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BEYOND SEM: GENERAL LATENT VARIABLE MODELING 

Bengt. O. Muthen* 

This article gives an overview of statistical analysis with latent variables. Us­
ing traditional structural equation modeling as a starting point, it shows how the 
idea of latent variables captures a wide variety of statistical concepts. including 
random effects. missing data, sources of v ariation in hierarchical data. finite mix­
tures. latent classes. and clusters. These latent variable applications g o beyond 
the traditional l atent variable useage in psychometrics with its focus on measure­
ment error and hypothetical constructs measured by multiple indicators. The 
article argues for the value of integrating statistical and psychollletric modeling 
ideas. Different applications a re discussed in a unifying framework that brings 
together in one general model such different analysis types as factor models, 
growth curve models. lllultilevel models. latent class models and discrete-t ime 
survival models. Several possible combinations and extensions of these models 
are made clear due to the unifying framework. 

1. Introduction 

This art icle gives a brief overview of stat istical analysis wit h latent variables. 
A key feature is that well-known modeling with continuous latent variables is ex­
panded by add ing new developments also including categorical latent variables. 
Taking traditional structural equation modeling as a st arting point, the article 
shows the genera lity of latent variables. being able t.o capture a wide variety of 
st atistical concep ts, including random effects, missing data , sources o f variation 
in hierarchica l data, finite mixtures, latent classes, and clusters. These latent 
variable applications go beyond the traditional latent va riable use age in psycho­
metrics with its focus on measurement error and hypothetical constructs measured 
by multiple indicators . 

The article does not discuss estimation and testing but focuses on m odeling 
ideas and connections between different modeling tradit ions. A few key applica­
tions will be discussed briefly. Although not going into details. the presenta tion 
is stat istically-oriented . For less technical overviews and fur ther applications of 
new d evelopments using categorical latent variables, see. e.g .. 1IuthCn (2001a. b ) 
and Muthen and :tvluthen (2000) . All analyses are performed using the T\Iplus 
program (MutMn & MutMn, 1998-2001) and Mplus input, output. and data for 
these examples are available at www.statmodel.com/ mplus/examples/ penn.html. 

One aim of t he article is to inspire a b etter integration of psychometric mod­
eling ideas into mainstream statistics and a better use of statistical analysis ideas 
in latent variable modeling. Psychometrics and statistics have for too long been 
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developed too separately and both fields can benefit from input from the ot.her. 
Traditionally, psychometric models have been concerned with measurement error 
and latent variable constructs measured with multiple indicators as in factor anal­
ysis. Structural equation modeling (SE1\,1) took factor analysis one step further 
by relating the con8truct8 to each other and to covariates in a system of linear 
regressions thereby purging the "structural regressions" of biasing effects of mea­
surement error. The idea of using systems of linear regressions emanated from 
supply and demand modeling in econometrics and path analysis in biology. In 
this way. SEl'd consists of two ideas: latent variables and joint analysis of systems 
of equations. It is argued here that it is the latent variable idea that is more 
powerful and more generalizable. Despite its widespread use among applied re­
searchers. SEl\I has still not been fully accepted in mainstream statistics. Part 
of this is perhaps due to poor applications claiming the establishment of causal 
models and part is perhaps also due to strong reliance on latent variables that 
arc only indirectly defined. The skepticism about latent variables is unfortunate 
given that, as shown in this article, latent variables are widely used in statistics. 
although under different names and different forms. 

This article argues that by emphasizing the vehicle of latent variables. psy­
chometric modeling such as SEM can be brought into mainstream statistics. To 
accomplish this, it is necessary to dearly show how many statistical analyses 
implicitly utilize the idea of latent variables in the form of random effects. compo­
nents of variation. missing data. mixture components, and clusters. To this aim. 
a general model is discussed which integrates psychometric latent variable models 
with latent variable models presented in the statistical literature. The generality 
of the model is achieved by considering not only continuous latent variables but 
also categorical latent variables. This makes it possible to unify and to extend a 
\vide variety of common types of analyses, including SEM. growth curve modeling, 
multilevel modeling, missing data modeling. finite mixture modeling, latent class 
modeling. and survival modeling. The general model is shown schematically in 
Figure 1. The general framework (D) is represented by the square. while special 
cases (A. B. C) to be discussed in the article are shown in ellipses. The gen­
eraJ framework is drawn from ]\Iuthen and l'vIuthen (1998-2001; Appendix 8) as 
implemented in the Mplus computer program (www.statmodel.com). It should 
be noted that Figure 1 is a simplification. For example. the general framework 
includes direct effects from c to u. from c to y. and allows c to also influence 
regression and variance parameters in the u and y parts of the model. It is hoped 
that the use of a single modeling and software framework makes latent variable 
modeling more accessible to both statisticians and substantive researchers. Statis­
ticians can more easily see connections between latent variable uses that they are 
accustomed to and psychometric uses. Substantive researchers can more easily 
focus on the research problem at hand rather than learning a multitude of model 
specification systems and software languages. 

The article is structured as follows. Section 2 discusses framework A of the 
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D 

Figure 1: A general latent variable modeling framework 

general model. This framework corresponds to the more well-known case of con­
tinuous latent variables. Sub-sections discuss the modeling of measurement error 
and measurement invariance in convcntional SEM, random effects in growth mod­
eling, and variance components in multilevel modeling. Section 3 discusses frame­
work B introducing categorical latent variables, including latent class analysis and 
latent class growth analysis. A latent class analysis example is presented where 
individuals are classified based OIl their antisocial behavior. Section 4 discusses 
framework C, including latent profilc models and models that combine continuous 
and categorical latent variables such as growth mixture models. A growth mix­
ture example is presented where children are classified into a problematic class 
based on their reading development in Kindergarten and second grade. Section 
5 discusses the general framework D, presenting new types of models, including 
modeling with missing data on a categorical latent variable in randomized trials. 
Section 6 concludes. 

2. Modeling Framework A: Continuous Latent Variables 

Consider the special case A of the general modeling framework shown in Figure 
1. Framework A is characterized by using continuous latent variables, denoted by 
the vector 77, shown as a circle in ellipse A in Figure 1. Here, latent variables are 
used to represent constructs that have fundamental substantive importance but 
are only measured indirectly through multiple indicators that capture different 
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aspects of the constructs. 
As a first step, a general SEM formulation of framework A is presented, fol­

lowed by the key analysis areas of random effects modeling and variance compo­
nent modeling. 1) 

The measurement part of the model is defined in terms of the p-dimensional 
continuous outcome vector y. 

Yi = 1/ + A "1i + K Xi + ci· (1) 

where "1 is an m-dimensional vector of latent variables, x is a q-dimensional vector 
of covariates. f. is a p-dimensional vector of residuals or measurement errors which 
are uncorrelated with other variables, 1/ is a p-dimensional paramet.er vector of 
measurement intercepts, A is a p x Tn parameter matrix of measurement slopes or 
factor loadings, and K is a p x q parameter matrix of regression slopes. Usually, 
only a few of the elements of K have nonzero elements, where a non-zero row 
corresponds to a y variable that is directly influenced by one or more x variables. 
The covariance matrix of f. is denoted e. The structural part of the model 
is defined in terms of the latent variables regressed on each other and the q­
dimensional vector x of independent variables, 

(2) 

Here, a is an Tn-dimensional parameter vector, B is an Tn x Tn parameter matrix 
of slopes for regressions of latent variables on other latent variables. B has zero 
diagonal elements and it is assumed that I - B is non-singular. Furthermore, 
r is an Tn x q slope parameter matrix for regressions of the latent variables on 
the independent variables. and ( is an m-dimensional vector of residuals. The 
covariance matrix of ( i s denoted q,.. In line with regression analysis, the marginal 
distribution of x is not modelled bllt is left unrestricted . This leads to the mean 
and covariance structures conditional on x. 

1/ + A (I - B)-1 a + A (I - B)-1 r x + K x. (3) 

A (I - B )-1 q,. (I - B),-1 A' + e. (4) 

\Vith the customary normality assumption of y given x , the parameters of the 
model are estimated by fitting (3) and (4) to the corresponding sample quantities . 
This is the same as fitting the mean vector and covariance matrix for the vector 
(y ,x), to the sample means, variances, and covariances for (y , x), (Joreskog & 
Goldberger , 1975). Here, the ma..ximum-likelihood estimates of J..L x and :En are 
the corresponding sample quantities. 

examples of framework A models are given at 
www.statmodel.com/mplus/examples/ continuous.html. 
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Joint analysis of independent samples from multiple groups is also possible, 
a,.'lsuming different degrees of parameter invariance across groups. In particular, 
full or partial invariance of the measurement parameters of v and A is of interest 
in order to study group differences with respect to 0: and \[I. 

