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ON AVERAGING VARIABLES IN A CONFIRMATORY 

FACTOR ANALYSIS MODEL * 

Ke-Hai Yuan, Peter M. Bentler** and Yutaka Kano*** 

The normal theory maximum likelihood and asymptotically distribution free 
methods are commonly used in covariance structure practice, When the number of 
observed variables is too large, neither method may give reliable inference due to bad 
condition numbers or unstable solutions. The main existing solution to the problem of 
high dimension is to build a model based on marginal variables. This practice is 
inefficient because the omitted variables may still contain valuable information regard· 
ing the structural model. In this paper, we propose a sirnple method of averaging proper 
variables which have similar factor structures in a confirmatory factor model. The 
effects of averaging variables on estimators and tests are investigated. Conditions on 
the relative errors of the measured variables are given that verify when a model based 
on averaged variables can give better estimators and tests than one based on omitted 
variables. Our method is compared to the method of variable selection based on mean 
square error of predicted factor scores. Some aspects related to averaging, such as 
improving the normality of observed variables, are also discussed. 

1. In troduction 

In the social and behavioral sciences, high dimensional data that are believed 
to be related to the latent traits oi interest are often obtained. Confirmatory factor 
analysis is regularly brought into use for evaluating the latent structure of high 
dimensional data. This methodology permits the researcher to specify not only the 
dimension of the latent factor space, but also which variables are hypothesized to 
be good indicators oi such factors and which variables are unaffected by given 
factors. This is an appropriate methodology for many studies in which the design 
of the instrument implies a particular latent structure. For example, in the design 
of a personality inventory, even before the data are collected, items or variables 
may have been generated to be indicators of particular factors. At the same time, 
such variables may be presumed not to be related to other latent traits. A 
confirmatory factor analysis, with its associated statistical theory, can be used to 
verify theoretical specifications, as weil as to determine areas of weakness in the 
theory or inadequate specification of the measurement relations. In structural 
equation modeling practice, typically each variable depends on only one latent 
common factor, leaving the correlation among the observed variables to be ex­
plained by the patterns of correlation among the latent factors. Anderson and 
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Gerbing (1982, 1988) discussed the rationale for such unidimensional measurement 
(see also Jöreskog, 1971; Hattie, 1985; Hunter & Gerbing, 1982), indicating that it 
allows the most unambiguous assignment of meaning to the estimated constructs. 
Thus motivated, we will mainly consider the unidimensional measurement model in 
this paper. 

In employing statistical theory, maximum likelihood (ML) under assumed 
normality and asymptotically distribution free (ADF) generalized least squares are 
the two most frequently used methods for model evaluation. Unfortunately, how­
ever, neither of these methods can give reliable inference when the number of 
variables in a sampie becomes large. Even with modern computer programs such 
as EQS and LISREL (Bentier & Wu, 1995; Järeskog & Särbom, 1993), the computa­
tions involving a very large number of parameters and/or variables become exces­
sive. As a result, it is not unreasonable for practitioners to choose a subset of the 
observed variables for model fitting and testing. An obvious problem with 
eliminating variables from a confirmatory factor analysis is that the neglected 
variables may contain valuable information on estimators and tests regarding the 
structural model. This suggests that it would be important to quantify the loss 
obtained from discarding variables, and to discard variables so as to minimize such 
loss. In aseries of papers, Yanai (1980), Tanaka and Kodake (1981), and Tanaka 
(1983) proposed the use of variable selection based on the configuration of the true 
factor score fand the predicted factor score t. Let denote the factor score 
predictor without the ith variable, they suggested removing the variable which 
makes 

- f) (1.1) 

the smallest each time, as in stepwise regression. Tanaka (1983) showed numeri­
cally that the above proposed method is superior than the variable selection method 
proposed by Jolliffee (1972, 1973), who discarded variables in principal component 
analysis. 

