Skip to main content

Advertisement

Log in

Stem cell potential for type 1 diabetes therapy

  • Review Article
  • Published:
Central European Journal of Biology

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Stem cells have been considered as a useful tool in Regenerative Medicine due to two main properties: high rate of self-renewal, and their potential to differentiate into all cell types present in the adult organism. Depending on their origin, these cells can be grouped into embryonic or adult stem cells. Embryonic stem cells are obtained from the inner cell mass of blastocyst, which appears during embryonic day 6 of human development. Adult stem cells are present within various tissues of the organism and are responsible for their turnover and repair. In this sense, these cells open new therapeutic possibilities to treat degenerative diseases such as type 1 diabetes. This pathology is caused by the autoimmune destruction of pancreatic β-cells, resulting in the lack of insulin production. Insulin injection, however, cannot mimic β-cell function, thus causing the development of important complications. The possibility of obtaining β-cell surrogates from either embryonic or adult stem cells to restore insulin secretion will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASCs:

adult stem cells

BB rat:

biobreeding rat

CHIBs:

cultivated human islet buds

CMV:

cytomegalovirus

EBs:

embryoid bodies

EGF:

epidermal growth factor

ESCs:

embryonic stem cells

GFAP:

glial fibrillary acidic protein

IGF:

insulin-like growth factor

IPSCs:

islet pluripotent stem cells

KGF:

keratinocyte growth factor

LIF:

leukaemia inhibitory factor

MAPCs:

multipotent adult progenitor cells

NF-200:

neurofilament-200

NIPs:

nestin-positive islet-derived progenitors

NO:

nitric oxide

NOD mouse:

nonobese diabetic mouse

Pax4/6:

paired homeobox 4/6

PC-2:

protein convertase 2

Pdx1:

pancreatic duodenal homeobox 1

References

  1. H.M. Blau, T.R. Brazelton and J.M. Weimann: “The evolving concept of a stem cell: Entity or function?”, Cell, Vol. 105, (2001), pp. 829–841.

    PubMed  CAS  Google Scholar 

  2. J. Betschinger, K. Mechtler and J.A. Knoblich: “Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells”, Cell, Vol. 124, (2006), pp. 1241–1253.

    PubMed  CAS  Google Scholar 

  3. R.P. Lanza, R. Langer and J. Vacanti: Principles of tissue engineering, 2nd ed., Academic Press, San Diego, 2000.

    Google Scholar 

  4. J.B. Gurdon, J.A. Byrne and S. Simonsson: “Nuclear reprogramming and stem cell creation”, Proc. Natl. Acad. Sci. USA, Vol. 100, (2003), pp. 11819–11822.

    PubMed  CAS  Google Scholar 

  5. K. Hochedlinger and R. Jaenisch: “Nuclear transplantation, embryonic stem cells, and the potential for cell therapy”, New Engl. J. Med., Vol. 349, (2003), pp. 275–286.

    PubMed  CAS  Google Scholar 

  6. M.J. Munsie, A.E. Michalska, C.M. O’Brien, A.O. Trounson, M.F. Pera and P.S. Mountford: “Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei”, Curr. Biol., Vol. 10, (2000), pp. 989–992.

    PubMed  CAS  Google Scholar 

  7. T. Wakayama, V. Tabar, I. Rodriguez, A.C.F. Perry, L. Studer and P. Mombaerts: “Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer”, Science, Vol. 292, (2001), pp. 740–743.

    PubMed  CAS  Google Scholar 

  8. I. Wilmut, N. Beaujean, P.A. de Sousa, A. Dinnyes, T.J. King, L.A. Paterson, D. N. Wells and L.E. Young: “Somatic cell nuclear transfer”, Nature, Vol. 419, (2002), pp. 583–586.

    PubMed  CAS  Google Scholar 

  9. J.B. Cibelli, K.A. Grant, K.B. Chapman, K. Cunniff, T. Worst, H.L. Green, S. J. Walker, P.H. Gutin, L. Vilner, V. Tabar, T. Dominko, J. Kane, P.J. Wettstein, R.P. Lanza, L. Studer, K. E. Vrana and M.D. West: “Parthenogenetic stem cells in nonhuman primates”, Science, Vol. 295, (2002), pp. 819.

    PubMed  CAS  Google Scholar 

  10. A. Trounson: “The genesis of embryonic stem cells. Does parthenogenesis offer a more promising means of developing immune-matched ES cells?”, Nat. Biotechnol., Vol. 20, (2002), pp. 237–238.

    PubMed  CAS  Google Scholar 

  11. J. Pomerantz and H.M. Blau: “Nuclear reprogramming: A key to stem cell function in regenerative medicine”, Nat. Cell Biol., Vol. 9, (2004), pp. 810–816.

    Google Scholar 

  12. P.S. Western and M.A. Surani: “Nuclear reprogramming-alchemy or analysis?”, Nat. Biotechnol., Vol. 20, (2002), pp. 445–446.