From an application point of view, the modeling in (1), (2) is useful for purging 
regression relationships of detrimental effects of measurement error when multiple 
indicators of a construct are available. I\Ieasurement errors among the predictors 
are well-known to have particularly serious effects. but the modeling is also useful 
in examining a factor model where the measurement errors are among the outcome 
(indicator) variables as when using a factor analysis with covariates C'I\HI\IIC" 
modeling). In this special case, B = 0 in (2). A baseline MIMIC analysis assumes 
K = 0 in (1) and a sufficient number of restrictions on A and \[I to make the model 
identified (in an exploratory analysis, this amounts to using rn 2 restrictions in line 
with exploratory factor analysis). The covariates strengthen the factor analysis in 
two ways (d. Muthen. 1989). First, by making the test of dimensionality stronger 
by using associations not only among the y variables but also between y and x. 
Second, by making it possible to examine the extent of measurement invariance 
across groups defined by different values on x. Measurement non-invariance across 
groups defined by Xk (e.g. Xki = 0/1 for individual i) with respect to an outcome 
Yj is captured by Kjk -I- 0, reflecting a group-varying intercept. Vj + Kjk Xk. 

The model of (1) - (4) is typically estimated by maximum-likelihood (ML) un­
der the assumption of multivariate normality. Browne and Arminger (1995) give 
an excellent summary of modeling and estimation issues for this model. This is 
the analysis framework used for the last 20 years by conventional SEM computer 
programs such as A1\10S, EQS, and LISREL. More recently, ML estimation as­
suming missing at random (MAR) in the sense of Little and Rubin (1987) has 
been introduced in SEM software. 

Browne and Arminger (1995) also discuss the case where some or all of the 
y outcomes are categorical. The case of categorical outcomes has been further 
treated in Muthen (1984. 1989) with an emphasis on weighted least-squares es­
timation, including a new approach presented in Muthen, DuToit. Spisic (1997). 
Mplus includes modeling with both continuous and categorical outcomes y.2) 

Drawing on I\Iuthen (1996) and Muthen and Christofferson (1981). I\Iplus pro­
vides a lIlore flexible parameterization than conventional SEM software in terms of 
its categorical outcome modeling for longitudinal data and multiple-group analysis 
using threshold measurement parameters that allow for partial invariance across 
time and group. For connections ''lith item response theory, sec. e.g .. I\Iuthen 
(1988). IvIuthen. Kao and Burstein (1991). and Takane and DeLeeuw (1987). 

For an overview of conventional SEM with continuous outcollles, see, e.g. 
Bollen (1989). For examples of SEI\I analysis in behavioral research. see. e.g .. 

examples are given at www.statmodel.com/mplus/examples/categorical.html. 
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.MacCallum and Austin (2000). 

2.1 Random effects growth modeling 

The use of random effects is another example of modeling with continuous 
latent variables. In mainstream statistics, random effects are used to capture 
unobserved heterogeneity among subjects. That is, individuals differ in systematic 
ways that cannot be. or at least have not been. measured. Unlike the case of 
psychometric latent variable contexts. however. the random effects are typically 
not thought of as constructs of primary interest. and there is typically not an 
attempt at directly measuring the random effects. 

2.1.1 A growth modeling example 

Growth modeling is an interesting example of random effect modeling where 
the heterogeneity concerns individual differences in trajectories. Consider an ex­
ample from reading research. The data are from a cohort-sequential reading study 
of 945 children in a sample of Texas schools, following them from Kindergarten 
through second grade. In Kindergarten a phonemic awareness score was mea­
sured as a reading precursor skill. In grades 1 and 2, word recognition scores were 
collected. All measures were collected at four times during the school year. At 
the end of grade 2, standardized reading and spelling scores were also recorded. 
These data will also be used to illustrate growth mixture modeling in framework 
C. Figure 2 shows observed individual trajectories on a phonemic awareness score 
for Kindergarten children divided into the upper and lower decile on the grade 
2 spelling score. The individual variation in the trajectories is clearly seen with 
those in the lower spelling decile showing a lower initial and ending status 1Il 

Kindergarten and a lower growth rate than those in the upper spelling decile. 

2.1.2 Alodel,tng issnes 

A modeling example shows the latent variable connections. Let the random 
variables 7)0, 7)1. and 7)2 represent an intercept, a linear. and a quadratic slope. 
respectively. These are coefficients in the regression of the outcome on time and 
the fact that they vary across individuals gives rise to the term random coeffi­
cients or random effects. The random effects capture the individual differences in 
development over time using the Laird and \Vare (1982) type of model 

Yit = Tloi + T)l; (a/ - a) + T)'2i (at - a)2 + ""t :rit + fit, (5) 

Tloi = eto + XiO + (Oi. (6) 

Tili = (tl + :1::;0 + (ii, 

'72i = et2 + {2 :1::iO + (21' 

(7) 

(8) 

where at is a time-related variable, a is centering constant, Xt is a time-varying 
covariate. and Xo is a time-invariant covariate. In multilevel terms (see, e.g .. Bryk 
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Figure 2: Phonemic awareness development in Kindergarten 

& Raudenbush, 2002), (5) is referred to as the level 1 equation, while (6) - (8) are 
referred to as level 2 equations. In mixed linear modeling (see, e.g. Jennrich & 
Sluchter, 1986; Lindstrom & Bates, 1988; Goldstein, 1995) , the model is expressed 
in terms of Yt related to at, X t , and :z:o, inserting (6) - (8) into (5) . 

It is clear that (5) - (8) can be expressed in SEM terms using ( 1) and (2) by let­
t.ing Yi = (Yi l ,Yi2, ... , Y iT )', 'lJi = (r}Ol , l]li,T}2i)' , and X i = (xil, :ri.2: . . . :XiT,l:iO)' . 

'While multilevel modeling views the analysis as a two-level analysis of a univariate 
outcome ;tI, the SEM approach is a single-level analysis of the multivariate vector 
y. This issue will be discussed further in Section 2.2. Furthermore, v = 0 while 
0: contains three free parameters. Alternatively, the equivalent parameterization 
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VI = v2 = ... = VT with Q = (0.0:1,0'2)' may be used. Also. 

h( ! a1 - a (aj - aJ' ) 
a2 - a (a2 - a)2 , 

(9) 

aT - a (at - 0,)2 

showing that growth modeling with random effects is a form of factor analysis with 
covariates. Time-invariant covariates have effects on the factors and time-varying 
covariates have direct effects on the outcomes. \Vhile not typically thought of as 
such. the repeated measures of YI , Y2 ,' .. ,YT can be seen as multiple indicators o f 
t he random effects, or growth factors as they are referred to in the latent variable 
literature. One may wonder why a latent variable model with such a restricted 
A matrix as in (9) , with no free parameters. would ever be realistic. But it has 
been found that this model often captures the essential feat ures of growth. In 
the latent variable framework however. it is easy to allow deviations from the 
functional growth form by estimating some of the loadings. 

Multilevel and mixed linear modeling traditions consider a more general form 
of (5), 

2 
Yit = 170i + 17li (ail - a) + 172i (ait - a) + " .j Xi I + f i l , (10) 

where ail indicat.es the possibility of individually-varying times of observation 
and the slope Ki is yet another random effect. These traditions treat (ait - a) as 
data, whereas conventional SEM software treats (at - a) as parameters. This is 
the only way that random slopes can be handled in conventional SE:t'vI. In (10), 
17li . 172i' and Ki are random slopes for individually-varying variables a and x. As 
pointed out in Raudenbush (2001) such modeling cannot be summarized in terms 
of mean and covariance st ructures. Unlike (4), the variance of y conditional on 
the a and x: variables varies as a function of these variables. In principle, however. 
this points to a shortcoming of conventional SEM software, not a shortcoming 
of latent variable modeling. Drawing on Asparouhov and 1Iuthen (2002), Mplus 
incorporates individuallY'-varying times of observations and random slopes for 
time-varying covariates as in (10) .:3) 

rvlainstream statistics also takes an interest in 'what psychometricians call fac­
tor scores, i.e. estimates of 'rJ i values to be used for est imation of individual growth 
curves. Both fields favor empirical Bayes estimates. referred to as the regression 
method in psychometrics. 

