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Abstract While no single type of model can provide adequate answers under all
circumstances, any modelling endeavour should incorporate three funda-
mental considerations in any decision-making question: the target pop-
ulation, the disease and the intervention characteristics.

A target population is likely to be characterized by various types of
heterogeneity and a dynamic evolution over time. It is therefore important to
adequately capture these population effects on the results of a model. There
are essentially two different approaches in modelling a population over time:
a cohort-based approach and a population-based approach.

In a cohort-based model, a closed group of individuals who have at least
one specific characteristic or experience in common over a defined period of
time is run through a state transition process. The cohort is generally com-
posed of a hypothetical number of representative or ‘average’ individuals (i.e.
the target population is considered to be a homogeneous group).

The population-based approach projects the evolution of the estimated
prevalent target population and intends to reflect as much as possible the
demographic, epidemiological and clinical characteristics of the prevalent
target population relevant for the decision problem.

A cohort-based approach is generally used in most published healthcare
decision models. However, this choice is rarely discussed by modellers. In this
article, we challenge this assumption. To address the underlying decision
problem, we affirm it is crucial that modellers consider the characteristics of
the target population. Then, they could opt for using the most appropriate
approach. Decision makers should also understand the impact on the results
of both types of models in order to make informed healthcare decisions.

Key points for decision makers

� Good quality modelling goes beyond model structure, data sources or the handling of
uncertainty and also embraces the way the target population is modelled

� Potential heterogeneity within the target population is to be carefully considered up front

� An important distinction should be made between open and closed forms of models
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Economic assessment of new healthcare in-
terventions is a necessary requirement for many
decision makers today. The use of decision analytic
models is now well established and widespread.[1-3]

However, the choice of the best modelling practice
is of particular concern among modellers. Model
structure should be as simple as possible given the
decision problem, the course of the disease and
the possible clinical pathways.[4,5] Particular atten-
tion must be paid to computation transparency
and consistency. Models should also serve to syn-
thesize evidence and assumptions in a way that
provides decision makers with insight into the
implications of the model results.[6]

For instance, Kim and Goldie[7] highlighted
that the taxonomy used in the literature to describe
model types for the cost effectiveness of vaccina-
tion programmes is very inconsistent. The authors
suggested classifying models according to three
principal distinctions: (i) static versus dynamic;
(ii) stochastic versus deterministic; and (iii) aggregate
versus individual-based. Further subdivision is
possible for more detailed categorization such as
discrete versus continuous, linear versus non-linear
and open versus closed.[7,8]

In cost-effectiveness evaluations of treatments,
it is mainly disease and intervention considera-
tions that have been focused on in the selection
and discussion of modelling approaches. Previous
reports have principally focused on how to struc-
ture the clinical pathways and the outcomes most
appropriately in the form of a decision tree, a
Markov chain, a discrete-event simulation or a
disease transmission dynamic model.[3,8-13] Simi-
larly, handling parameter uncertainty has also
received much attention.[14,15]

In contrast, considerations of the target pop-
ulation included in cost-effectiveness models have

generally received much less attention from mod-
ellers. However, characteristics of the modelled
population are of particular importance as they
relate directly to the generalizability of the results
and the usefulness of those results for decision
makers. A target population may range from the
general public (e.g. pandemic influenza vaccina-
tion) to a highly specific disease group (e.g. pa-
tients with late-stage metastatic breast cancer),
with or without the presence of externalities. This
must influence the way a model addresses a spe-
cific decision problem.

The scope of the decision problem and the re-
quirements of the decision maker are important
considerations for economic evaluation and should
therefore guide model development. Generally
speaking, we affirm that any modelling endeavour
should incorporate three fundamental considera-
tions in any decision-making question: the target
population, the disease and the intervention char-
acteristics (figure 1). Ideally, how to model the
target population in order to properly address the
decision problem is a concern that should precede
the development of a model and is just as im-
portant as the issues most often focused on (i.e.
the conceptualization of the disease clinical path-
way and intervention outcomes).