    PubMed  CAS  Google Scholar 

  13. J.S. Odorico, D.S. Kaufman and J.A. Thomson: “Multilineage differentiation from human embryonic stem cell lines”, Stem Cells, Vol. 19, (2001), pp. 193–204.

    PubMed  CAS  Google Scholar 

  14. A.G. Smith: “Embryo-derived stem cells: Of mice and men”, Annu. Rev. Cell. Develop. Biol., Vol. 17, (2001), pp. 435–462.

    CAS  Google Scholar 

  15. R.A. DeFronzo, E. Ferrannini, H. Keen and P. Zimmet: International textbook of diabetes mellitus, John Wiley and Sons, Chichester, UK, 2004.

    Google Scholar 

  16. N. Wierup, S. Yang, R.J. McEvilly, H. Mulder and F. Sundler: “Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1(832/13) cells”, J. Histochem. Cytochem., Vol. 52, (2004), pp. 301–310.

    PubMed  CAS  Google Scholar 

  17. R.S. Heller, M. Jenny, P. Collombat, A. Mansouri, C. Tomasetto, O.D. Madsen, G. Mellitzer, G. Gradwohl and P. Serup: “Genetic determinants of pancreatic epsiloncell development”, Dev. Biol., Vol. 286, (2005), pp. 217–224.

    PubMed  CAS  Google Scholar 

  18. M.S. Rao and J.K. Reddy: “Pancreatic stem cells: differentiation options”, Stem Cell Rev., Vol. 1, (2005), pp. 265–272.

    PubMed  Google Scholar 

  19. M. Brownlee: “Biochemistry and molecular cell biology of diabetic complications”, Nature, Vol. 414, (2001), pp. 813–820.

    PubMed  CAS  Google Scholar 

  20. C. Benoist and D. Mathis: “Cell death mediators in autoimmune diabetes-No shortage of suspects”, Cell, Vol. 89, (1997), pp. 1–3.

    PubMed  CAS  Google Scholar 

  21. D. Mathis, L. Vence and C. Benoist: “β-Cell death during progression to diabetes”, Nature, Vol. 414, (2001), pp 792–798.

    PubMed  CAS  Google Scholar 

  22. E. Roche, J.A. Reig, A. Campos, B. Paredes, J.R. Isaac, S. Lim, R.Y. Calne and B. Soria: “Insulin-secreting cells derived from stem cells: Clinical perspectives, hypes and hopes”, Transpl. Immunol., Vol. 15, (2005), pp. 113–129.

    PubMed  CAS  Google Scholar 

  23. P. Zimmet, K.G.M.M. Alberti and J. Shaw: “Global and societal implications of the diabetes epidemic”, Nature, Vol. 414, (2001), pp. 782–787.

    PubMed  CAS  Google Scholar 

  24. A.M.J. Shapiro, J.R.T. Lakey, E.A. Ryan, G.S. Korbutt, E. Toth, G.L. Warnock, N.M. Kneteman and R.V. Rajotte: “Islet transplantation in seven patients with type 1 diabetes mellitus using a corticoid-free immunosuppressive regime”, New Engl. J. Med., Vol. 343, (2000), pp. 230–238.

    PubMed  CAS  Google Scholar 

  25. B. Keymeulen, P. Gillard, C. Mathieu, B. Movahedi, G. Maleux, G. delvaux, D. Ysebaert, B. roep, E. Vandemeulebroucke, M. Marichal, P. In’t Veld, M. Bogdani, C. Hendrieckx, F. Gorus, Z. Ling, J. van Rood and D. Pipeleers: “Correlation between beta cell mass and glycemic control in type 1 diabetic recipients of islet cell graft”, Proc. Natl. Acad. Sci. USA, Vol. 103, (2006), pp. 17444–17449.

    PubMed  CAS  Google Scholar 

  26. A. Borjesson and C. Carlsson: “Altered proinsulin conversion in rat pancreatic islets exposed long-term to various glucose concentrations of interleukin-1β”, J. Endocrinol., Vol. 192, (2007), pp. 381–387.

    PubMed  Google Scholar 

  27. E.A. Ryan, B.W. Paty, P.A. Senor, D. Bigam, E. Alfadhli, N.M. Kneteman, J.R. Lakey and A.M. Shapiro: “Five-year follow-up alter clinical islet transplantation”, Diabetes, Vol. 54, (2005), pp. 2060–2069.

    PubMed  CAS  Google Scholar 

  28. O. Korsgren, B. Nilsson, C. Berne, M. Felldin, A. Foss, R. Kallen, T. Lundgren, K. Salmela, A. Tibell and G. Tufveson: “Current status of clinical islet transplantation”, Transplantation, Vol. 79, (2005), 1289–1293.

    PubMed  Google Scholar 

  29. E. Fuchs, T. Tumbar and G. Guasch: “Socializing with the neighbors: Stem cells and their niche”, Cell, Vol. 116, (2000), pp. 769–778.