It follows that there are several advantages of placing the growth model in a 
latent variable context . For example. t.he psychometric idea of a latent variable 
construct is not ut.ili zed in t he growth model of (5) - (8). Although the y out­
comes are manifestations o f growth. a psychometric approach could in principle 

3)These features are included in Version 2.1 to be released Spri ng 2002 as a free upgrade for 
Version 2 users. 
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seek specific indicators of the growth factors, for instance measuring indicators 
of growth potential at the outset of the study. all approach that does not seem 
to have been pursued. A more common situation is that a researcher wants to 
study grO\\Tth in a latent variable construct measured with multiple indicators. 
The model specification is as follows, for simplicity shown for a linear model with 
a single latent variable construct 1}it. 

Let Yijt denote the outcome for individual i. indicator j. and timepoint t, and 
let Tht denote a latent variable construct, 

Level-1 a (measurement part) : 

Yijt = Vj t + Aj t 1}i t + fijt , 

Level-1 b : lli t = 1}Oi + 1]1; at + (it, 

Level-2a : 1]0; = no + :0 Xi + (Oi, 

Level-2b : 'IIi = 0:1 + {I Xi + (Ii· 

(11 ) 

(12) 

(13) 

(14) 

In line with the second parameterization given above for a single outcome, 
measurement invariance is specified by using time-invariant indicator intercepts 
and slopes: 

Vjl = Vj2 = ... = VjT = Vj , 

AJ 1 = Aj2 = ... = AjT = A]' 

(15) 

(16) 

setting the metric of the latent variable construct by Al = 1. The intercept of the 
level-2a equat ion is fixed at zero, 0:0 = O. V(Eijd and V'((it) may vary over time. 
Structural differences are captured by letting E(1]id and V(rJit ) vary over time. 
\Vith more than one population. across-population measurement invariance would 
be imposed and 0:0 fixed to zero only in the first population. Multiple-indicator 
growth modeling has the advantage t hat changes ill measurements can be made 
over time, assuming measurement invariance for a subset of indicators that are 
maintained between adjacent time points. 

Other advantages of growth modeling in a latent variable framework includes 
the ease with which to carry out analysis of multiple processes, both parallel in 
time and sequential, as well as multiple groups. Growth factors may b e regressed 
on each other using the B matrix in (2), for example studying growth while 
controlling for not only observed c:ovariates but also initial status. 110re generally, 
the growth model may be only a part of a larger modeL including for instance a 
factor analysis measurement part for covariates measured with errors. or including 
a m ediational path analysis part for variable influencing the growth factors, or 
includiug a set of variable that are influenced b y the grmvth process. 

For examples of growth modeling in a latent variable framework, see, c.g., 
Muthen and Khoo (1998) and Muthen and Curran (1997). The recent Collins and 
Sayer (2001) book gives applied contributions from several different traditions. 
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2.2 Component8 of variation in hierarchical data 

Latent continuous variables are frequently used in statistical modeling of hi­
erarchical data. Here. latent variables are used to correctly reflect the sampling 
procedure with latent variables representing sources of variation at different levels 
of the hierarchy. 

It is instructive to consider a simple ANOVA model because it clearly shows re­
lationships between factor analysis. growth modeling. and more general multilevel 
latent variable models. 

Consider the nested. randolll-effects ANOVA, 

Yij = V + 'Ii + fij :i = L 2 ..... n : j = L 2 .... , J. (17) 

Here. i is the mode of variation for which an independent sample is obtained. 
while j is clustered within i. Typical examples are individuals observed \vithin 
households and students observed within classrooms. The different sources of 
variation are captured by the latent variables 1] and f. If instead j = 1,2, ... , ni, 

there is missing data on some of the J measures. 
Consider the covariance and variances for j = k and j = l, 

COV(Yik: Yil) = 1'(1]). 

V(Yik) = v(Yid = V(17) + VeE), 

resulting in the intraclass correlation 

(18) 

(19) 

(20) 

The intraclass correlation is frequently considered in the context of cluster sam­
pling. The intraclass correlation increases for increasing between-cluster variation 
VC'I) relative to total variation. Or. using equivalent homogeneity reasoning, the 
intraclass correlation increases when the within-cluster variation V(E) is small. 
In cluster samples. the intradass correlation is used to describe the lack of in­
dependence among observations and llsed when computing design effects. The 
simple model of (17) summarizes some key latent variable modeling issues in a 
nutshelL showing that factor analysis, growth modeling, and multilevel modeling 
are variations on the same theme. 

I t is clear that (17) can be seen as a special case of factor analysis in the 
SEl\I framework of (1). (2) with a single factor and A = (L 1. ... , I)'. Instead 
of thinking of the J units within each cluster as individuals as in (17), the J Y 
variables are now multiple indicators measured on the same individuaL Carrying 
this idea back to (17). this means that the individuals within a cluster can be seen 
as indicators measuring cluster characteristics. 

\Vhen Yj are repeated measures over time, j = t. (17) represents a growth 
model with random intercepts. The repeated measures take the role of multiple 
indicators measuring the random intercept growth factor. For example, t.he model 
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may represent blood pressure measurements on individuals where in a short time 
span there is no increasing or decreasing trend. The focus is on the construct of 
"long-term blood pressure level", e.g. for predicting later health outcomes. The 
E residuals represent measurement error as well &'3 time-specific variation, both of 
which may bc irrelevant for the prediction. 

It was noted earlier that growth modeling in the SEM framework leads to 
single-level analysis because a multivariate analysis of y is carried out. The non­
independence among repeated measures within an individual indicated by the 
intraclass correlations is modeled by the growth factors influencing the outcome 
at difl'erent time points. This i::; analogous to factor analy::;is. The same multi­
variate analysis approach may be used for more general multilevel modeling with 
latent variables, for example multilevel factor analysis and multilevel growth mod­
eling, referred to as 3-levelmodeling in the multilevel literature. The multivariate 
approach is suitable for situations where there are relatively few cluster members, 
such as with analysis of spouses. siblings. or analysis of twins in behavioral genet­
ics. For a recent application to growth modeling of alcohol use among siblings, 
see Khoo and Muthen (2000). The multivariate approach provides very flexible 
modeling where the relationships among units within a cluster can be modeled. 
In Khoo and t..Iuthen (2000) the growth factors of a younger sibling are regressed 
on those of an older sibling. The cluster units can also have different regressions 
on covariates. Different numbers of cluster units for different clusters can be han­
dled via missing data. although different models may be relevant for clusters of 
different size (i.e. two-sibling homes may have a different dynamics than homes 
with many siblings). With more than a couple of cluster units, however, the 
multivariate approach becomes computationally cumbersome. For instance with 
10 measures per student with 15 students per cla.ssrooms, a multivariate vector 
of length 150 would have to be analyzed. As an alternative, multilevel modeling 
makes a simplifying assumption of cluster units being statistically equivalent as 
shown below. 

Assume c = L 2 ..... C independently observed clusters with i = L 2, ... , rlc indi­
vidual observations within duster c. Let z and y represent group- and individual­
level variables. Arrange the data vector for which independent observations are 
obtained as 

d ' (' " ') c = Zc, Y cl , Y c2 , ... , Yen e ' 

where we note that the length of de varies across clusters. The mean vector and 
covariance matrix are 

[JLz', Inc' g JLy'] (21 ) 

symmetric ] 
Ineg + Inc g . 

(22) 

The covariance matrix shows that the usual i.i.d assumption of simple random 
sampling is modified to allow for non-independent observations within clusters and 
that this non-independence is modeled by the matrix in line with the nested 
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ANOVA model of (17). In (21) and (22) the sizes of the arrays arc determined by 
the product nc x p where p is the number of observed variables. l\IcDonald and 
Goldstein (1989) pointed out that a great reduction in size is obtainable, reducing 
the ML expression 

to 

c 
{In I I + (de - J.LdJ' -1 (de - J.LdJ} 

c=1 

D 

L Cd {In I I + tr[ -1 (SBd + nd (Vd - J.L)(Vd - J.L)')]} 
d 

where d sums over clusters with distinct cluster sizes (for details, see Muthen, 
1990). 

MutMn (1989, 1990. 1994) showed how SEM soft\'.rare can be used for analyzing 
models of this type. This is referred to ili'i 2-level modeling in a latent variable 
framework. Here, J.L, and are structured in terms of SEM parameter 
arrays based on (1) and (2). The analysis can be carried out using the Mplus 
program. 