There are essentially two ways of modelling a
population over time: a cohort-based approach or a
population-based approach. Cohort-based models
correspond to closed-type models, in contrast to
population-based models that correspond to open-
type models, as the taxonomy of Kim and Goldie[7]

suggests. A single-cohort approach is generally used
in most published healthcare decision models.[16,17]

This choice is rarely discussed. Kuntz et al.[17] even
suggested that current health economic model-
ling guidelines have not satisfactorily addressed

Target population

• General/specific
• Steady/changing
• Homogeneous/
  heterogeneous

Disease

• Acute/chronic
• Infectious/non-infectious
• Disabling/life-threatening/

both
• Physical/mental/both

Intervention

• Prevention/treatment
• Single/ongoing use
• Quality of life/survival
• Positioning/comparators

Fig. 1. The three fundamental considerations in developing a model. Discussions principally focus on considerations of disease and inter-
vention characteristics. Modelling the target population should not be omitted and is a concern that precedes other issues in the development of
a model intended to aid in the decision-making process.

172 Ethgen & Standaert

ª 2012 Adis Data Information BV. All rights reserved. Pharmacoeconomics 2012; 30 (3)



the definition of cohort models. However, giving
a rationale for the selection of the model type is
arguably a minimum requirement for good quality
modelling.[7,18] In this article, we challenge the as-
sumption that a single-cohort model is generally
appropriate for most healthcare decision problems
and we propose a set of conceptual definitions.

1. Target Population

A target population is a collection of individuals
who are exposed or not exposed to a particular
disease and who are targeted by a specific new
healthcare intervention for disease treatment or
prevention purposes. These individuals may be
different in many respects but the one thing they
have in common is the fact that they may benefit
directly or indirectly from the intervention stud-
ied. The intervention can be a drug, a vaccine, a
device or any procedure or policy aimed at im-
proving or sustaining the health of the target
population in the short or long term. As for any
population in general, a target population is likely
to be characterized by various types of hetero-
geneity and a dynamic evolution over time.

1.1 Heterogeneity

The individuals constituting the target pop-
ulation may be heterogeneous in many aspects.
Sculpher[19] suggested a list of six possible causes
of heterogeneity that may affect the outcomes of

an economic assessment. They are summarized in
table I. The first four of these may potentially be
known at the time of treatment selection as they
concern patient baseline, disease or clinical char-
acteristics. This essential feature implies that indi-
viduals may respond differently to the intervention
or that the costs associated with providing them
the intervention may differ – or both.

An important difference needs to be made be-
tween variability and heterogeneity. Variability
relates to differences that occur due to chance (e.g.
the degree of treatment response may differ for
two very similar patients). Heterogeneity pertains
to differences that can be observed and explained,
at least in part (e.g. the degree of treatment re-
sponse may differ according to patient baseline,
disease severity or clinical characteristics). As a
result of heterogeneity, some stratification might
then be needed to better capture the outcomes
achieved by a target population. When establishing
whether a particular source of heterogeneity should
be reflected in a model intended to inform decision
making, a key criterion noted by Sculpher[19] is
whether the identification of relevant subgroups can
be effectively operationalized in clinical practice.

Kuntz and Goldie[20] were two of the first au-
thors to present a systematic examination of the
consequences of not taking heterogeneity into
account. In their model, patients either had or did
not have an unknown risk factor for a lethal dis-
ease (i.e. the heterogeneity factor). Individuals
with this factor were at a greater risk of disease

Table I. Six potential sources of heterogeneity that may affect the outcomes of an economic assessment (from Sculpher[19])

Potential sources of heterogeneity Description

Related to the intervention The effect of an intervention may vary systematically depending on patients’ baseline characteristics.