    Google Scholar 

  30. R. Ensenat-Waser, A. Santana, N. Vicente-Salar, J.C. Cigudosa, E. Roche, B. Soria and J.A. Reig: “Isolation and characterization of residual undifferentiated mouse embryonic stem cells from embryoid body cultures by fluorescence tracking”, In Vitro Cell. Dev. Biol.-Animal, Vol. 42, (2006), pp. 115–123.

    CAS  Google Scholar 

  31. C. Holden and G. Vogel: “Cell biology. A technical fix for an ethical bind?”, Science, Vol. 306, (2004), 2174–2176.

    PubMed  CAS  Google Scholar 

  32. J.T. Do and H.R. Schöler: “Nuclei of embryonic stem cells reprogram somatic cells”, Stem Cells, Vol. 22, (2004), pp. 941–949.

    PubMed  CAS  Google Scholar 

  33. A. J. Wagers and I.L. Weissman: “Plasticity of adult stem cells”, Cell, Vol. 116, (2004), pp. 639–648.

    PubMed  CAS  Google Scholar 

  34. C.S. Potten and M. Loeffler: “Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt”, Development, Vol. 110, (1990), pp. 1001–1020.

    PubMed  CAS  Google Scholar 

  35. S. Bonner-Weir, M. Taneja, G.C. Weir, K. Tatarkiewicz, K.-H. Song, A. Sharma and J.J. O’Neil: “In vitro cultivation of human islets from expanded ductal tissue”, Proc. Natl. Acad. Sci. USA, Vol. 97, (2000), pp. 7999–8004.

    PubMed  CAS  Google Scholar 

  36. V.K. Ramiya, M. Maraist, K.E. Arfors, D.A. Schatz, A.B. Peck and J.G. Cornelius: “Reversal of insulin-dependent diabtes using islets generated in vitro from pancreatic stem cells”, Nat. Med., Vol. 6, (2000), pp. 278–282.

    PubMed  CAS  Google Scholar 

  37. H. Zulewski, E.J. Abraham, M.J. Gerlach, P.B. Daniel, W. Moritzs, B. Müller, M. Vallejo, M.K. Thomas and J.F. Habener: “Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine and hepatic phenotypes”, Diabetes, Vol. 50, (2001), pp. 521–533.

    PubMed  CAS  Google Scholar 

  38. L. Selander and H. Edlund: “Nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas”, Mech. Dev., Vol. 113, (2002), pp. 189–192.

    PubMed  CAS  Google Scholar 

  39. H. Huang and X. Tang: “Phenotypic determination and characterization of nestinpositive precursors derived from human fetal pancreas”, Lab. Invest., Vol. 83, (2003), pp. 539–547.

    PubMed  CAS  Google Scholar 

  40. R.M. Seaberg, S.R. Smukler, T.J. Kieffer, G. Enikolopov, Z. Asghar, M.B. Wheeler, G. Korbutt and D. van der Kooy: “Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages”, Nat. Biotechnol., Vol. 22, (2004), pp. 1115–1124.

    PubMed  CAS  Google Scholar 

  41. Y.H. Chou, S. Khuon, H. Hermann and R.D. Goldman: “Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis”, Mol. Biol. Cell, Vol. 14, (2003), pp. 1468–1478.

    PubMed  CAS  Google Scholar 

  42. F. Esni, D.A. Stoffers, T. Takeuchi and S.D. Leach: “Origin of exocrine pancreatic cells from nestin-positive precursors in developing mouse pancreas”, Mech. Dev., Vol. 121, (2004), pp. 15–25.

    PubMed  CAS  Google Scholar 

  43. T. Klein, Z. Ling, H. Heimberg, O.D. Madsen, R.S. Heller and P. Serup: “Nestin is expressed in vascular endothelial cells in the adult human pancreas”, J. Histochem. Cytochem., Vol. 51, (2003), pp. 697–706.

    PubMed  CAS  Google Scholar 

  44. J. Lardon, I. Rooman and L. Bouwens: “Nestin expression in pancreatic stellate cells and angiogenic endothelial cells”, Histochem. Cell. Biol., Vol. 117, (2002), pp. 535–540.

    PubMed  CAS  Google Scholar 

  45. M.C. Gershengorn, A.A. Hardikar, A. Hardikar, C. Wei, E. Geras-Raaka, B. Marcus-Samuels and B.M. Raaka: “Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells”, Science, Vol. 306, (2004), pp. 2261–2264.

    PubMed  CAS  Google Scholar 

  46. U. Ahlgren, S.L. Plaff, T.M. Jessell, T. Edlund and H. Edlund: “Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells”, Nature, Vol. 385, (1997), pp. 257–260.