In multilevel terms. this type of model may be viewed as a random intercept 
model ill line with (17) because of the additivity = + As mentioned 
earlier, the inclusion of random slopes leads to models that cannot be summarized 
in terms of mean and covariance structures as done above (Raudenbush. 2001). 
Nevertheless, random slopes can be incorporated into 2-levellatent variable mod­
eling (see Asparouhov &= l\Iuthen, 2002). 

3-level modeling is also included in the framework of (21) and (22) when one 
of the levels can be handled by a multivariate representation. as in the case of 
growth modeling in line with Section 2.1. Latent variable growth modeling in 
cluster samples is discussed in MutMn (1997). 

For examples. see, e.g., Muthen (1991) with an application of multilevel factor 
analysis and MutMn (1989) with an application to SEl\1. Further examples are 
given in Hecht (20(H) and Kaplan and Elliott (1997). 

3. Modeling Framework B 

Consider next the special case B of the general modeling framework shown 
in Figure 1. Framework B is characterized h;v using categorical latent variables. 
denoted by the circle c in Figure 1 (the circle denoted TJu will be discussed later 
on). The choice of using a categorical latent variable instead of a continuous 
latent variable is lllore fundamental than the corresponding choice of proper scale 
type for observed outcomes. The addition of categorical latent variables to the 
general framework in Figure 1 opens up a whole new set of modeling capabilities. 
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In mainstream statistics, this type of modeling is referred to as finite mixture 
modeling. In the current article, the terms latent class and mixture modeling will 
be uoed interchangeably. As with continuouo latent variables, categorical latent 
variables are used for a variety of reasons as will now be shown. 

As a first step, a general modeling representation of framework B as used 
in I'vlplus (Muthen & l\Iutben , 1998-2001) is presented. This is followed by a 
discussion of four special cases: latent cl i::1SS analysis. latent class analysis with 
covariates, latent class growth analysis, latent transition analysis. and logistic re­
gression mixture analysis. :'Iethodological contributions to these areas have been 
made in separate fields often without sufficient connections and without sufficient 
connections to modeling in other frameworks. For example, until recently, model­
ing developments for continuous latent variables in framework A and categorical 
latent variables in framework B have been kept almost completely separate.4) 

Let C denote a latent categorical variable with K classes, Ci = (Cd, Cn , ... , ciK )'. 

where Cik = 1 if individual i belongs to class k and zero otherwise. Framework 
B has two parts : C related to x and u related to C and x. c is related to x by 
multinomial logistic regression using the K - I-dimensional parameter vector of 
logit intercepts etc and the (K - 1) x q parameter matrix of logit slopes r c : where 
for k = 1, 2, ... , K 

X i e k 

P (Cik = llxi) = -----,-:""7, --:-::- , 
"K eQc) +/c] Xi ' 
LJ=l 

(23) 

where the last class is a reference class with coefficients standardized to zero, 

O:CK = 0, / Ck = O. 
For u , conditional independence is assumed given Ci and X i, 

The categorical variable Uij (j = 1, 2, . .. , r) with Sj ordered categories follows 
an ordered polytomous logistic regression (proport.ional odds model) , where for 
categories s = O. L 2, ... , Sj - 1 and T),k ,O = -00, Tj ,k,S j = X , 

Uij = s, i f Tj,k, s < uij :S Tj,k.s + l , 

P(UiJ = SICi,xd = Fs+ 1('uTj ) - Fs(uij ), 

F (u*) - __ 1,..-----c::7 
S - 1 + e-(Ts-U*)' 

(25) 

(26) 

(27) 

where for ui = (uil,ui2,··· ,uir)', T7ui = C'/Ul i , ''lU2, , ···,T/Uj,)'' and conditional on 
class k, 

u; = A Uk T7ui + KUk X i, 

T7ui = Q Uk + r Uk X i, 

4) Mplus examples of framework B m odels are given at 
www.statmodel.com/mplus/examples/mixture.html. 

(28) 

(29) 
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where A 'uk is an l' x f logit parameter matrix varying across the K classes, K Uk 

is an r x q logit parameter matrix y-arying across the K classes, au,. is an f x 1 
vector logit parameter vector varying across the J( classes, and r Uk is an f x q logit 
parameter matrix varying across the K classes. The thresholds may be stacked 
in the LJ=l (5j - 1) x 1 vectors Tk varying across the K classes. 

It should he noted that (28) does not include intercept terms given the presence 
of T parameters. Furthermore. T parameters haye opposite signs thanu* in (28) 
because of their interpretation as thresholds or cut points that a latent continuous 
response variable u' exceeds or falls below (see also Agresti. 1990. pp. 
For example. with a binary 1.[ scored Oj 1 (26) leads to 

. 1 
P(u.=llc.x ) =l- ' )' . 1 + e-\T - U' 

(30) 

(31) 

For example. the higher the T the higher 1.[* needs to be to exceed it, and the 
lower the probability of n = 1. 

Mixture modeling can involve Ilumerical and statistical problems. Mixture 
modeling is known to somet imes generate a likelihood function with several local 
maxima. The occurrence of this depends on the model and the data. It is therefore 
recommended that for a given dataset and a given model different optimizations 
are carried out using different sets of starting values. 

The numerical and statistical performance of mixture modeling benefits from 
confirmatory analysis . T he same kind of confirmatory a n alysis as in regular mod­
eling is possible. using a priori restrictions on the parameters. \Vith mixture mod­
eling, however, there is also a second type of confirmatory analysis. A researcher 
may \'lant to incorporate the hypothesis that certain individuals are known to 
represent certain latent classes. Individuals with known class membership are 
referred to a!'; training data (see also ).Ic:Lachlan & Basford. 1988: Hosmer, 
IVIultiple-grouJ> modeling corresponds to the case of all sample units contributing 
training data so that c is in effect an observed categorical variable. 

In l\lplus. the training data can consists of 0 and 1 class membership values for 
all individuals. where 1 denotes which classes an individual may belong to. Known 
class membership for an individual corresponds to having training data value of 
1 for the known class and 0 for all other classes. Unknown class membership for 
an individual is specified by the value 1 for all classes. \Vi t h class membership 
training data. the cla..<;s probabilities are renormed for each individual to add to 
one over the admissible set of classes. Fractional training data is also allO\ved , 
corresponding to class probabilities adding to uni ty for each individual. \Vith 
fractional training data. the class probabilities are taken to be fixed quantities, 
which reduces the sampling variabilit:,,' accounted for in the standard error cal­
culations. Fractional training data where each individual has a probability of 1 
for one class and ()'s for the other classes is equivalent to training data with cla..ss 
membership value 1 for only one class for each individu al. Using training data 
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with a value of 1 for one class and (rs for the other classes makes it possible to 
perform multinomial logistic regression with an unordered, polytomous observed 
dependent variable using the l\lplus model part where c is related to x. 

S.l Latent class analysis 

In latent class analysis the categorical latent variable is used to represent unob­
served heterogeneity. Here. the particular aim is to find clusters (latent classes) of 
individuals who are similar. It is assumed that a sufficient number of latent classes 
for the categorical latent variable results in conditional independence among the 
observed outcomes. This may be viewed as heterogeneity among subjects such 
that the dependence among the outcomes is obtained in a spuriolls fashion by 
mixing the heterogeneous groups. Because the latent class variable is the only 
cause of dependence among the outcomes, the latent class model is similar in 
spirit to factor analysis with uncorrelated residuals. 

Latent class analysis typically considers categorical indicators u of the latent 
class variable c, using only a subset of modeling framework B. The variables of u 
are binary, ordered polytornous. or unordered polytomous. Due to the conditional 
independence specification, the joint probability of all u's is 

P(UI,U2, ... ,Ur) = 
K 

L P(c = k) P(ullc = k) P(ll2lc = k) ... P(urlc = k). 
k=l 

(32) 

The model has two types of parameters. The distribution of the categorical latent 
variable is represented by P( c = k) expressed in terms of the logit parameters O:q 

in (23). The conditional u probabilities are expressed via logit parameters in line 
with (31) where for a binary U logit = -Tk for class k, i.e. the u* part of (28) is 
not needed. Similar to factor analysis, the conditional U probabilities provide an 
interpretation of the latent cla.<;ses such that some activities represented by the 
different u's are more or less likely in some classes than others. 