An alternative approach to removing variables is averaging or summing 
variabes, wh ich is a typical procedure used in the social and behavioral sciences. 
For example, responses to items on psychological tests are typically summed to 
yield more reliable total scores, and the total number correct is usually used as a 
basis for assigning grades to students in a classroom. The best rationale for 
averaging or summing occurs when variables have similar meanings, though in 
practice averages are computed more generally. For example, the grade-point 
average is used to represent performance in school or college, even though a 
student's performance may vary by topks. Even though averaging variables has 
been regularly used in descriptive statistics, when facing a high dimensional data 
set, this obvious approach is typically not used and a sub set of variables becomes 
the basis for structural modeling practice. In this paper, we propose to build a 
factor analysis model based on average variables with similar factor structures. 
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More specifically, we will explore the information contained in the removed vari· 
ables by studying the information in the variables before and after averaging. 
Section 2 will investigate the effect of averaging variables on model estimation and 
testing, emphasizing espeeially models with unidimensional measurement struetures 
in whieh any variable is inftueneed primarily by a single latent factor. In Seetion 
3, we eompare our method with variable seleetion based on minimizing 0.1). A 
discussion and our conclusions will be presented at the end of the paper. 

2. The effect of averaging variables on estimators and tests 

This seetion will consider models based on averaged variables and those based 
on selected marginal variables. The effect of averaging variables on estimators 
and tests assoeiated with the normal theory ML and ADF methods will be studied. 

Let X =(Xl.l, "', Xl,m, ; XZ,I, ... , X2,rn2; ... ; Xp,l, ... , Xp,mp), be a mean zero random 
veetor of length mj. Assume that the faetor strueture of X can be expressed 
as 

(2.1) 

where T j ={l, ... , mj}, Aj,i are factor loadings, fk(j) are common factors with Efk(j) 

=0, and Cj,i are errors or unique factors with ECj,,=O. In model (2.1) we have 
assumed that for eaeh j, the observed variables Xj,i, iE Ti only depend on one 
eommon factor fk(j). It is possible that k(jl)=k(jz) even if h*h. This is from the 
eonsideration of identifiability of model (2.2) in the following. Let 

(2.2) 

where 

So the averaged variables still keep the same faetor strueture. Assuming that the 
structural model (2.2) can still be identified, we will investigate the effect of 
averaging on estimators and tests based on the observed variables Y =(YI, ... , yp)'. 
In assuming a faetor analysis model (2.1) on X, the eommon interest is to get good 
estimators of faetor [oadings Ai.i, while the variances of Cj,i can be regarded as 
nuisanee parameters. The magnitudes of Aj,i and var (cj.i) only have relative 
meaning, sinee we ean multiply (2.1) by a eonstant without ehanging the faetor 
structure. For easy eomparison of the effeet of averaging, we now also assume Aj,i 

=Aj, iE T j . Considering the possiblilty of k(jI)=k(j2) and assuming r common 
factors, we ean write (2.2) as 

Y=Af+ t, (2.3) 
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where A is a p X r matrix with the lth column consisting of the elements Aj such that 
k(j)=l for jES I , an index set, f=(jl, ... , Ir)', and e=(El, "', Ep)', Assuming 
independence between land Cj.< and among Cj.i, then J are also independent and 
are independent with f. Let ([J=var(f), <j;;.i=var(CJ.i)' we have the following 
moment structure on Y: 

var( Y) = A ([JA' + W, (2.4) 

- . - 1 
where W=diag( fl, "', <j;p) wlth cj;j= m; 2:iETJ <j;i,!' Suppose another method is to 

use marginal variables Xm=(Xl, ... , xp) with Xj being one of the Xi,i, iE T j . Then 
the moment structure of X m is 

(2.5) 

where l[l"=diag(i!'l, ... , rpp) and rpj is one of the rpj.i, iE Tj. 