The same applies to cost, e.g. if the dose depends on patients’ weight

Related to the disease, but not to

the intervention

The same relative outcome gain may correspond to a different absolute outcome gain for different

subgroups achieving different outcomes with the standard treatment. Similarly, the cost of clinical

events may also vary systematically with patients’ characteristics

Unrelated to the disease An example is patient age, independent of its influence on relative treatment effect. In effect, age has a

strong and negative relationship with the possible gain in QALYs. QALY gain will be greater in younger

than older patients, all other things being equal

Unrelated to the patient The cost and effectiveness of an intervention may vary according to where the intervention is provided

and who delivers it, e.g. differences in clinical practice and experience

Preferences When health benefit measures are based on patients’ preferences (as with QALYs), outcomes may

vary systematically with variations in preferences between individuals regarding particular health states

Factors revealed over time Sometimes, the fact that patients respond differently to a treatment may be observed after a relatively

short time so that the treatment decision may be changed promptly
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than those without it. The authors defined a
heterogeneity bias as the estimated survival gain,
not adjusting for the unknown risk factor, com-
pared with a model that precisely adjusts for this
risk factor. They reported that the heterogeneity
bias in some scenarios may be greater than 100%.

Building on this model, Zaric[21] went further
and took QALYs and costs into account. The
author compared two ways of modelling: pooled
(combining the risk into a single value equal to
the weighted average of high and low risk) versus
separate (calculating the results separately for the
two groups and finding the overall outcome as
the weighted average of the outcomes per group).
Four different preventive interventions (dimin-
ishing the risk for both or either of the groups,
reducing the prevalence of the high risk) and one
treatment (reducing the probability of death for
those falling sick) were examined. The general con-
clusion of the analysis was that the two methods
only very rarely and under highly particular para-
meter constellations gave the same results.

1.2 Dynamic Feature

A population has a dynamic feature by nature
(i.e. it is formed by the inflow and outflow of in-
dividuals as time progresses). At any specific time-
point, the prevalent target population consists of
the individuals known to be affected by the dis-
ease (in the case of a drug) or targeted by the inter-
vention (in the case of a vaccine or other preventive
measures such as screening) and amenable to benefit
from the new intervention. At any future point in
time, the prevalent patient population will have
changed because of new incident patients enter-
ing and previously prevalent patients leaving the
population (generally because of recovery or death).

This dynamic feature reflects the epidemiology,
the natural history and the management of the
disease under consideration. For example, occur-
rence of new cases is determined by the incidence
of the disease or by improvements in diagnostic
accuracy. Departures depend on the natural his-
tory of the disease and on its ongoing clinical man-
agement. The patients’ distribution over states of
disease severity may also change over time as a
result of disease progression or treatment effect.

In addition, demographic dynamics such as in-
creasing longevity or changes in the birth rate
may affect the evolution of a target population
over time.

Another dynamic feature is the diffusion of the
intervention that may actually enlarge the target
and eligible population. In effect, the launch of a
new technology may result in individuals with a
particular medical condition who were not pre-
viously treated (for various reasons such as lack
of effect, too many side effects or complete ab-
sence of treatment) receiving treatment. Recent
innovative interventions such as atypical anti-
psychotics for schizophrenia or new drugs for
erectile dysfunction provide precise examples of
this phenomenon.[22]

2. Modelling the Target Population

2.1 Cohort-Based Approach

A cohort is a closed group of individuals who
have at least one specific characteristic or ex-
perience in common over a defined period of time
(e.g. the same disease, disease severity or risk ex-
posure). Cohort-based models follow a fixed group
of individuals over time, with no further entry
as time progresses. Exit from the cohort is con-
ditional on reaching the absorbing state of the
model, usually death. In general, the cohort is com-
posed of a hypothetical number of representative
or ‘average’ individuals. The cohort is then run
through a state transition model and followed
over a predefined period of time (i.e. number of
cycles) or until the entire cohort has reached the
absorbing state.

Based on the fundamental distinction between
prevalence and incidence in epidemiology, Hoyle
and Anderson[16] argued that economic models
should account for the costs and benefits of all
individuals in the prevalent cohort and in all fu-
ture incident cohorts over the life of the new tech-
nology. The authors then explored the mathematics
of doing so in the calculation of an incremental
cost-effectiveness ratio (ICER). They concluded
that in many circumstances, both the prevalent
cohort and all the future incident cohorts should
be modelled, notably for long-term therapies (as
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in the case of chronic conditions) and when the
discount rates for costs and benefits differ.

