Skip to main content
Log in

An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A novel amperometric sensor for uric acid based on ordered mesoporous carbon modified pyrolytic graphite electrode was developed. Uric acid oxidation was easily catalyzed by this electrode in a phosphate buffer solution at pH 7.0, with an anodic potential decrease about 140 mV compared to bare pyrolytic graphite electrode. The uric acid level was determined by the amperometric method, at a constant potential of 0.31 mV, the catalytic current of uric acid vs. its concentration showed a good linearity in the range of 1.0 × 10−6−1.0 × 10−4 mol L−1, with a correlation coefficient of 0.999. The detection limit was 4.0 × 10−7 mol L−1. The proposed method could be effectively used for uric acid amperometric sensing in human urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardakani, M. M., Akrami, Z., Kazemian, H., & Zare, H. R. (2006). Electrocatalytic characteristics of uric acid oxidation at graphite-zeolite-modified electrode doped with iron(III). Journal of Electroanalytical Chemistry, 586, 31–38. DOI: 10.1016/j.jelechem.2005.09.015.

    Article  CAS  Google Scholar 

  • Cunningham, S. K., & Keaveny, T. V. (1978). A two-stage enzymatic method for determination of uric acid and hypoxanthine/xanthine. Clinica Chimica Acta, 86, 217–221. DOI: 10.1016/0009-8981(78)90135-3.

    Article  CAS  Google Scholar 

  • Czauderna, M., & Kowalczyk, J. (2000). Quantification of allantoin, uric acid, xanthine and hypoxanthine in ovine urine by high-performance liquid chromatography and photodiode array detection. Journal of Chromatography B, 744, 129–138. DOI: 10.1016/S0378-4347(00)00239-5.

    Article  CAS  Google Scholar 

  • Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417, 813–821. DOI: 10.1038/nature00785.

    Article  CAS  Google Scholar 

  • Ferraris, S. P., Lew, H., & Elsayed, N. M. (1991). Simultaneous determination of inosine, hypoxanthine, xanthine, and uric acid and the effect of metal chelators. Analytical Biochemistry, 195, 116–121. DOI: 10.1016/0003-2697(91)90305-D.

    Article  CAS  Google Scholar 

  • Filisetti-Cozzi, T. M., & Carpita, N. C. (1991). Measurement of uronic acids without interference from neutral sugars. Analytical Biochemistry, 197, 157–162. DOI: 10.1016/0003-2697(91)90372-Z.

    Article  CAS  Google Scholar 

  • Hu, G., Ma, Y., Guo, Y., & Shao, S. (2008). Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochimica Acta, 53, 6610–6615. DOI: 10.1016/j.electacta.2008.04.054.

    Article  CAS  Google Scholar 

  • Jia, N., Wang, Z., Yang, G., Shen, H., & Zhu, L. (2007). Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine. Electrochemistry Communications, 9, 233–238. DOI: 10.1016/j.elecom.2006.08.050.

    Article  CAS  Google Scholar 

  • Jin, W., Li, T.-H., Wang, X.-X., Ji, Y.-B., & Li, X.-T. (2007). Synthesis of ordered mesoporous carbon based on evaporation-induced self-assembly method. Carbon Techniques, 26(6), 16–20.

    CAS  Google Scholar 

  • Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., & Ryoo, R. (2001). Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 412, 169–172. DOI: 10.1038/35084046.

    Article  CAS  Google Scholar 

  • Jun, S., Joo, S. H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., & Terasaki, O. (2000). Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 122, 10712–10713. DOI: 10.1021/ja002261e.

    Article  CAS  Google Scholar 

  • Kalimuthu, P., Suresh, D., & John, S. A. (2006). Uric acid determination in the presence of ascorbic acid using self-assembled submonolayer of dimercaptothiadiazole-modified gold electrodes. Analytical Biochemistry, 357, 188–193. DOI: 10.1016/j.ab.2006.07.031.