We first compare the efficiency of estimators of the structural parameters based 
on model (2.4) and model (2.5). Suppose the observed data are normal and we use 
normal theory ML to estimate the unknown parameters. Let vec( . ) be an operator 
which transform a matrix into a vactor by stacking the columns of the matrix. 
Then for the ML estimator (MLE) 8n of the unknown parameter vactor 80 based on 

a sampIe of size n, the asymptotic covariance of rn (8,,- 80) is given by . . . 
2{t:r'(I-1(8)E- 1)t:r}-\ where t:r=(ovec (I(8»/00' 180 ) and I(8) is the strl:lctured 
covariance of the observed variables in either model (2.4) or (2.5). Since (j is the 
same based on (2.4) or (2.5), we only need to compare the E matrix in order to 
compare the efficiency. It is obvious that the estimator 8n based on a smaller 
covariance matrix E will be more efficient. Let Im=var(Xm) and I=var( Y), then 
the extra efficiency that may be gained by averaging variables is really decided by 
w- W=diag(<j;l-fl, ... , cj;p-fp)· Since rpj is one of the rpj,i, we will get a better 
estimator if 

(2.6) 

If all the rpj,i, iE Tj are equal, it is obvious that (2.6) holds. More generally, (2.6) 
holds if 

(2.7) 

Since we can always rearrange the order of variables in each group, we will assurne 
<j;i,1:S;: ••• :s;: <j;i,rn} in the rest of this paper. Suppose T1 has two elements while a11 the 
other Tj have only one element. Then we will get a better estimator based on 
model (2.4) than based on model (2.5) if 3 <j;l.l > r.f!1,Z' Condition (2.7) is very conserva· 
tive, since we may not use the variable with the smallest rpj.i in model (2.5). When 
there is not a great difference among iE Tj , condition (2.7) will be easily 
satisfied, and the estimator an based on model (2.4) will be more efficient. Assum· 
ing that the <j;j.i are approximately of the same magnitude, the efficiency of iJn based 
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on model (2.4) will increase as the number of averaged variables increases. 
The effect of averaging on the efficiency of the ADF estimator is more compli· 

cated to see. Let vech(') be an operator which transforms a symmetrie matrix into 
a vector by picking the nonduplicated elements of the matrix, 6 =(Jvech (E«(J»! 
(JO' I (Jo). Then for the ADF estimator Ön based on model (2.4) or (2.5), the 
asymptotic covariance of !iiC8n-()o) is given by (O"V-1O')-1, where V is the 
covariance matrix of vech(ZZ') and Z is a vector of the centralized observed 
variables used in the structural model. As for the case of the normal theory MLE, 
we need to compare the matrix V obtained from each method. Let V = var [ vech 
( YY')] and Vm = var[ vech(XmX';')]. We will get better estimator based on model 
(2.4) if V::;; Vm. Direct calculation shows 

Vm = DtCA®A) var[ vec( ff')](A'®A')Dt' + 2Dt( lfJ'®AfPA')Dt' 
+ 2Dt(A fPA'® lfJ')Dt' + var[ vech(et') 1 (2.8) 

and 

V=Dt(A®A) var[vec(ff')]CA'®A')Dt' +2Dt(ift®AfPA')Dt' 
+ 2Dt(A fPA'® ift)Dt' +var[ vech( e e')], (2.9) 

where D p is the duplication matrix defined in Magnus and Neudecker (1988, p. 49) 
and Dt is the Moore-Penrose generalized inverse of D p . The first terms on the 
right hand side (RH5) of (2.8) and (2.9) are the same. If condition (2.7) is satisfied, 
the second and third terms on the RHS of (2.9) will be smaller than those of (2.8). 
We need to calculate var[ vech(tt')] in order to compare Vm and V. Denote A= 
diag(d, ''', B=tt'-A, then 

vech(tt')=vech(A)+vech(B). 