2.2 Population-Based Approach

We define a population-based approach as a
model that intends to evaluate the effect of an
intervention over its entire target population.
This approach aims at projecting the evolution of
the estimated prevalent target population and to
account for its distribution over relevant health
states and attributes (e.g. age, disease severity,
risk exposure). Ideally, a population-based model
should reflect all the demographic, epidemiolog-
ical and clinical characteristics of the prevalent
target population relevant for the decision problem.

A population-based model differs principally
from a cohort-based model in three ways. First,
a population model starts with the estimated size
of the prevalent target population and does not
stipulate a hypothetical cohort size. Second, a
populationmodel accounts for the heterogeneous
composition of the target population and does
not focus on a representative or average individ-
ual. This implies that the population is stratified
across health states and attributes (e.g. age, dis-
ease severity, risk exposure) identified as being
relevant for the decision problem. Third, a pop-
ulation model factors in the dynamic nature of
the target population by allowing future incident
patients to enter into the model in conjunction
with those leaving the model as they reach the
absorbing state.[7,23]

An example of a population-based model is
the one developed by Mauskopf.[24] The author
built what she refers to as a prevalence-based model
by expanding a conventional cohortMarkovmodel
to allow for new incident cohorts to join the mod-
elled population. The model defined five health
states determined by CD4 T-cell count for the
analysis of a new treatment for persons living
with HIV and AIDS (PLWHA). Effective treat-
ment moved the PLWHA into a state with a higher
CD4 count. The cohort model started with 1000
PLWHA that began with the observed distribu-
tion of CD4 count health states. The PLWHAwere
followed over their remaining lifetime. The pre-
valence-based model started with the estimated

prevalent number of PLWHA in a given year
(10 680 patients in the UK in 1994), distributed
across the CD4 count states in the proportions
expected from disease natural history data. The
PLWHA only left the diagnosed HIV population
when they died. Each year a cohort of newly di-
agnosed PLWHA (n = 1258) was added with a
CD4 count distribution typical for newly diag-
nosed PLWHA. This prevalence-based Markov
model was used to track the population each year
over 20 years with and without the new drug. In
this model, the annual impact on healthcare costs,
opportunistic infections and hospital days of the
new drug in the treated population of PLWHA
was determined for each year as well as the cu-
mulative impact over the entire period.

2.3 Multi-Cohort Approach

A hybrid approach, combining features from
both cohort and population modelling, is possible.
Careful examination of the target population dis-
tribution over different attributes may actually
reveal clear heterogeneity. Modelling the target
population as a homogeneous cohort may then
become noticeably inappropriate for the decision
problem. One option is to subdivide the cohort
into two or more sub-cohorts, according to dif-
ferent baseline health states, age groups, disease
severity, risk factors for progression or any other
characteristics relevant for the decision problem.
Alternatively, it might not be necessary to ac-
count for the dynamic inflow of the population in
order to address the decision problem. In such an
approach, each of the sub-cohorts is fixed at the
outset of the simulation and no new cohorts of
patients are entered as time progresses. Ideally, in
a multi-cohort design, each sub-cohort size should
be as representative as possible of the target pop-
ulation dispersion across the relevant attributes
for the decision problem.

This multi-cohort approach is surely best ex-
emplified by a multi-birth cohort model. In this
type of model, age-dependent distribution and
heterogeneity of a population can be readily taken
into consideration but not the future births that
will fuel the target population as time progresses.
In this case, a population model can be viewed as
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an extension of a multi-birth cohort model, in
which all future incident birth-cohorts enter the
model for a given number of years as time pro-
gresses in addition to the prevalent multi-birth
cohorts.[17] Figure 2 summarizes the salient fea-

tures of the two modelling approaches and the
resulting three types of models: cohort, popula-
tion and multi-cohort.