    PubMed  CAS  Google Scholar 

  47. F. Atouf, C.H. Park, K. Pechhold, M. Ta, Y. Choi and N.L. Lumeelsky: “No evidence for mouse pancreatic beta-cell epithelial-mesenchymal transition in vitro”, Diabetes, Vol. 56, (2007), pp. 699–702.

    PubMed  CAS  Google Scholar 

  48. L.G. Chase, F. Ulloa-Montoya, B.L. Kidder and C.M. Verfaille: “Islet-derived fibroblast-like cells are not derived via epithelial-mesenchymal transition from Pdx-1 or insulin-positive cells”, Diabetes, Vol. 56, (2007), pp. 3–7.

    PubMed  CAS  Google Scholar 

  49. M. Eberhardt, P. Salmon, M.A. von Mach, J.G. Hengstler, M. Brulport, P. Linscheid, D. Seboek, J. Oberholzer, A. Barbero, I. martin, B. Müller, D. Trono and H. Zulewski: “Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets”, Biochem. Biophys. Res. Commun., Vol. 345, (2006), pp. 1167–1176.

    PubMed  CAS  Google Scholar 

  50. N. Weinberg, L. Ouziel-Yahalom, S. Knoller, S. Efrat and Y. Dor: “Lineage tracing evidence for in vitro dedifferentiation but rare proliferation of mouse pancreatic betacells”, Diabetes, Vol. 56, (2007), pp. 1299–1304.

    PubMed  CAS  Google Scholar 

  51. K.L. Seeberger, J.M Dufour, A.M. Shapiro, J.R. Lakey, R.V. Rajotte, G. S. Korbutt: “Expansion of mesenchymal stem cells from human pancreatic ductal epithelium”, Lab. Invest., Vol. 86, (2006), pp. 141–153.

    PubMed  CAS  Google Scholar 

  52. K. Minami, M. Okuno, K. Miyawaki, A. Okumachi, K. Ishizaki, K. Oyama, M. Kawaguchi, N. Ishizuka, T. Iwanaga and S. Seino: “Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells”, Proc. Natl. Acad. Sci. USA, Vol. 102, (2005), pp. 15116–15121.

    PubMed  CAS  Google Scholar 

  53. B.M. Desai, J. Oliver-Krasinski, D.D. De Leon, C. Fazard, N. Hong, S.D. Leach and D.A. Stoffers: “Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell regeneration”, J. Clin. Invest., Vol 117, (2007), pp. 971–977.

    PubMed  CAS  Google Scholar 

  54. Y. Dor, J. Brown, O.I. Martínez and D.A. Melton: “Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation”, Nature, Vol. 429, (2004), pp. 41–46.

    PubMed  CAS  Google Scholar 

  55. P. Serup: “Embryonic stem cell-based diabetes therapy-a long road to travel”, Diabetologia, Vol. 49, (2006), pp. 2537–2540.

    PubMed  CAS  Google Scholar 

  56. M. Banerjee, M. Kanitkar and R.R. Bhonde: “Approaches towards endogenous pancreatic regeneration”, Rev. Diabet. Stud., Vol. 2, (2005), pp. 165–176.

    PubMed  Google Scholar 

  57. S. Kodama, W. Kuhtreiber, S. Fujimura, E.A. Dale and D.L. Faustman: “Islet regeneration during the reversal of autoimmune diabetes in NOD mice”, Science, Vol. 302, (2003), pp. 1223–1227.

    PubMed  CAS  Google Scholar 

  58. Z. Yang, M. Chen, J.D. Carter, C.S. Nunemaker, J.C. Garmey, S.D. Kimble and J.L. Nadler: “Combined treatment with lisofylline and exendin-4 reverses autoimmune diabetes”, Biochem. Biophys. Res. Commun., Vol. 344, (2006), pp. 1017–1022.

    Article  PubMed  CAS  Google Scholar 

  59. Y. Jiang, B.N. Jahagirdar, R.L. Reinhardt, R.E. Schwartz, C.D. Keene, X.R. Ortiz-González, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W.C. Lew, D.A. Largaespada and C.M. Verfaillie: “Pluripotency of mesenchymal stem cells derived from adult marrow”, Nature, Vol. 418, (2002), pp. 41–49.

    PubMed  CAS  Google Scholar 

  60. A. Ianus, G.G. Holz, N.D. Theise and M.A. Hussain: “In vivo derivation of glucosecompetent pancreatic endocrine cells from bone marrow without evidence of cell fusion”, J. Clin. Invest., Vol. 111, (2003), pp. 843–850.

    PubMed  CAS  Google Scholar 

  61. G. D’Ippolito, S. Diabira, G.A. Howard, P. Menei, B.A. Roos and P.C. Schiller: “Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential”, J. Cell. Sci., Vol. 117, (2004), pp. 2971–2981.

    PubMed  CAS  Google Scholar 

  62. T. Tayaramma, B. Ma, M. Rohde and H. Mayer: “Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells”, Stem Cells, Vol. 24, (2006), pp. 2858–2867.