5ince ti are independent and Eei=O, we have EB=O, Evech(tt')=Evech(A) and 

Evech(tt') vech'(tt')=Evech(A) vech'(A) + Evech(B) vech'(B). (2.10) 

Notice that no two elements in the vector vech (B) are the same, hence 

var[ vech(B)] = Evech(B) vech'(B) 

will be a diagonal matrix. Similarly, var[vech(A)] is also a diagonal matrix. 50 

var[vechett')]=diag(al, "', ap.) 

is a diagonal matrix with 

5imilarly, 

with 

a=Jvar(eJ,), if [p-(j-l)], k=l, "', P 
, 1 EdEd, j< k, elsewhere. 

var[vech(ee')]=diag(bl, "', bp .) 
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if k=l, "', p 
, 1E t;E j< k, elsewhere. 

It is obvious that 

if condition (2.7) holds. In order to compare var(c]) and var( €;), we need to express 
var( t]) in the form of var (cL). Direct calculation gives 

( -2) _ 1 (2) 2 E 2 E 2 var Ej ---4 ""-' var Ej,; +-4 ""-' Ci.; Cj,k. 
m} ;=1 mj i.kETj,i*k 

(2.11) 

For further simplification, we assurne the coefficient of variations (CV) of EL 
satisfy 

EcL <C· T 
I (2) j, tE i, 

V var Cj,; 

and we reorder var(cL) such that 

... 

Then from (2.11) and (2.12) we have 

(2.12) 

var( [(mj-1)+2Cjmj(mj-1)] var (cL). (2.13) mj mj 

It can be verified from (2.13) that 

var( t;)S:var (c1,1) 

when the following condition is satisfied : 

var(e],mJS:Kj var(e],I), 

where 

Kj=(mj+ l)(mj+ l)/(2mj C;+ 1). 

(2.14) 

For a set oi given var(E3,;), condition (2.14) will be more easily satisfied if Cj is 
small. There is a elose relation between CV(EL) and the kurtosis r(Ej,;) of Ej,i, 
that is 

-/2 + r(Cj,J . 

1 (2.15) 

From (2.15), it can be seen that the larger the kurtosis r(Ei,;)' the easier to satisfy 
condition (2.14). We list the kurtosis and the corresponding CV-1(e) of so me 
commonly used distributions in the following table. 

Among the distributions listed in Table 1, the uniform distribution has the 
smallest kurtosis; the next one is the normal distribution, Let us take the uniform 

distribution and check how condition (2.14) be satisfied. When CV- 1=../5/2, K j = 
2.5, If we average two variables in the jth group with uniform distributions, then 
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Table 1 
and CV- 1(q-') of Same Distributions 

e ! ,W cV-1(e') 

N(p., a') 0 1/ ,f2 

t. 6/(n-4) 1/.J2+67(n-4) 

;:' "" 12/n liJ2+l2!n 

log NeO, 1) e'+2e3 +3e' 5 liJ e'+2e3+3e'-4 

Laplace 3 1/ v'5 

U[a. b] -6/5 15/2 

(2.14) will be satisfied unless var(d2) is 2.5 times of var(E'L). All the other distribu­
tions beside the U[a, b] in Table 1 have nonnegative kurtosis. For these distribu­
tions with positive kurtosis, it is easily verified that when we average two variables 
in the jth group, condition (2.14) will be satisfied unless var(.d,2) is 5 times var(E'L). 
For all the distributions listed in Table 1, K j will increase as mj increases. When 
the var(E'],;) are roughly the same, condition (2.14) will be more easily satisfied when 
we average more variables. Since we may not choose a marginal variable with the 
smallest var(E].I), like condition (2.7), condition (2.14) is also rather conservative. 
From the above discussion, we can see that the ADF estimator On based on model 
(2.4) will be more efficient than those based on model (2.5) when conditions (2.7) and 
(2.14) are satisfied. 