A good example of handling known hetero-
geneity with a multi-cohort approach was provided

t0 t2t1 t3

t0 t2t1 t3

t0 t2t1 t3

t0 t2t1 t3

…

…

…

…

Population
(open and

heterogeneous)

Multi-cohort
(closed and

heterogeneous)

Multi-cohort
(open and

homogeneous)

Single cohort
(closed and

homogeneous)

a

b

c

d

Population
approach

(open)

Cohort
approach

(closed)

Absorbing state
Incident individuals

Fig. 2. Stylized difference between a cohort model, a multi-cohort model and a population model. (a) A single-cohort model is necessarily
a closed group of patients. One prevalent or incident cohort enters at t0 and at a given starting age. Modelling a target population as a single
cohort implies the population is considered to be homogeneous. (b) A multi-cohort model can account for potential heterogeneity. Different
prevalent or incident cohorts enter at t0 but at different starting ages (e.g. a multi-birth cohort model to capture the effects of a screening
programme, which applies to more than one age group). (c) A multi-cohort model can also consider the target population as a homogeneous
population but be opened to future incident patients. A multi-cohort model can be formed by different cohorts of individuals entering at different
times, but with the same starting age (e.g. a multi-cohort model to capture the effects of an intervention that becomes less costly, more effective
and more widely used as time goes by). (d) A population-based model considers the entire prevalent target population, accounts for future
incident individuals and takes potential heterogeneity into account by distributing the target population according to particular characteristics
considered most relevant for the decision problem. In a way, a population-based model combines the features of the two multi-cohort
approaches (b) and (c). New individuals can be newborn or new incident patients. The number of incident individuals can be fixed or variable
every year (e.g. steady, increasing or decreasing trends depending on demography, epidemiology, disease management and market data).
Single-cohort models (a) and multi-cohort models (b) are evaluated accumulatively over cohort(s) lifetime(s) or any definite time horizon. Multi-
cohort models (c) and population models (d) can be evaluated cross-sectionally or accumulatively. Cross-sectional evaluation can be at
population steady state or at any definite timepoint (e.g. 5 years after the new technology launch). Accumulated evaluation is necessarily over
a definite time horizon.
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by Dewilde and Anderson.[25] The authors com-
pared a single versus a multi-birth cohort model
to examine a screening intervention. The outcomes
of screening programmes have typically been sim-
ulated using single-cohort models. However,
such models only consider the impact on individ-
uals in the target population who are about to
enter the screening age range, ignoring the impact
on the rest of the eligible population. First, a
single-cohort simulation was run for the youngest
age group of interest to produce a Markov trace
of all the possible states. Five-year intervals were
selected for the multi-birth cohort model, using
11 cohorts between 15 and 65 years of age. All co-
horts ended at age 85 years. Age-specific prevalence
rates and transition probabilities were produced
for the various states.

The final result of this multi-birth cohort model
was determined as the weighted average of the
outcome for each birth cohort, the weights being
established as the proportion of each age cohort
within the target population. Compared with the
single-cohort model, the multi-cohort simulation
gave different (lower) estimates of both costs and
health benefits and a less favourable ICER. The
authors concluded that to achieve more precise
estimates of costs and outcomes, it is not sufficient
to have a valid model with structures, transition
probabilities and Markov states accurately reflect-
ing broadly homogeneous prognostic and risk ca-
tegories. It is also necessary to ensure that the age
distribution of the simulated population is similar
to the target population of the intervention.

2.4 Model Evaluation

In a single-cohort-based model, the evaluation
is done by accumulating the outcomes of interest
over a finite time horizon or over the cohort life-
time. The same applies to a multi-cohort model.
An overall assessment is carried out by running
the model for each sub-cohort separately, with
divergent characteristics and state transition prob-
abilities. The overall result is then obtained by
the weighted average of the results for each sub-
cohort. Weights are determined by the propor-
tion of the target population belonging to each
sub-cohort.

A population-based model can be evaluated
cross-sectionally or accumulatively. A cross-
sectional evaluation can be performed when it is
reasonable to assume that the target population
has reached a steady state for the decision pro-
blem (i.e. if the target population and its distribu-
tion across the relevant attributes are not expected
to change in the future). A cross-sectional eval-
uation can also be performed at any definite time-
point (e.g. 5 years after the new technology launch).
An accumulative evaluation is necessarily per-
formed over a definite time horizon. The evalua-
tion period can be determined following various
criteria such as the expected dynamics of the target
population or the expected diffusion pace of the new
intervention within the target population.