    PubMed  CAS  Google Scholar 

  63. C. Moriscot, F. De Fraipont, M.-J. Richard, M. Marchand, P. Svatier, D. Bosco, M. Favrot and P.-Y. Benhamou: “Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro”, Stem Cells, Vol. 23, (2005), pp. 594–604.

    PubMed  CAS  Google Scholar 

  64. J.B. Choi, H. Uchino, K. Azuma, N. Iwashita, Y. Tanaka, H. Mochizuki, M. Migita, T. Shimada, R. Kawamori and H. Watada: “Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells”, Diabetologia, Vol. 46, (2003), pp. 1366–1374.

    PubMed  CAS  Google Scholar 

  65. A. Lechner, Y.-Q. Yang, R.A. Blacken, L. Wang, A.L. Nolan and J.F. Habener: “No evidence for significant transdifferentiation of bone marrow into pancreatic β-cells in vivo”, Diabetes, Vol. 53, (2004), pp. 616–623.

    PubMed  CAS  Google Scholar 

  66. D. Hess, L. Li, M. Martin, S. Sakano, D. Hill, B. Strutt, S. Thyssen, D.A. Gray and M. Bhatia: “Bone marrow-derived stem cells initiate pancreatic regeneration”, Nat. Biotechnol., Vol. 21, (2003), pp. 763–770.

    PubMed  CAS  Google Scholar 

  67. S.K. Kim and M. Hebrok: “Intercellular signals regulating pancreas development and function”, Genes Develop., Vol. 15, (2001), pp. 11–127.

    Google Scholar 

  68. E. Lammert, O. Cleaver and D. Melton: “Induction of pancreatic differentiation by signals from blood vessels”, Science, Vol. 294, (2001), pp. 564–567.

    PubMed  CAS  Google Scholar 

  69. K. Timper, D. Seboek, M. Eberhardt, P. Linscheid, M. Christ-Crain, U. Keller, B. Muller, H. Zulewski: “Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells”, Biochem. Biophys. Res. Commun., Vol. 341, (2006), pp. 1135–1140.

    PubMed  CAS  Google Scholar 

  70. M. Ruhnke, H. Ungefroren, A. Nussler, F. Martin, M. Brulport, W. Schorman, J.G. Hengstler, W. Klapper, K. Ulrichs, J.A. Hutchinson, B. Soria, R.M. Parwaresch, P. Heeckt, B. Kremer, F. Fändrich: “Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells”, Gastroenterology, Vol. 128, (2005), pp. 1774–1786.

    PubMed  CAS  Google Scholar 

  71. L. Yang, S. Li, H. Hatch, K. Ahrens, J.G. Cornelius, B.E. Petersen and A.B. Peck: “In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells”, Proc. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 8078–8083.

    PubMed  CAS  Google Scholar 

  72. M.B. Herrera, S. Bruno, S. Buttiglieri, C. Tetta, S. Gatti, M.C. Deregibus, B. Bussolati and G. Camussi: “Isolation and characterization of a stem cell population from adult human liver”, Stem Cells, Vol. 24, (2006), pp. 2840–2850.

    PubMed  CAS  Google Scholar 

  73. S. Efrat: “Prospects for gene therapy of insulin-dependent diabetes mellitus”, Diabetologia, Vol. 41, (1998), pp. 1401–1409.

    PubMed  CAS  Google Scholar 

  74. S. Ferber, A. Halkin, H. Cohen, I. Ber, Y. Einav, I. Goldberg, I. Barshack, R. Seijffers, J. Kopolovic, N. Kaiser and A. Karasik: “Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia”, Nat. Med., Vol. 6, (2000), pp. 568–572.

    PubMed  CAS  Google Scholar 

  75. H. Kojima, M. Fujimiya, K. Matsumura, P. Younan, H. Imaeda, M. Maeda and L. Chan: “NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice”, Nat. Med., Vol. 9, (2003), pp. 596–603.

    PubMed  CAS  Google Scholar 

  76. M. Zalzman, S. Gupta, R.K. Giri, I. Berkovich, B.S. Sappal, O. Karnieli, M.A. Zern, N. Fleischer and S. Efrat: “Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells”, Proc. Natl. Acad. Sci. USA, Vol. 100, (2003), pp. 7253–7258.

    PubMed  CAS  Google Scholar 

  77. H. Kojima, T. Nakamura, Y. Fujita, A. Kishi, M. Fujimiya, S. Yamada, M. Kudo, Y. Nishio, H. Maegawa, M. Haneda, H. Yasuda, I. Kojima, M. Seno, N.C. Wong, R. Kikkawa and A. Kashiwagi: “Combined expression of pancreatic duodenal homeobox 1 and islet factor 1 induces immature enterocytes to produce insulin”, Diabetes, Vol. 51, (2002), pp. 1398–1408.