    Article  CAS  Google Scholar 

  • Kennedy, L. J., Vijaya, J. J., Kayalvizhi, K., & Sekaran, G. (2007). Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process. Chemical Engineering Journal, 132, 279–287. DOI: 10.1016/j.cej.2007.01.009.

    Article  CAS  Google Scholar 

  • Li, Z., Feng, M., & Lu, J. (1998). KMnO4-octylphenyl polygylcol, ether chemiluminescence system for flow injection analysis of uric acid in urine. Microchemical Journal, 59, 278–283. DOI: 10.1006/mchj.1997.1537.

    Article  CAS  Google Scholar 

  • Lima, P. R., Santos, W. J. R., Oliveira, A. B., Goulart, M. O. F., & Kubota, L. T. (2008). Electrocatalytic activity of 4-nitrophthalonitrile-modified electrode for the L-glutathione detection. Journal of Pharmaceutical and Biomedical Analysis, 47, 758–764. DOI: 10.1016/j.jpba.2008.03.006.

    Article  CAS  Google Scholar 

  • Ndamanisha, J. C., & Guo, L. (2008). Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid-modified electrode. Biosensors and Bioelectronics, 23, 1680–1685. DOI: 10.1016/j.bios.2008.01.026.

    Article  CAS  Google Scholar 

  • Pournaghi-Azar, M. H., & Saadatirad, A. (2008). Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified-palladized aluminum electrode. Journal of Electroanalytical Chemistry, 624, 293–298. DOI: 10.1016/j.jelechem.2008.09.016.

    Article  CAS  Google Scholar 

  • Wang, G., Meng, J., Liu, H., Jiao, S., Zhang, W., Chen, D., & Fang, B. (2008). Determination of uric acid in the presence of ascorbic acid with hexacyanoferrate lanthanum film modified electrode. Electrochimica Acta, 53, 2837–2843. DOI: 10.1016/j.electacta.2007.10.064.

    Article  CAS  Google Scholar 

  • Yuan, X., Xing, W., Zhuo, S.-P., Si, W., Gao, X., Han, Z., & Yan, Z.-F. (2008). Adsorption of bulky molecules of nonylphenol ethoxylate on ordered mesoporous carbons. Journal of Colloid and Interface Science, 322, 558–565. DOI: 10.1016/j.jcis.2008.02.032.

    Article  CAS  Google Scholar 

  • Zen, J.-M., Jou, J.-J., & Ilangovan, G. (1998). Selective voltammetric method for uric acid detection using pre-anodized Nafion-coated glassy carbon electrodes. Analyst, 123, 1345–1350. DOI: 10.1039/a801532e.

    Article  CAS  Google Scholar 

  • Zhang, Y., Wen, G., Zhou, Y., Shuang, S., Dong, C., & Choi, M. M. F. (2007). Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane. Biosensors and Bioelectronics, 22, 1791–1797. DOI: 10.1016/j.bios.2006.08.038.

    Article  CAS  Google Scholar 

  • Zhou, H., Zhu, S., Hibino, M., Honma, I., & Ichihara, M. (2003). Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Advanced Materials, 15, 2107–2111. DOI: 10.1002/adma.200306125.

    Article  CAS  Google Scholar 

  • Zhou, M., Ding, J., Guo, L.-P., & Shang, Q.-K. (2007). Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Analytical Chemistry, 79, 5328–5335 DOI: 10.1021/ac0703707.

    Article  CAS  Google Scholar 

  • Zhu, L., Tian, C., Zhu, D., & Yang, R. (2008). Ordered mesoporous carbon paste electrodes for electrochemical sensing and biosensing. Electroanalysis, 20, 1128–1134. DOI: 10.1002/elan.200704162.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Hu, G., Shao, S. et al. An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode. Chem. Pap. 63, 641–645 (2009). https://doi.org/10.2478/s11696-009-0076-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0076-9

Keywords

Navigation