The latent class counterpart of factor scores is obtained by posterior probabil­
ities for each individual belonging to all classes as computed by Bayes' formula 

P(c= klul,lL2 ..... Ur) = 
P(c = k) P(ullc = k) P(ll2lc = k) ... P(urlc = k) 

PCllI, U2.···, ur ) 
(33) 

For an overview of latent class analysis. see Bartholomew (1987), Goodman 
(1974) and Clogg (1995). For examples. see, e.g., Muthen (2001b), Nestadt, 
Hanfelt. Liang, Lamacz, Wolyniec and Pulver (1994), Rindskopf and Rindskopf 
(1986), and Uebersax and Grove (1990). 
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3. 1.1 A latent class analysis example of antisocial behavior 

The National Longitudinal Survey of Youth (NLS) collected data on antisocial 
behavior among 16 - 23 year olds. The NLSY administers an instrument with 17 
binary items. l\Iaximum-likelihood estimation by l\lplus was used. Preliminary 
latent class analysis of the 17 items pointed to 9 items that captured 4 differ­
ent latent classes of antisocial behavior. Class 4 is a norma tive class (no high 
probability of endorsing any item). Class is a drug involvement class (pot and 
drug items). Class 2 is a persona.] offense class (fight. threat items). Class 1 is a 
property offense class (shoplift , stealing less than 50. conning someone. stealing 
goods, breaking into property). The profile plot of Figure 3 shows the est.imated 
item probabilities for each of the 4 classes. It should be noted that the classes 
are not ordered in the sense of increasing item probabilities, but involves different 
kinds of antisocial activities. 

\, 
'. , '. 

i '. 

o --- Class 1. 11% 
Class 2. 27% 

x Class 3, 20% 
• Cia •• 4, 41% 

.. . ' , 

X--T:.. , 6 

"'\./:-' 
o 

pot drug thr.at shoplift con goods property 

Item 

Figure 3: Profiles of antisocial behavior 

Table 1 illustrates the use of t.he estimated posterior probabilities for each 
individual in each class. The rows correspond to individuals who have t.he highest 
probability for that class and the entries are the average probabilities in each class . 
High diagonal and low off-diagonal values are desirable for good classification. It 
is seen that class 2 and cla<;s 3 are the hardest to distinguish between with a 
relatively high average class 2 probability of 0.13 for those who have their highest 
probability in class 3. Class 2 is the person offense class (fight, threat) and class 3 
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is the drug class (pot, drug). While Figure 3 shows that the two classes have rather 
different item probabilities on these 4 items. they arc similar on the remaining 5 
items. This suggests that more items are needed to more clearly distinguish these 
two classes. 

Table 1: Classification table for antisocial behavior latent class analysis 

Most Likely Mean Posterior Probabilities 
Class Class 1 Class 2 Class 3 Class 4 

Class 1 0.854 0.074 0.072 0.000 
Class 2 0.042 0.810 0.082 0.066 
Cla.;;s 3 0.052 0.134 0.754 0.061 
Class 4 0.000 0.122 0.051 0.827 

3.2 Latent class analysis with covariates 

Similar to factor analysis with covariates, it is useful to include covariates 
in the latent class analysis. The aim of the latent variable modeling is still to 
find homogeneous groups of individuals (latent classes), but now covariates x are 
included in order to both describe the formation of the latent classes and how 
they may be differently measured by the indicators u. 

The prediction of latent class membership is obtained by the multinomial re­
gression of c on x in (23). This gives information on the composition of the latent 
classes. It avoids biases in the commOll ad hoc 3-step procedure: (1) latent class 
analysis: (2) cla'lsification of individuals based on posterior probabilities: and (:3) 
logistic regression analysis relating classes to covariates. 

The variables of x may also have a direct influence on the variables of u. beyond 
the influence mediated by c. This is accommodated by estimating elements of KUk 

in (28). For example, with a binary u. the model forms the logistic regression of 
u on x for cla'>s k. 

I 
. , 

oglt = -Tie + ""Ie X. (34) 

so that the direct influence of x is allowed to vary across classes. 
It lllay be noted that all features of multiple-group analysis are included in the 

latent class analysis with covariates. with dUlllmy variable covariates representing 
the groups. Here. T parameters are the measurement parameters. (34) shows 
that conditional on class these can vary across the groups, representing for exam­
ple gender non-invariance. The multiple-group examples of Clogg and Goodman 
(1985) can all be analyzed in this way. 

For examples of latent class analysis with covariates, see, e.g., Bandeen-Roche, 
l\IigliorettL Zeger and Rathouz (1997). Fonnann (1992). Heijden. Dressens and 
Bockenholt (1996), fvIuthen and l'vIuthen (2000), and f..Iuthen (2001b). 
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3.2.1 A latent class analysis e:rample continued 

Continuing the antisocial behavior latent class analysis example above, three 
covariatcs from the NLS are added: age, gender , and ethnicity. This example 
is drawn from Muthen and I\Iuthen (2000). These covariatcs are specified to 
influence the probability of class membership using the multinomial regression 
part (23). I\ ieasurement nOllinvaria ncc with respect to the three covariates can 
be studied by including a direct effect. from a covariate to an item but was not 
studied here. Maximum-likelihood estimation b.y Mplus was used. The estimates 
from the multinomial regression predicting class membership can be translated 
into the curves of Figure 4. The estimated item profiles remain approximately 
the same m; in Figure 3 and the class interpretation is t herefore the same. For a 
given age, gender. and ethnicity. F igure 4 shows the probability of membership 
in each class (note t ha t this is not a longitudinal study but the x axis correspond 
to ages represented in this cross-sectional sample). For example, it is seen that 
the normative class 4 is the most likely class for all ages among white women, 
whereas this is not true for the other three groups. 
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Figure 4: Influence of covariates on antisocial behavior classes 
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Table 2 shows the resulting c:lassification table based on estimated posterior 
probabilities. It is seen that the use of covariate information improves the c:lass 
2, class ;) distinction relative to Table 1. 

Table 2: Classification table for antisocial behavior latent c:lass analysis 
with covariates .. 

Most Likely Mean Posterior Probabilities 
Class Class 1 Class 2 Class 3 Class 4 

Class 1 0.859 0.065 0.076 0.000 
Class 2 0.047 0.808 0.087 0.058 
Class 3 0.033 0.067 0.816 0.084 
Class 4 0.000 0.048 0.105 0.846 

S.S Latent class gTOwth analysis 

Latent c:lass growth analysis again uses a categorical latent variable to repre­
sent unobserved heterogeneity, but this time in a form that connects the growth 
modeling discussed in Section 2.1 and the latent c:lass modeling just discussed. 
Here, latent c:lasses are sought that are homogeneous with respect to develop­
ment over time. The latent class growth analysis introduces the continuous latent 
variable 1711 of Figure 1. 

In latent class growth analysis the multiple indicators of the latent classes 
correspond to repeated measures over time. Individuals belong to different latent 
c:lasses characterized by different types of trajectories. Assume for simplicity a 
single outcome at each timepoinL ui = (ltil. lti2 . .... Uit, ... ,ltiT)" and the simple 
growth model corresponding to (28), 

LCl'el - 1 :uTt = T]Oi + T]li at, (35) 

where at are fixed time scores represented in A l1 , 

where T is the number of time periods. Here. 1711 in (28). (29) contains an intercept 
and a slope growth factor \vith differences across classes captured in a llk and 
r 11k Xi of (29). The effects of time-varying covariates can be captured in Kllk of 
(28) . 

It may be noted that the modeling does not incorporate continuous latent 
variables in the form of random effects. but that 17l! is non-stochastic conditional 
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on x. This implies that conditional on x there is zero within-class variation across 
individuals. This limitation can be relaxed in line with the growth modeling of 
Section 2.1. 

With an ordered categorical outcome variable Uit, let Tt.k.s be the sth threshold 
in class k at timepoint t, s = 0, L 2 .... ,St - 1, where Tt.k.O = -x, Tt.k.St = ()O. 

Across-time and across-class measurement invariance is imposed by the threshold 
specification 

Tl.l.s = T2,1,s = ... = TT.l,s = ... = Tl.K,s = ... = TT.K.s, (36) 

for each s value. In the level-2 equation corresponding to (29), the Q mean of 
the intercept growth factorl]oi is fixed at zero in the first class for identification 
purposes. The mean of the intercept growth factor is free to be estimated in the 
remaining classes. 

Latent class growth analysis has been proposed by Nagin and Land (1993); see 
also articles in the special issue of Land (2001). For further examples, see, e.g., 
Nagin (1999), Nagin and Tremblay (2001), and Muthen (2001b). 