    PubMed  CAS  Google Scholar 

  78. E. Roche, M.P. Sepulcre, J.A. Reig, A. Santana and B. Soria: “Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells”, FASEB J., Vol. 19, (2005), pp. 1341–1343.

    PubMed  CAS  Google Scholar 

  79. S. Ferron, H. Mira, S. Franco, M. Caro-Jaimez, E. Bellmunt, C. Ramirez, I. Farinas and M.A. Blasco: “Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells”, Development, Vol. 131, (2004), pp. 4059–4070.

    PubMed  CAS  Google Scholar 

  80. A.G. Smith: “Culture and differentiation of embryonic stem cells”, J. Tissue Cult. Meth., Vol. 13, (1991), pp. 89–94.

    Google Scholar 

  81. E. Roche, M.P. Sepulcre, R. Ensenat-Waser, I. Maestre, J.A. Reig and B. Soria: “Bioengineering insulin-secreting cells from embryonic stem cells: a review of progress”, Med. Biol. Engineer. Comp., Vol. 41, (2003), pp. 384–391.

    CAS  Google Scholar 

  82. B. Soria, A. Skoudy and F. Martín: “From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus”, Diabetologia, Vol. 44, (2001), pp. 407–415.

    PubMed  CAS  Google Scholar 

  83. A. Shiroi, M. Yoshikawa, H. Yokota, H. Fukui, S. Ishizaka, K. Tatsumi and Y. Takahashi: “Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone”, Stem Cells, Vol. 20, (2002), pp. 284–292.

    PubMed  CAS  Google Scholar 

  84. P. Vaca, F. Martin, J.M. Vegara-Meseguer, J.M. Rovira, G. Berna and B. Soria: “Induction of differentiation of embryonic stem cells into insulin secreting cells by fetal soluble factors”, Stem Cells, Vol. 24, (2006), pp. 258–265.

    PubMed  CAS  Google Scholar 

  85. S. Assady, G. Maor, M. Amit, J. Itskovitz-Eldor, K.L. Skorecki and M. Tzukerman: “Insulin production by human embryonic stem cells”, Diabetes, Vol. 50, (2001), pp. 1691–1697.

    PubMed  CAS  Google Scholar 

  86. P. Blyszczuk, J. Czyz, G. Kania, M. Wagner, U. Roll, L. St-Onge, L and A. Wobus: “Expression of Pax4 in embryonic stem cells promotes differentiation of nestinpositive progenitor and insulin-producing cells”, Proc. Natl. Acad. Sci. USA, Vol. 100, (2003), pp. 998–1003.

    PubMed  CAS  Google Scholar 

  87. N. Lumelsky, O. Blondel, P. Laeng, I. Velasco, R. Ravin and R. McKay: “Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets”, Science, Vol. 292, (2001), pp. 1389–1394.

    PubMed  CAS  Google Scholar 

  88. S. Alpert, D. Hanahan and G. Teitelman: “Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons”, Cell, Vol. 53, (1998), pp. 295–308.

    Google Scholar 

  89. C. Vicario-Abejón, M.J. Yusta-Boyo, C. Fernández-Moreno and F. de Pablo: “Locally born olfactory bulb stem cells proliferate in response to insulin-related factors and require endogenous insulin-like growth factor-I for differentiation into neurons and glia”, J. Neurosci., Vol. 23, (2003), pp. 895–906.

    PubMed  Google Scholar 

  90. C. Hernandez-Sanchez, A. Mansilla, E.J. de la Rosa, F. de Pablo: “Proinsulin in development: New roles for an ancient prohormone”, Diabetologia, Vol. 49, (2006), pp. 1142–1150.

    PubMed  CAS  Google Scholar 

  91. D. Melloul, S. Marshak and E. Cerasi: “Regulation of insulin gene transcription”, Diabetologia, Vol. 45, (2002), pp. 309–326.

    PubMed  CAS  Google Scholar 

  92. C. Hernández-Sánchez, A. Mansilla, E.J. de la Rosa, G.E. Pollerberg, E. Martínez-Salas and F. de Pablo: “Upstream AUGs in embryonic proinsulin mRNA control its low translation level”, EMBO J., Vol. 22, (2003), pp. 5582–5592.

    PubMed  Google Scholar 

  93. K.A. D’Amour, A.D. Agulnick, S. Eliazer, O.G. Kelly, E. Kroon, E.E. Baetge: “Efficient differentiation of human embryonic stem cells to definitive endoderm”, Nat. Biotechnol., Vol. 23, (2005), pp. 1534–1541.

    PubMed  CAS  Google Scholar 

  94. S. Tada, T. Era, C. Furusawa, H. Sakurai, S. Nishikawa, M. Kinoshita, K. Nakao, T. Chiba and S.-I. Nishikawa: “Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture”, Development, Vol. 132, (2005), pp. 4363–4374.

