini F. & Pietra F. 1995. From epiraikovenal, an instrumental niche-exploitation sesquiterpenoid of some strains of the marine ciliated protist Euplotes raikovi, to an unusual intramolecular tele dienone-olefin [2+2] photocycloaddition, Helv. Chim. Acta 78(7): 1747–1754. DOI: 10.1002/hlca.19950780708

    Article  CAS  Google Scholar 

  • Guella G., Dini F. & Pietra F. 1996. Epoxyfocardin and its putative biogenetic precursor, focardin, bioactive, new skeleton, diterpenoids of the marine ciliate Euplotes focardii from Antarctica. Helv. Chim. Acta 79(2): 439–448. DOI: 10.1002/hlca.19960790211

    Article  CAS  Google Scholar 

  • Guella G., Dini F., Tomei A. & Pietra F. 1994. Preuplotin, a putative biogenetic precursor of the euplotins, bioactive sesquiterpenoids of the marine ciliated protest Euplotes crassus. J. Chem. Soc. Perkin Trans. 1(2): 161–166. DOI: 10.1039/P19940000161

    Article  Google Scholar 

  • Höfle G., Pohlan S., Uhlig G., Kabbe K. & Schumacher D. 1994. KKeronopsins A and B, chemical defence substances of the marine ciliate Pseudokeronopsis rubra (Protozoa): identification by ex vivo HPLC. Angew. Chem. Int. Ed. Engl. 33(14): 1495–1497. DOI: 0.1002/anie.199414951

    Article  Google Scholar 

  • Kozubek A. & Tyman J.H.P. 1999. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 99(1): 1–25. DOI: 10.1021/cr970464o

    Article  PubMed  CAS  Google Scholar 

  • Kozubek A., Zarnowski R., Stasiuk M. & Gubernator J. 2001. Natural amphiphilic phenols as bioactive compounds. Cell. Mol. Biol. Lett. 6(2A): 351–355.

    Google Scholar 

  • Lobban C.S., Hallam S.J., Mukherjee P. & Petrich J.W. 2007. Photophysics and multifunctionality of hypericinlike pigments in heterotrich ciliates: A phylogenetic perspective. Photochem. Photobiol. 83(5): 1074–1094. DOI: 10.1111/j.1751-1097.2007.00191.x

    Article  PubMed  CAS  Google Scholar 

  • Lytollis W., Scannel R.T., An H., Murty V.S., Reddy K.S., Barr J.R. & Hecht S.M. 1995. 5-Alkylresorcinols from Hakea trifurcata that cleave DNA. J. Am. Soc. 117(51): 12683–12690. DOI: 10.1021/ja00156a004

    Article  CAS  Google Scholar 

  • Masaki M.E., Harumoto T., Terazima M.N., Miyake A., Usuki Y. & Iio H. 1999. Climacostol, a defense toxin of the heterotrich ciliate Climacostomum virens against predators. Tetrahedron Lett. 40(47): 8227–8229. DOI: 10.1016/S0040-4039(99)01722-0

    Article  CAS  Google Scholar 

  • Masaki M.E., Hiro S., Usuki Y., Harumoto T., Terazima M.N., Buonanno F., Miyake A. & Iio H. 2004. Climacostol, a defense toxin of Climacostomum virens (Protozoa, Ciliata), and its congeners. Tetrahedron 60(33): 7041–7048. DOI: 10.1016/j.tet.2003.09.105

    Article  CAS  Google Scholar 

  • Miyake A., Buonanno F., Saltalamacchia P., Masaki M.E. & Iio H. 2003. Chemical defence by means of extrusive cortical granules in the heterotrich ciliate Climacostomum virens. Europ. J. Protistol. 39(1): 25–36. DOI: 10.1078/0932-4739-00900

    Article  Google Scholar 

  • Mori K. & Abe Y. 2001. Simple synthesis of climacostol, a defensive secretion by the ciliate Climacostomum virens. Biosci. Biotechnol. Biochem. 65(9): 2110–2112. DOI: 10.1271/bbb.65.2110