3.4 Latent transition analysis 

Latent transition analysis is a form of latent class analysis where the multi­
ple measures of the latent classes are repeated over time and where across-time 
transitions between classes are of particular interest. Here. latent categorical vari­
ables are used to capture fundamental latent variable constructs in a system of 
regression relations akin to SEJ\L 

The latent transition model is an example of the use of multiple latent class 
variables c and is therefore not directly incorporated in the framework specified 
above. Muthen (2001b) showed how multiple latent class variables can be ana­
lyzed using a confirmatory latent class analysis with a single latent class variable 
including all the possible latent class combinations. applying equality restrictions 
among the measurement parameters. Nevertheless. this does not handle multiple 
time points with parameter restrictions such as first-order Markov modeling for 
the latent class variables. Latent transition analysis incorporated in the general 
is a topic for future research. 

An overview of latent transition modeling issues is given in Collins and \Vugal­
ter (1992) and Rehoussin, Reboussin, Liang and Anthony (1998). For examples. 
see. e.g., Collins, Graham, Rousculp and Hansen (1997). Graham. Collins, \Vu­
gaIter, Chung and Hansen (1991). and Kandel, Yamaguchi and Chen (1992). 

3.5 Logistic regression mixture analysis 

Logistic regression analysis with latent classes is interesting to consider as a 
special case of latent class analysis \vith c:ovariates. The model was proposed by 
Follman and Lambert (1989) and considers a single binary u. It may be expressed 
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for cla.'.;;s k as 

loyit = -Tk + "'u x, (37) 

which is a special case of (28) where the logit intercept, i.e. the negative of the 
threshold T, varies across cla..<;s but the slopes do not. 

In (23), , q = 0 so that the covariates are assumed to not influence the class 
membership. Follman and Lambert (1989) considered an application where two 
types of blood parasites were killed with various doses of poison. In this appli­
cation, the assumption of , q = 0 is natural because class membership existed 
before the poison was administered and was not influenced by it. Follman and 
Lambert (1989) discuss the identification status of the model. 

Even in this simple form. however, logistic regression mixture analysis is dif­
ficult to apply in practice, probably because of the limited information available 
with only a single binary 11 in addition to the covariates x. This is most likely why 
the analysis has not caught on in practice. In contrast. latent class analysis with 
covariates using multiple n variables is typically a well-behaved analysis method. 

4. Modeling Framework C 

Consider next the special case C of the general modeling framework shown in 
Figure l. Framework C is characterized by adding categorical latent variables, 
denoted by the circle c in Figure 1, to framework A. Particular models include a 
variety of mainstream statistical and psychometric topics. To be discussed here 
are finite mixture modeling, latent profile analysis, growth mixture modeling, and 
mixture SEM. 

It is interesting to compare framework C with framework B. Framework B can 
be seen as containing models that use latent classes to explain relationships among 
observed variables. A more fundamental idea can. however. be extracted from 
latent class approaches. Different classes can have different parameter values and, 
unlike the latent cla..'is model. even different model types. In other words, the idea 
of unobserved heterogeneity can be taken a step further using categorical latent 
variables. This further step is taken in framework C, and also in the subsequent 
general framework D.5) 

In framework C, the SEl"I parameterization is generalized to multiple latent 
classes. adding a subscript k. This is analogous to the multiple-group situation, 
except that group is unobserved. In what follows, this generalization of (1) and 
(2) will be understood. Here, multivariate normality of y conditional on x and 
class is assumed. This implies that the resulting mixture distribution. not condi­
tioning on class, is allowed to be strongly non-normal. In the :rvIplus framework 
of l\luthen and Muthen (1998-2001: Appendix 8), the mixture modeling allows 

.olrvIplus examples of framework C models are given at 
www.statmodel.com/rnplus/examples/mixture.html. 
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every parameter of framework A to vary across the latent classes. 

4.1 Finite rnixtuT'e rnodehng of multivariate normals 

A straightforward case of framework C is finite mixture modeling of multi­
variate distributions. Here, the continuous latent variables of 'r/ in Figure 1 are 
not used. It is assumed that for class k, y is distributed as N(llk, This 
is a special case of the latent class generalization of (]) where there are no fac­
tors. Ilk = VI", = e/.;. There are two different reasons why such a mixture 
model ,vould be of interest. (i) to fit a non-normal distribution and (ii) to study 
substantively meaningful mixture components (latent classes). 

The flexibility of the normal mixture model to fit highly skewed data was 
recognized already by Pearson (1895); for a review. see l'vIcLachlan and Peel (2000, 
pp. 14-17, 177-179). For example. a lognormal univariate distribution is very well 
fit by a 2-class mixture with equal variances. Figure 5 shows a 2-class example. 
At the top is shmvn the mixture distribution, that is the skewed distribution that 
would be seen in data. At the bottom are shown two normal mixture component 
distributions that when mixed together by the class probabilities r. and (1 - r.) 
perfectly describe the distribution at the top. If the interest is in fitting a model 
to data from the distribution at the top, the 2-class mixture model can be used 
to produce mixed mct..ximum-likelihood estimates, 

iLm = r. p] + (1 - 7r) ih, 
am = r. (Pi + (1) + (1 - i.) + (2) 

(38) 

(39) 

using the subscript Tn to denote the mixed estimates for the distribution at the 
top. The delta method can be used to compute standard errors. The idea of using 
mixed estimates has for example been discussed in missing data modeling using 
the pattern-mixture approach, see, e.g. Little and 'Wang (1996). Hogan and Laird 
(1997), and Hedeker and Rose (20()()). 

In many cases, however. the mixture components have a fundamental sub­
stantive meaning, ,,,,here there are theoretical rea.;;;ons for individuals to behave 
differently and have different antecedents and consequences. Here, mixed esti­
mates such as (38), (:19) are not of interest. but the focus is on the parameters 
of the different mixture component distributions. There may for example be bio­
logical/genetic reasons for the existence of different mixture components. such as 
,,,,ith the two kinds of trypanosomes in Section 3.5. 

11ixture modeling in applications where there are substantive reasons to in­
vestigate different latent classes relates to cluster analysis. Cluster analysis using 
finite mixture modeling has been proposed a.;;; a strong alternative to conventional 
clustering techniques. see, e.g .. McLachlan and Peel (2000). A classic example 
is the Fisher's iris data analyzed in Everitt and Hand (1981). Four measures 
corresponding to sepal and petal lengths and widths were used to classify 150 
iris flowers. Here. there ,,,,'ere three known species of iris present and the interest 
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was in how well the classification could be recovered. This particular example 
also illustrates the possible difficulty ill fitting mixture models with class-varying 
variances, with multiple maxima and possible non-convergence or convergence to 
singular covariance matrices depending on starting values. 

An excellent overview of finite mixture modeling is given in McLachlan and 
Peel (2000). This source abo gives a multitude of examples. The iris data example 
is available at the j,Iplus 'Areb site given above. 

4.2 Latent profile analysis 

In contrast to the analysis of the iris example above, latent profile analysis 
applies a structure to the covariance matrices, assuming llllcorrelated outcomes 
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conditional on class. 

( e", 
0 0 0 

) I:k 9 k 

()22 k 0 0 
( 40) 

0 0 epPk 

\Vith class-varying means ILk' latent profile analysis is therefore analogous to la­
tent class analysis. In actual analyses. models with class-invariant variances in 
(40) are better behaved in terms of convergence. It is interesting to note that the 
latent class analysis does not face this choice given that means and variances of the 
categorical variables of u are not represented by separate parameters. Relation­
ships among latent class, latent profile. and factor analysis models are described 
in Bartholomew (1987), Gibson (1959), and Lazarsfeld and Henry (1968). 

4.,'] Growth mixture modeling 

The growth modeling of Section 2.1 uses continuous latent variables in the 
form of random effects. The continuous latent variables capture unobserved het­
erogeneity in terms of individual differences in growth over time. In many appli­
cations. however. there are more fundamental forms of unobserved heterogeneity 
that cannot be well captured by continuous latent variables but require categor­
ical latent variables. The classes of the categorical latent variable can represent 
latent trajectory classes. Substantive theories motivating latent trajectory classes 
are common in many different fields, such as with normative and non-normative 
development in behavioral research and disease processes in medicine. 

As for latent profile analysis, growth mixture modeling imposes a structure 
on the covariance matrix for each class. Unlike latent profile analysis, however. 
growth mixture modeling does not assume uncorrelated outcomes given class. 
Instead, further heterogeneity within class is represented by random effects that 
influence the outcomes at all time points. causing them to be correlated. 

Assume for example the following quadratic growth model for individual 1 111 

class Ie: (Ie: = L 2, ... ,K). 