    PubMed  CAS  Google Scholar 

  95. K.A. D’Amour, A.G. Bang, S. Eliazer, O.G. Kelly, A.D. Agulnick, N.G. Smart, M.A. Moorman, E. Kroon, M.K. Carpenter and E.E. Baetge: “Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells”, Nat. Biotechnol., Vol. 24, (2006), pp. 1392–1401.

    PubMed  CAS  Google Scholar 

  96. B. Soria, E. Roche, G. Berna, T. León-Quinto, J.A. Reig and F. Martín: “Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice”, Diabetes, Vol. 49, (2000), pp. 157–162.

    PubMed  CAS  Google Scholar 

  97. M.G. Klug, M.H. Soonpa, G.Y. Koh and L.J. Field: “Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts”, J. Clin. Invest., Vol. 98, (1996), pp. 216–224.

    PubMed  CAS  Google Scholar 

  98. M. Li, L. Pevny, R. Lovell-Badge and A. Smith: “Generation of purified neural precursors from embryonic stem cells by lineage selection”, Curr. Biol., Vol. 8, (1998), pp. 971–974.

    PubMed  CAS  Google Scholar 

  99. M. Müller, B.K. Fleischmann, S. Selbert, G.J. JI, E. Endl, G. Middeler, O.J. Müller, P. Schlenke, S. Frese, A.M. Wobus, J. Hescheler, H.A. Katus and W.M. Franz: “Selection of ventricular-like cardiomyocytes from ES cells in vitro”, FASEB J., Vol. 14, (2000), pp. 2540–2548.

    PubMed  Google Scholar 

  100. T. León-Quinto, J. Jones, A. Skoudy, M. Burcin and B. Soria: “In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells”, Diabetologia, Vol. 47, (2004), pp. 1442–1451.

    PubMed  Google Scholar 

  101. S.K. Chakrabarti and R.G. Mirmira: “Transcription factors direct the development and function of pancreatic β cells”, Trends Endocrinol. Metab., Vol. 14, (2003), pp. 78–84.

    PubMed  CAS  Google Scholar 

  102. A. Pattyn, A. Vallstedt, J.M. Dias, M. Sander and J. Ericson: “Complementary roles for Nkx6 and Nkx2 class proteins in the establishment of motoneurons identity in the hindbrain”, Development, Vol. 130, (2003), pp. 4149–4159.

    PubMed  CAS  Google Scholar 

  103. A. Kubo, K. Shinozaki, J.M. Shannon, V. Kouskoff, M. Kennedy, S. Woo, H.J. Fehling and G. Keller: “Development of definitive endoderm from embryonic stem cells in culture”, Development, Vol. 131, (2004), pp. 1651–1662.

    PubMed  CAS  Google Scholar 

  104. M. Yasunaga, S. Tada, S. Torikai-Nishikawa, Y. Nakano, M. Okada, L.M. Jakt, S. Nishikawa, T. Chiba, T. Era and S.-I. Nishikawa: “Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells”, Nat. Biotechnol., Vol. 23, (2005), pp. 1542–1550.

    PubMed  CAS  Google Scholar 

  105. G.K.C. Brolén, N. Heins, J. Edsbagge and H. Semb: “Signals from the embryonic mouse pancreas induce differentiation of human embryonic stem cells into insulinproducing β-cell-like cells”, Diabetes, Vol. 54, (2005), pp. 2867–2874.

    PubMed  Google Scholar 

  106. T. Otonkoski, G.M. Beattie, M.I. Mally, C. Ricordi and A. Hayek: “Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells”, J. Clin. Invest., Vol. 92, (1993), pp. 1459–1466.

    Article  PubMed  CAS  Google Scholar 

  107. I. Bai, G. Meredith and B.E. Tuch: “Glucagon-like peptide enhances production of insulin in insulin-producing cells derived from mouse embryonic stem cells”, J. Endocrinol., Vol. 186, (2005), pp. 343–352.

    PubMed  CAS  Google Scholar 

  108. Y. Hori, I.C. Rulifson, B.C. Tsai, J.J. Heit, J.D. Cahoy and S.K. Kim: “Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells”, Proc. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 16105–16110.

    PubMed  CAS  Google Scholar 

  109. H. Noguchi, S. Bonner-Weir, F.Y. Wei, M. Matsushita and S. Matsumoto: “BETA2/NeuroD protein can transduced into cells due to an arginine-and lysisnerich sequence”, Diabetes, Vol. 54, (2005), pp. 2859–2866.

    PubMed  CAS  Google Scholar 

  110. Y. Moritoh, E. Yamato, Y. Yasui, S. Miyazaki and J. Miyazaki: “Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells”, Diabetes, Vol. 52, (2003), pp. 1163–1168.

    PubMed  CAS  Google Scholar 

  111. H. Segev, B. Fishman, A. Ziskind, M. Shulman and J. Itskovitz-Eldor: “Differentiation of human embryonic stem cells into insulin-producing clusters”, Stem Cells, Vol. 22, (2004), pp. 265–274.