In both multi-cohort and population models,
the difficulty lies in knowing which factors to use
to stratify the population. For instance, should
the model be stratified by age, risk group, disease
severity, gender, socioeconomic status, previous
exposure to a disease or to a treatment, etc.?
Admittedly, this stratification is to be guided by
the scope of the decision problem and the deci-
sion-maker requirements to address it.

Standaert et al.[26] recently compared a cohort-
and a population-based approach to examine the
effect of a vaccine against pneumococcal diseases.
Both models were applied to two target popula-
tions with widely divergent age structures in two
countries (the UK and Mexico). The cohort model
followed a single birth cohort over a lifetime of
100 years. The population model subdivided the
population into 123 age groups (monthly from
birth to 23 months, yearly thereafter), with the
number of individuals in each group determined
by the current age structure of the corresponding
country.

This difference in age structure manifested it-
self clearly when comparing the cumulated num-
ber of person-years at risk between the two models.
For instance, the difference between the twomodels
in terms of person-years at risk was marginal (2%)
for the UK but significant (42%) for Mexico. The
difference between the two models is indeed re-
latively small for the UK, which may give a false
sense of equivalence between the models. However,
the divergence found forMexico plainly exemplifies

Population- vs Cohort-Based Modelling Approaches 177

ª 2012 Adis Data Information BV. All rights reserved. Pharmacoeconomics 2012; 30 (3)



the fact that cohort and population models ad-
dress the potential impact of an intervention
differently. A cohort model focuses on the accu-
mulated outcomes over time among individuals
of the cohort. Conversely, a population model fo-
cuses on the short-term outcomes achieved across
the different sub-cohorts making up the popula-
tion at the time of the cross-sectional assessment.
In this particular example, the results would only
be equivalent if the age structure and the disease
transmission dynamics were the same in both
models and remained stable over the long term.

3. Discussion

Guidance drawn from a decision analytic model
can only be as good as the model’s quality. Good
quality modelling goes beyond model structure,
data sources or the handling of uncertainty.
Quality modelling should also embrace the way
the target population is modelled. Suitable and
reliable estimates of benefits and costs of a new
intervention can only be obtained if the target
population characteristics are adequately reflected
at the model outset. Health economists constantly
claim that modelling is a necessary step to palliate
the gap of information between clinical trials and
decision-maker inquiries. Omission of important
target population characteristics might well jeop-
ardize the intended modelling object (i.e. helping
the decision-making process).

Many models depart from single cohorts,
which are generally fixed, hypothetical and com-
posed of representative or ‘average’ individuals.
Considering a target population as a homogeneous
group is a strong assumption. It is rarely dis-
cussed by modellers, while it may have worrisome
effects on the implications of the results. For ex-
ample, a state transition model implies that the
same state transition probabilities apply to all in-
dividuals sojourning in a state. Therefore, the in-
dividuals are assumed to be identical in all those
respects thought to influence the transition prob-
abilities. Sparse but convincing examples have been
published, and all have shown non-negligible effects
on intervention cost effectiveness.

Individual-level simulation is increasingly used in
cohort-based modelling to factor in individuals’

variability and to reflect the potential dependence
of transition probabilities on individuals’ attrib-
utes and histories.[27-29] This approach results in a
distribution of outcomes rather than in a single
average, so it provides an indication of the like-
lihood of specific or extreme outcomes, depending
on individual patient characteristics. Yet, this ap-
proachmight not produce target population-level
estimates of outcomes the same as multi-cohort
or population-based models. Individual variabil-
ity (e.g. different response between two female pa-
tients) and target population heterogeneity (e.g.
75% female vs 25% male) are different matters.
The former relates to the individual-level outcomes,
while the latter relates to the population-level
outcomes yielded by the intervention.