We have discussed the effect of averaging variables on the efficiency of 
estimators. The effects on test statisics are also characterized by conditions (2.7) 
and (2.14). Suppose all the variables Xi,i, iE Ti have the same factor structure but 
are misspecified, that is mine I E(8)-var(X) I = I E(8*) -var(X)1 >0. Assuming the 
regularity condition E(8*)-var(X)=L1/ fii" we next consider the effect of averag· 
ing variables on tests. When we use the normal theory likelihood ratio test 
statistic to judge the adequacy of a structural model, the test statistic will 
asymptotically follow where q is the number of unknown free parameters 
in 80 and 

0= vec'(.d){(E-I<8)E-I)_(I-1<8)E-1)6[6'(I-1<8)E-I)6]-16'(E-1<8)E-1)}vec(.J). 

(2.16) 

Using Lemma 1 of Khatri (1966), we can rewrite (2.16) as 

(2.17) 

where Be is p2 X (p2_ q) matrix of full column rank whose columns are orthogonal 
to those of B. Since the diagonal elements in both lJf and ijt are free parameters 
in the estimation process, the .d will be the same based on either model (2.4) or 
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model (2.5). From (2.17), the magnitude of the noncentrality parameter will be 
decided by I. It is obvious that the model with larger I will correspond to a 
smaller O. Thus, when condition (2.7) is met, the test statistic based on model (2.4) 
is more powerful in detecting the misspecifications. 

When model is misspecified as stated above, the ADF test statistic 
asymptotically follows with 

o=vech'(..d){ V-1- V-1O'(O" V-1O')-1 V-1}vech(..d) 
=vech'(..d)O"c( (2.18) 

where O'c is a p* x (p* - q) matrix of full column rank whose columns are orthogonal 
to those of 0'. From (2.18), it is obvious that the noncentrality parameter will 
increase when V gets smaller. Consequently, the ADF test statistic based on 
model (2.4) will be more powerful when the conditions (2.7) and (2.14) are met. 

In all the above discussion, we assumed tlJ.i=tl j , iE Tj. When this assumption 
is not appropriate, rpj,i should be replaced by rpj,dtlL in condition (2.7); and var(c7,;) 
should be replaced by var(dJ!tlL in condition (2.14). Assuming that var(fk(j)) = 1, 
the quantity Cj,P'i,i reftects the relative error in Xi,i as an indicator of latent variable 
Ik(j)' When relative errors among Xj.i have great differences, better estimators and 
tests based on model (2.5) may be obtained, assuming that the marginal variables 
selected have the smallest relative errors. However, when we have no idea ab out 
which variables have the smallest errors, or when all the variables have roughly 
equal relative errors, estimators based on model (2.4) will be much more efficient. 

3. The effect of averaging variables on mean square error of predicted factor 
scores 

In this section, we will compare variable selection based on minimizing the 
prediction error proposed by Yanai (1980) and Tanaka (1983) and the averaging 
variables procedure discussed in the last section. Specifically, we will compare the 
MSE defined in (1.1) based on models (2.4) and (2.5). Two methods of factor score 
prediction are commonly used, one is the regression method, and the other is 
Bartlett's method. These factor score estimates are given respectively by iR = 
tPA'r-1X and iB=(A'lp"-IA)-IA'lp"-IX. The MSE of the predicted factor scores 
by the regression method is 

MSER = E( iR - ()'( iR - f) 
=tr( 0- 0A' r-1A<P) 
=tr( tP- 1 + A' 1[1'-1 Atl • 

(3.1) 

It is easily seen from (3.1) that the model with smaller diagonal elements in lp" gives 
a smaller MSE. Suppose that condition (2.7) holds. Then the MSE of the predict· 
ed factor score iR based on model (2.4) is always smaller than that based on model 
(2.5). The MSE of Bartlett's predicted factor scores is 
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MSEB = E(fB - f)'( IB - f) 
=tr(A'lJf- 1 A)-I. 
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(3.2) 