2 
Yit = 170; +1]li 0kt +1]2i 0kt + fit· (41 ) 

where Yit (i = L 2 .... . 71: t = L 2 ..... T) are outcomes influenced by the random 
effects r/Oi. 1/1i, and ']2i. In line with Section 2.L the time scores of ° enter into the 
Ak matrix. The residuals fit have a TxT covariance matrix e k . possibly varying 
across the trajectory cla.'ises (k = L 2 ..... K). The random effects are related to 
the covariates x, 

170i = (Yak + Xi + (0;. 

171i = Glk + Xi + (li. 

7]2i = G2k + ';k x; + (2i' 

( 42) 

( 43) 

( 44) 
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The residuals (i have a 3 x 3 covariance matrix'll b possibly varying across classes 
k (k = L 2, ... . K). It is dear that thit; model fits into framework C in line with 
how the growth model fit into framework A. 

The growth mixture model offers great flexibility in across-class parameter 
differences. The different shapes of the latent trajectory classes are typically 
characterized by the class-varying ctk parameters holding Ak class-invariant. Cer­
tain classes may require class-specific variances'll k and e k. In addition, different 
cla.<;ses may have different relationt; to x corresponding to cla.'ls-varying 'Y k coeffi­
cients. 

A special case of the growth mixture model is obtained as a continuous-outcome 
version of the latent class growth analysis presented in Section 3.3. This type of 
modeling, proposed by Nagin and introduced into PROC TRAJ in SAS specifies 
'11k = 0, ek = e I. In contrast, growth mixture modeling allows for individual 
variation within each class through'll k. The latent cla.<;s growth analysis typically 
requires many more classes to fit the same data and often several of the classes 
represent only minor variations in trajectories and not fundamentally different 
growth forms. 

Muthen et al. (in pres..,) present a growth mixture model suitable for random­
ized trials. In conventional growth modeling the treatment effects can be modeled 
as affecting the trajectories after the treatment has started. The Muthen et al. 
generalization addresses the common situation that treatment effects are often 
different for different kinds of individuals. It allows treatment effects to vary 
across latent trajectory classes for the repeated measures. 

For a technical description of growth mixture modeling, see Muthen and Shed­
den (1999) and :tvluthen and Muthen (1998-2001: Appendix 8). For examples, sec, 
e.g. IvIuthen and Shedden (1999), Muthen and :t-.luthen (2000). Muthen (2001a. 
b), Muthen. Brown. Masyn . .10, Khoo. Yallg. Wang. Kellam, Carlin and Liao (in 
press). and Li , Duncan, Duncan and Acock (2001). 

4.3.1 A growth mixture modeling example of reading fa'iiure 

An example clarifies the analysis opportunities presented by growth mixture 
modeling. Section 2.1.1 introduced a r eading data example with phonemic aware­
ness development in Kindergarten related to end of grade 2 spelling performance. 
Figure 2 suggests heterogeneity in the phonemic awareness development. with a 
group of children having a close to zero growth rate in Kindergarten, Reading 
research points to a subgroup of children who experience reading failure by third 
grade, It is therefore of interest to see if signs of a failing group can be 
found earlier. and perhaps as early as end of Kindergarten. Two analyses are 
presented here as illustration (see also :t-.lutlien. Khoo. Francis, & Boscardin. in 
press) . First, a growth mixture analysis with 1 to 5 classes was lnade of the four 
phonemic awareness outcomes. Second, this growth mixture model was extended 
to include in the same analysis the spelling test outcome from the end of sec-
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ond grade. l etting the mean and variance of this out.come vary as a function of 
the lat.ent trajectory classes. Both models clearly fit in framework C. IVla...ximum­
likelihood estimat.ion by l\.Iplus was used. 

A conventional linear, single-dass random effect s growth model fits well in this 
case (X 2(5) = 7.49, n = .582) and shows significant variation in the intercept and 
slope growth factors. Such a good mean and covariance structure fit can. however, 
he obtained even when the true model is a growth mixture model with more than 
one class (see. c.g. l\.Iuthen, 1989) . Fitting linear models with 2.3.4, and 5 latent 
cla<;ses pointed to a steady improvement of the Baye::; ia ll information criterion 
that rewaros a high log likelihood and a low number of parameters. Given the 
particular int.erest in a low. failing class, a choice does not have to be made between 
the 3-, 4 -. and 5-class solutions since they all re::;ulted in the same formation of a 
lowest cla::;::; of 56 '/(. of the ch ildren. Figure 6 shows t he est.imated growth (solid 
li ne) and the corresponding o bserved trajectories, where the latter are obtained 
by using" pseudo-classes", i.e. t he selection of individuals are obtained by random 
draws from their estimated posterior probabilities a<; suggested in Bandeen-Roche 
et a!. (1977) andl\Jutlu§n et a!. (in press). 

Adding the second-grade spelling test to the growth mixture model shows the 
predictive pO'wer of the Kindergarten informatiO'n from two years earlier. The 
extended grO'wth mixture model analysis showed that the means of the spelling 
test were significantly different across the 3 classes. Box plots of the spelling test 
::;cores based on pseudo-class a'SSignments into the 3 classes are given in Figure 7. 

4.4 Mixture SEM 

l\lixture SEM will be ment ioned only briefly III this article. It follows from 
the discussion in Section 2 that mixture SEM and growth mixture modeling fit 
into the same modeling fr amework. l\1ixture SEM includes mixture linear regres­
sion . mixtnre path analysis . factor mixture analysis, and general mixture SEM. 
Consider as an example factor mixture analysis. where for class k 

E (y tJ = Vk + Ak O k, 

V( y d = Ak 'ltl,: + el,:. 

( 45) 

( 46) 

AnalogO'us to multiple-group analysis. a major interest is in across-cla<;s variatiO'n 
in the factor means. variances . and covariances of Ok , 'It k. The model is similar 
to growth mixture analysis in that continuous latent variables, i.e. the factors, 
are llsed to describe correlat ions among the outcomes conditional O'n class as in 
(46) . Lubke. Muthen and Larsen (2001) studied the identifiability of the factor 
mixture mO'dei. The special case of measurement invaria nce fO'r all the O'utcomes, 
l.e. no class variation in v. A. is of particular interest becanse it places the 
factors in the same metric so that Ok: 'It k comparisons a re meaningful. However, 
Lubke, l-.luti1en and Larsen (2001 ) point to analysis difficulties with near-singular 
information matrix estimates when fitting such full invariance models. These 
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difficulties are not shared by the growth mixture model, which typically imposes 
equality of v parameters across time and across class and has few if any free 
parameters in A. 

For overvie\vs and examples of fa.ctor mixture analysis and mixture SEl\L see, 
e.g., Arminger and Stein (1997), Arminger, Stein and Wittenberg (1998), Blafield 
(1980), Dolan and van der l\laas (1998), Hoshino (2001), J edidi, Jagpal and De­
Sarbo(1997), Jedidi, Ramaswamy, DeSarbo and Wedel (1996) , McLachlan and 
Peel (2000), and Yung (1997). 

Class 3, 9% 

' ! 

.,." 

Class 2, 34% 

Clas. 1, 56% 

Figure 6: 3-class growth mixture model for phonemic awareness 
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Figure 7: Box plots for second-grade spelling scores 
in three phonemic awareness classes 

5. Framework D 

Consider next the most general case D of the modeling framework shown in 
Figure 1. Framework D is characterized by adding categorical latent variable in­
dicators u to framework C. Framework D clearly shows the modeling generality 
achieved by a combination of continuous and categorical latent variables. This 
unified framework is an example of the whole being more than the sum of its 
parts. It is powerful not only because it contains many special cases. but also 
because it suggests many new modeling combinations. Particular models include 
a wide variety of statistical and psychometric topics. To be discussed here are 
complier-average causal effect modeling, combined latent class and growth mix­
ture modeling, prediction of distal outcomes from growth shapes, discrete-time 
survival mixture analysis, non-ignorable missing data modeling, and modeling of 
semicontinuous outcomes.5) 

5.1 Complier-average causal effect modeling 

Complier-average causal effect (CACE) modeling is used in randomized tri­
als where a portion of the individuals randomized to the treatment group choose 

filMplus examples of framework D models are given at 
www.statmodel.com/mplus/examples/mixture.htmlas well as at 
www.statmodel.com/mplus/examples/penn.html 
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to not participate ("noncom pliers"). Although developed for this specialized ap­
plication , CACE modeling involves interesting general lat.ent variable modeling 
issues. In particular, CACE modeling illustrates how latent variables are used in 
mainstream statistics to capture missing data on categorical variables. Here, the 
mixture modeling focuses on estimating parameters for substanti vely meaningful 
mixture components. where these mixture components are inferred not only from 
the out.comes but also from auxiliary information. CACE modeling represents a 
transition from framework C to framework D . where in addition to the frame­
work C observed dat.a information, a minimal amount of informat ion 011 cla.;;;s 
membership is added in the form of a single 1l variable observed for part of the 
sample. 