    Article  PubMed  Google Scholar 

  • Mukherjee P., Fulton D.B., Halder M., Han X., Armstrong D.W., Petrich J.W. & Lobban C.S. 2006. Maristentorin, a novel pigment from the positively phototactic marine ciliate Maristentor dinoferus, is structurally related to hypericin and stentorin. J. Phys. Chem. 110(12): 6359–6364. DOI: 10.1021/jp055871f

    Article  CAS  Google Scholar 

  • Muto Y., Tanabe Y., Kawai K., Okano Y. & Iio H. 2011. Climacostol inhibits Tetrahymena motility and mitochondrial respiration. Centr. Eur. J. Biol. 6(1): 99–104. DOI: 10.2478/s11535-010-0100-7

    Article  CAS  Google Scholar 

  • Pant B., Kato Y., Kumagai T., Matsuoka T. & Sugiyama M. 1997. Blepharismin produced by a protozoan Blepharisma functions as an antibiotic effective against methicillin-resistant Staphylococcus aureus. FEMS Microbiol. Lett. 155(1): 67–71. DOI: 10.1016/S0378-1097(97)00368-6

    Article  PubMed  CAS  Google Scholar 

  • Petrelli D., Repetto A., D’Ercole S., Rombini S., Ripa S, Prenna M. & Vitali L.A. 2008. Analysis of methicillinsusceptible and methicillin-resistant biofilm forming Staphylococcus aureus from catheter infections isolated in a large Italian hospital. J. Med. Microbiol. 57(3): 364–372. DOI: 10.1099/jmm.0.47621-0

    Article  PubMed  CAS  Google Scholar 

  • Rosini G., Laffi F., Marotta E., Pagani L. & Righi P. 1998. Total synthesis of the marine sesquiterpenoid raikovenal through a novel utilization of the bicyclo[3.2.0]heptenone approach. J. Org. Chem. 63(7): 2389–2391. DOI: 10.1021/jo972098e

    CAS  Google Scholar 

  • Savoia D., Avanzini C., Allice T., Callone E., Guella G. & Dini F. 2004. Antimicrobial activity of euplotin C, the sesquiterpene taxonomic marker from the marine ciliate Euplotes crassus. Antimicrob. Agents Chemother. 48(10): 3828–3833. DOI: 10.1128/AAC.48.10.3828-3833.2004

    Article  PubMed  CAS  Google Scholar 

  • Singh U.S., Scannel R.T., An H., B Carter. J. & Hecht S.M. 1995. DNA cleavage by di- and trihydroxyalkylbenzenes. Characterization of products and the roles of O2, Cu(II), and alkali. J. Am. Soc. 117(51): 12691–12699. DOI: 10.1021/ja00156a005

    Article  CAS  Google Scholar 

  • Starck S.R., Deng J.Z. & Hecht S.M. 2000. Naturally occurring alkylresorcinols that mediate DNA damage and inhibit its repair. Biochemistry 39(9): 2413–2419. DOI: 10.1021/bi991509d

    Article  PubMed  CAS  Google Scholar 

  • Stasiuk M. & Kozubek A. 2010. Biological activity of phenolic lipids. Cell. Mol. Life Sci. 67(6): 841–860. DOI: 10.1007/s00018-009-0193-1

    Article  PubMed  CAS  Google Scholar 

  • Tao N., Orlando M., Hyon J.-S., Gross M. & Song P.-S. 1993. A new photoreceptor molecule from Stentor coeruleus. J. Am. Chem. Soc. 115: 2526–2528. DOI: 10.1021/ja00059a068

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Ortenzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrelli, D., Buonanno, F., Vitali, L.A. et al. Antimicrobial activity of the protozoan toxin climacostol and its derivatives. Biologia 67, 525–529 (2012). https://doi.org/10.2478/s11756-012-0030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0030-0

Key words

Navigation