So the conclusion for Bartlett's factor scores is the same as for the regression factor 
scores. Suppose TI ={1, 2} and all the other Tj onl"y contain one element. If rpl,2 is 
less than three times af rpl,)' we should average XI,I and XI,2 instead of removing XI,2 
from the analysis, even though the MSE corresponding to removing XI,2 is the 
smallest. When condition (2.7) does not hold, we may get a better predicted factor 
score by using only marginal variables. This comparison also gives us some 
insight into variable selection procedures: if we really need to remove some 
variables from a factor analysis model, we should remove variables with the largest 
relative errors. This observation is also intuitively natural. Suppose we can 
observe II exactly by XI,l = I), then the best predicted factor score for 11 is to use 11 
=XI,I. If we average XI,I with any other variables with nonzero errors, we will not 
get the best predicted factor score anymore. 

Let MSE(X) and MSE(X",) denote the predicted errar of f by I based on all 
the observed variables and some marginal variables, respectively. It can be shown 
that 

MSE(X) s MSE(Xm) (3.3) 

generally ; the inequality is strict in most cases. Let MSE( Y) denote the predicted 
error of I based on the averaged variables. We want to compare MSE( Y) with 
MSE(X). We will assurne that the model structure is the same as in Section 2. 
For simplicity, we also assurne that qJ=I. Then for the Bartlett's factor score 
predictor, we have 

(3.4) 

(3.5) 

(3.6) 

From (3.4) to (3.6), we can see that MSEB(X) < MSEs(Xm) unless rpj,i=OO, i:z.2, j= 
1, "', p. Using the Cauchy-Schwarz inequality (x'y)2 s (x'Ay)(x'A- 1y), we have 

( 
m· )-1 1 ",. 

rpi,l s m2 rpj,i, 
1=1 j 

by letting x=y=l, a vector of 1 with length mj; and A=diag(rpj,l, ''', rpj,,,,J So it 
generally holds that 

(3.7) 

But when r/lj,l=rpj,2= ... =rpj,mJ' j=1, ''', p, we have MSEB(X) = MSEB( Y). This 
means that the predicted factor scores based on averaged variable will have the 
same accuracy as that based on all the variables, when the errar variances of the 
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averaged variables are roughly equal. 1t will never attain this property for the 
predicted scores based on marginal variables. 

For the regression factor score predictor, we have 

MSER(X)= tJ 1 + rl, 
MSER(Xm)= ±{l + 

1=1 jES, 

r [ {( 1 mJ )-I}]-I MSER( Y) = ti 1 + m; ti rPJ,i . 

(3.8) 

(3.9) 

(3.10) 

By comparing the coefficient of Aj in (3.8) to (3.10), we come to the same conclusion 
for the regression score predictor as that for Bartlett's score predictor. That is 
MSEa(X) < MSEa(Xm ), MSER(X):::;; MSER( Y) while MSER(X) = MSER ( Y) when 

... j=l, "', p. 
Now, let us consider weighted averages instead of simple unweighted averages. 

Let L be positive numbers satisfying Corresponding to (2.2), let 

with 

Corresponding to (3.6), we have 

,t= lj,i).j, i 
iETj 

Ej= Ij,iEj,i. 
iETj 

MSEB( Y) = tU -I, 
where 

(3.11) 

(3.12) 

We will identify the optimal lj,i which minimize (3.12). Let lj,iAj,i= Wj,i, then lj,i= 

W'· ./1 .. and 

--2 - ,2 , )2 ;lj rP;- Wj,i . 
1=1 /lj,z 1=1 

(3.13) 

The constraint is equivalent to L!TJlwj,i=1 in minimizing (3.13). Stan­
dard calculation using Lagrange multipliers obtains and 
with a minimum mean square error of 

(3.14) 