    PubMed  CAS  Google Scholar 

  112. M. Polak, L. Bouchareb-Banaei, R. Scharfmann and P. Czernichow: “Early pattern of differentiation in the human pancreas”, Diabetes, Vol. 49, (2000), pp. 225–232.

    PubMed  CAS  Google Scholar 

  113. J. Rajagopal, W.J. Anderson, S. Kume, O.I. Martínez and D.A. Melton: “Insulin staining of ES cell progeny from insulin uptake”, Science, Vol. 299, (2003), p. 363.

    PubMed  Google Scholar 

  114. H.-J. Paek, J.-R. Morgan and M.J. Lysaght: “Sequestration and synthesis: The source of insulin in cell clusters differentiated from murine embryonic stem cells”, Stem Cells, Vol. 23, (2005), pp. 862–867.

    PubMed  CAS  Google Scholar 

  115. M. Lindgren, M. Hällbrink, A. Prochiantz and Ü. Langel: “Cell-penetrating peptides”, Trends in Pharmacol. Sci., Vol. 21, (2000), pp. 99–103.

    CAS  Google Scholar 

  116. H. Noguchi, H. Kaneto, G.C. Weir, S. Bonner-Weir: “Pdx1 protein containing its own antennapedia-like protein transduction domain can transducer pancreatic duct and islet cells”, Diabetes, Vol. 52, (2003), pp. 1732–1737.

    PubMed  CAS  Google Scholar 

  117. J. Dominguez-Bendala, R.L. Pastori, C. Ricordi and L. Inverardi: “Protein transduction: a novel approach to induce in vitro pancreatic differentiation”, Cell. Transplant., Vol. 15 (Suppl. 1), (2006), pp. S85–S90.

    PubMed  Google Scholar 

  118. H. Noguchi and S. Matsumoto: “Protein transduction technology offers a novel therapeutic approach for diabetes”, J. Hepatobiliary Pancreat. Surg., Vol. 13, (2006), pp. 306–313.

    PubMed  Google Scholar 

  119. H. Noguchi and S. Matsumoto: “Protein transduction technology: A novel therapeutic perspective”, Acta Med. Okayama, Vol. 60, (2006), pp. 1–11.

    PubMed  CAS  Google Scholar 

  120. P. Collas and A.-M. Hakelien: “Teaching cells new tricks”, Trends Biotechnol., Vol. 21, (2003), pp. 354–361.

    PubMed  CAS  Google Scholar 

  121. A.-M. Hakelien, K.G. Gaustad and P. Collas: “Transient alteration of cell fate using a nuclear and cytoplasmic extract of an insulinoma cell line”, Biochem. Biophys. Res. Commun., Vol. 316, (2004), pp. 834–841.

    PubMed  CAS  Google Scholar 

  122. N. Lavon, O. Yanuka and N. Benvenisty: “The effect of over expression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells”, Stem Cells, Vol. 24, (2006), pp. 1923–1930.

    PubMed  CAS  Google Scholar 

  123. I. Meivar-Levy and S. Ferber: “Rgenerative medicine: using liver to generate pancreas for treating diabetes”, Isr. Med. Assoc. J., Vol. 8, (2006), pp. 430–434.

    PubMed  Google Scholar 

  124. E.H. Leiter and M. von Herrath: “Animal models have little to teach about type 1 diabetes: 2. In opposition to this proposal”, Diabetologia, Vol. 47, (2004), pp. 1657–1660.

    PubMed  CAS  Google Scholar 

  125. B.O. Roep and M. Atkinson: “Animal models have little to teach us about type 1 diabetes: 1. In support of this proposal”, Diabetologia, Vol. 47, (2004), pp. 1650–1656.

    PubMed  CAS  Google Scholar 

  126. L. Chatenoud: “One step towards restoration of self-tolerance in human autoimmune diseases”, Med. Sci. (Paris), Vol. 23, (2007), pp. 167–172.

    Google Scholar 

  127. C. Ramirez-Castillejo, F. Sanchez-Sanchez, C Andreu-Agullo, S.R. Ferron, J.D. Aroca-Aguilar, P. Sanchez, H. Mira, J. Escribano and I. Farinas: “Pigment epithelium-derived factor is a niche signal for neural stem cell renewal”, Nat. Neurosci., Vol. 9, (2006), pp. 331–339.

    PubMed  CAS  Google Scholar 

  128. S. Miyazaki, E. Yamato and J. Miyazaki: “Regulated expression of Pdx1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells”, Diabetes, Vol. 53, (2004), pp. 1030–1037.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Roche.

About this article

Cite this article

Roche, E., Ramírez, M., Ramírez-Castillejo, C. et al. Stem cell potential for type 1 diabetes therapy. cent.eur.j.biol. 2, 449–480 (2007). https://doi.org/10.2478/s11535-007-0035-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-007-0035-9

Keywords

Navigation