In a randomized t rial , it is common to have noncom pliers a mong those invited 
to treatment: t.hat is, some individuals do not show up for t reatment or do not take 
the medication. Because of randomization, a equal-sized group of noncom pliers 
is also present among control group individuals. although the non-compliance 
status does not manifest itself. The noncomplier and complier groups are typically 
not similar, but may differ with respect to several characteristics such as age, 
education, motivation, etc. The a.<;sessment of treatment effects with respect to 
say the mean of an outcome is t herefore complicated . Four main approaches are 
common. First, "intent-ta-treat" analysis makes a straightforward comparison of 
the treatment group to the control group. This may lead to a diluted t reatment 
effect given that not everyone in this group has received treatment. Second, one 
may compare compliers in the treatment group with the controls. Third, compliers 
in the treatment group may be compared to the combined group of noncom pliers 
in the treatment group and everyone in the control group. Fourth, compliers in 
the treatment group may be compared to compliers in the control group. Only the 
last approach compares the same subset of people in the treatment and control 
groups, but presents the problem that this subset is not observed in the control 
group. This problem is solved by CACE mixture modeling. 

CACE modeling can b e expressed by t he framework D combination of (1), (2) 
generalized to include the lat.ent. cla.ss addition of (n) - (29). The probability of 
membership in the two latent classes as a function of covariates may be expressed 
by the logistic regression (23), while the outcome y is expressed by the mixed 
linear regretlsion. 

(47) 

where I denotes the 0/1 treatment/control dummy variable. Here, Ok captures 
the different y means for individuals in the absence of treatment. CACE modeling 
typically taketl rk = 0 for the noncomplier class. 

In statistical analysis this situation is v iewed as a missing data problem. Data 
are missing o n the binary compliance variable for individuals in the control group. 
while data on this variable are present for the treatment group. The frame­
work D conceptualization is that non-compliance status is a latent class variable, 
where this latent class variable becomes observed for treatment group individu-
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also Hence. the latent class variable captures missing data on a categorical vari­
able . Although the choice between the two conceptualizations may seem as only 
a matter of semantics. as described below the lat.ent variable approach suggests 
extensions of CACE modeling using connections with psychometric modeling that 
have potential value in randomized trials. 

The fact that latent class status is knmvn for treatment group individuals can 
be handled in hvo equivalent \\lays in the Mplus analysis. First, training data may 
be used to indicate that membership in the non-compliance da.'is is impossible 
for complying individuals in t he treatment group and that rnembership in the 
compliance class is impossible for uon-complying individuals in the treatment 
group. Second. a binary latent class indicator 1t defined to be identical to the 
latent class variable Illay be introduced in line with the latent class analysis of 
framework B. \\'itb 0 r epresenting noncompliance and 1 representing compliance, 
the v. variable has fixed parameter values, P(n = 11compliance dass) = 1. P(n = 
1lnon-compliance class) = O. The variable 71. is observed for treatment group 
individuals and missing for control group individuals. This second approach shows 
t hat CACE modeling belongs in framework D and also suggests a generalization. 
In psychometrics. the typical approach is to seek observed indicators for latent 
variables. An attempt could be made to measure the variable u also among 
controls. for example by asking individuals before randomization how likely they 
are to participate in the treatment if chosen. Several different measures u could 
be designed and llsed as latent class analysis indicators in line with framework B 
modeling. 

For background on CACE modeling. see, e.g., AngrisL Imbens and Hubin 
(1996) and Frangakis and Baker (2001). For examples, see, e.g" Little and Yau 
(1998) , Jo (2001a, b, c), and Jo and Muthen (2001).7) 

5.;2 Combined lalent class and growth m.ixture analysis 

Figure 1 shows clearly that framework D can combine the framework B latent 
class aualysis with the framework C growth mixture modeling. As an example, 
Tvluthen and I\luthen (2000) analy:t;ecl the NLSY data discussed in Section 3, 
where it was of interest to relate latent classes of individuals with respect to 
antisocial behavior at age 17 to latent trajectory clal:ises for heavy drinking ages 
IS-30. Here. a latent class variable was used for each of the two sets of variables, 
the latellt class measurement instrument for antisocial behavior and the repeated 
measures of heavy drinking. Csing the confirmatory latent class analysis t.echnique 
described in Muthen (2001b), these two latent class variables can be analyzed 
together. This gives estimates of the relationships between the t.\vo classifications. 
To the extent that the two classifications are highly correlated, a latent class 

7lDat.a and 'Ilplus input for the Little and Yao (1998) example is available on the I\1plus 
web site . 
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analysis measurement instrument can improve the classification into the latent 
trajectory classes . This approach i s of potential importance, e.g. using the latent 
class measurement instrument as a screening device in a treatment study, where 
different treatments are matched to different kinds of trajectory classes. 

5. 3 Predic tion from growth shapes 

11uthen and Shedden (1999) used the latent trajectory classes in a growth 
mixture model of heavy drinking as predictors of distal outcomes ill the form 
of binary 7L variables, such as indicators of alcohol dependence . Predicting from 
the heavy drinking growth factors faces the potential problem of a highly non­
linear r elationship given that a growth factor aquires its meaning in conjunction 
\vith other growth factors. For example, in a study of problemat ic behavior such 
as heavy drinking. a low slope growth factor value has a different meaning if 
the intercept factor value is high ("chronic" development) than when it is low 
("normal" development). Given that the latent trajectory classes can represent 
different shapes of development, prediction from the latent classes is a powerful 
approach. 

5.4 Specia.l uses of u indicators 

The framework D addition of u to framework C not only adds latent class 
analysis type features but also provides several unexpected additional modeling 
possibilities. Muthen and IvIasyn (2001) show how u can be used as event history 
indicators in discrete-time survival analysis. This model corresponds to a single­
cla.'is latent class analysis. but Il/luthen and 11asyn (2001) also explore different 
types of mixture survival models. Muthen and Brown (2001) show how u can be 
used as missing data indicators for missingness on y. This leads to an approach 
to study non-ignorable missing data in mixture modeling, for example where 
missingness is related to latent tra jectory classes. Muthen (2001) shows how u 
can be used to indicate zero or " floor" values for y , that is values that represent 
absence of an activity. Such data are frequently seen in behavioral research given 
that time of onset varies across individuals. It is the strength of frame\vork D that 
these seemingly disparate models can be integrated and used in new combinations 
to provide answers to more probing research questions. 

6. Conclusions 

This article has provided an overview of statistical analysis with latent vari­
ables. In psychometrics it is typical to use latent variables to represent theoretical 
constructs. The constructs themselves are of key int.erest and a focus is on mea­
suring different aspects of the constructs . In statistics, latent variables are more 
typically used to represent unobserved heterogeneity. sources of variation, and 
missing data. The latent variables are often not of key interest but are included 
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to more correctly model the data. Unobserved heterogeneity is typically repre­
sented by random effects, i.e. continuolls latent variables. a common example 
being growth modeling in t he form of the mixed linear m odeling (multilevel mod­
eling) to capt.ure individual differences in growth. Cont inuous latent variables are 
also used to represent sources of variation in hierarchical cross-sectional data, to 
let the model properly reflect a cluster sampling scheme and to estimate variance 
components. Cluster analysis considers ullobserved heterogeneity in the form 
of ca tegorical latent variables. i.e . latent cla..'3ses. in order t o find homogeneous 

of individuals. Finite m ixture modeling with categorical l atent variables is 
a rigorow; approach to such cluster analysis. :Missing da ta corresponds to la tent 
varia bles that a re either continuous or categorical. 

T he article discussed a general l atent variable modeling framework that uses 
a combination of continuous ann categorical latent va riables to give a unifying 
view of psychometric and st at istical latent variable applications. This framework 
shows connections between different modeling tradit ions and suggests interesting 
extensions. It is the hope that this general latent variable modeling framework 
stimulates a better integration of p sychometric and st at isti cal d evelopment. Also, 
it is hoped that this framework provides substant ive researchers with an analysis 
tool that is both powerful and easy to uuderstand in order t o more readily respond 
to t he complexit.y of their research questions. Ongoing research b y t.he author aims 
at further extensions o f the modeling fr amework. 
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