When assuming ;lj,i, iE T j are equal, li,i"" This suggests that larger weights 
should be given to variables with smaller relative measurement errors, conforming 
with our earlier observations. Also note that (3.14) equals the MSE based on the 
whole sampie in (3.4) ! 
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Theoretically lj,i - ,1j,dl/Ji,i gives the smallest MSE, while in practice we need to 
estimate Aj ,; and I/Jj,i in order to use the optimal weights, When facing a data set 
with very discordant relative errors, one may fit a one factor model on each subset 
with similar struetures. After obtaining estimators of Ai,i and rpi,i, one ean form 
variables using the optimal linear eombinations. Sinee this will incur rounding 
errors besides increased eomputation time, in praetiee, we would suggest using the 
simple ordinary average when empirieal knowledge indieates that not mueh 
differenee in relative measurement errors exists. When a large number of vari­
ables is to be averaged, differential weighting would not be expeeted to make much 
of a difference in any case. See Kano (1986) for evaluation of the MSE of predicted 
factor scores with estimated parameters. 

4. Discussion and conclusions 

Motivated by the practical difficulty of analyzing high dimensional data, 
instead of disearding variables as has been proposed and is commonly done, we 
propose to average variables with similar latent structures and then to keep those 
averaged variables for subsequent analyses. In mueh of the praetice of structural 
equation modeling, observed variables are assumed to depend only on one latent 
variable. When this is the ease, averaged variables will keep the same faetor 
strueture as that of the original variables being averaged. Sometimes, a proper 
sealing may be neeessary before averaging, e.g., to make the faetor loadings of the 
averaged variables have the same sign. Then it ean be expected that the faetor 
loading based on averaged variables will be the average of the factor loadings of 
the variables being averaged. If necessary, a preliminary exploratory faetor 
analysis or prineipal eomponent analysis ean be undertaken before averaging those 
variables expected to have a similar factor strueture. Based on the factor loadings 
obtained, a resealing to make the averaged variables have roughly equal factor 
loadings ean be performed. Also, through a preliminary analysis, it is possible to 
identify those variables whose relative errors are tao large to average with other 
variables. Since eaeh latent faetor needs more than one indicator to insure that a 
model is identified, one ean classify the variables with similar faetor structures into 
several groups based on their relative errors; then, variables in eaeh group that 
have roughly equal relative errors ean be averaged. This will make the final 
estimators the most efficient. If, based on empirical knowledge, we have eonfidence 
that several variables are good indicators of a latent faetor, a preliminary analysis 
may not be necessary. Sinee good indicators mean small relative errors, averaging 
these variables will result in more accurate estimates than omitting any of them. 

Our results also apply to more eomplicated struetural models than the basic 
eonfirmatory faetor analysis model. In the development of models for interaetion 
effeets among latent variables, Kenny and Judd (1984) used four indicators for each 
quadratic latent variable. Beeause of a rank deficieney in the weight matrix when 
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using such multiple indicators, Jöreskog and Yang (1996), in contrast, recommended 
that only one indicator should be used for each quadratic latent variable. If one 
indicator is prefered, the results of this paper verify that the one formed by 
averaging the available indicators can increase the accuracy of estimators and 
tests. 

Quite another rationale should be remembered for averaging variables. Even 
though ADF theory makes it possible to estimate and test covariance structure 
models without assuming any specific underlying distribution, normal theory 
maximum likelihood is still the most popular method that practitioners use, It can 
generally be believed that the latent common factors are normally distributed. and 
that the nonnormality of the observed data results from the nonnormality of unique 
factors or errors. Since the error of the averaged variables is the average error of 
the variables being averaged, by the central limit theorem, the normality of the 
averaged error will be improved as the number of variables being averaged 
increases. For example, when the indicator variables are high dimensional cate­
gorical variables, normal theory maximum likelihood can not be applied directly. 
However, it is still possible that normal theory can give a good approximation to 
the model based on averaged variables. 
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