A single-cohort approach may suffice as long
as relative homogeneity of the target popula-
tion is guaranteed. As soon as heterogeneity is
recognized, a multi-cohort approach should also
be explored to account for the target population
dispersion over the heterogeneous character-
istics.[30] Depending on the decision problem, one
may perform a cost-effectiveness appraisal for each
sub-cohort separately and make decisions per sub-
group. Alternatively, one may choose to provide an
overall appraisal as a weighted average of sub-
group results.

Eligibility criteria for a new intervention and
potential sources of heterogeneity for its evalua-
tion are mainly health policy concerns. They
principally occur when decision makers intend to
circumscribe the target population and to define
the reimbursement condition of an intervention.
Modellers should thus make every endeavour to
embrace health policy objectives. Decision makers
are not necessarily interested in overall or average
estimates. In contrast, they increasingly value
targeted allocation of treatment and prevention
strategies, depending on the likelihood of response,
capacity to benefit or risk exposure. For instance,
a multi-cohort approach is probably more akin to
the emerging concept of personalized or stratified
medicine.[31]

Cost-effectiveness appraisal necessitates the
accrual of both costs and benefits over time for
each alternative to inform decisionmaking. How-
ever, cost-effectiveness models do not generally
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account for possible future changes in technol-
ogy, prices and information, which are by essence
uncertain.[32] A decision maker has generally some
discretion on the timing of the decision (i.e. the
decision maker can wait until further informa-
tion is available). In addition, a decision entails a
certain degree of irreversibility (i.e. a decision can
irreversibly exhaust an amount of resources that
will not be further available for other purposes).

Several approaches have thus been proposed
to address these issues using cohort models. For
instance, Palmer and Smith[33] used an option-
pricing technique to value the flexibility in the
timing of an investment decision. Philips et al.[34]

drew on a value-of-information analysis to assess
the value of acquiring additional information to
inform a decision problem.

As recently demonstrated by Hoyle and
Anderson,[16] it is also possible to incorporate
into the ICER computation the costs and benefits
for both prevalent and all future incident patients
over a new technology life-cycle, thereby using an
open multi-cohort approach. Uncertainty about
future costs or the number of eligible patients can
then be incorporated into sensitivity analysis.[35]

A particular situation is the presence of inter-
actions between individuals, such as in the case of
vaccination against infectious diseases. In this case,
cohort-based models are potentially inappropriate.
Population-based models that reflect population
dynamics and that can fully encompass the disease
transmission dynamic across multiple population
segments are better suited.[36,37]

To complement cost-effectiveness appraisals,
budget impact analyses (BIA) are often performed
to provide the decision makers with the expected
impact of introducing the new intervention on
their budget.[22] A decisive factor for a BIA is the
anticipated diffusion of the new intervention within
the target population. In this circumstance, the
target population dynamic must be coupled with
the market dynamic (change in the mix of inter-
ventions). It is then advisable to use a population-
based model.

More generally, cohort models are to be used
in cost-effectiveness analyses in which both costs
and effects must be accrued over time. Neverthe-
less, an open population approach is also possible

over a new technology life-cycle to account for all
future incident cohorts of patients who will re-
ceive the technology.[16]

Population-based models are better suited in
the presence of interactions between individuals
and for any type of impact analyses. This could
include, for example, the estimated impact on the
health of the target population and on the target
disease burden.[38,39] For instance, changes in public
health indicators such as the disease prevalence
and incidence or the number of bed-days will be
more appropriately simulated through a population-
based model rather than a cohort-based model.

An interesting option may be to combine the
various modelling approaches in the spirit of
Mauskopf,[24,39] who combined the incidence-
and prevalence-based modelling for the economic
assessment of newHIV treatments. Cohort ormulti-
cohort models are to be used to assess interven-
tion efficiency. Population-based models are to
be used to assess affordability and population-
level outcomes. Of interest, such an approach has
also been suggested by some epidemiologists[40]

and operational researchers.[38,41]

4. Conclusion

No single type of model can provide adequate
answers under all circumstances. However, a basic
requirement of any modelling project must be the
consideration of the target population dispersion
across the set of characteristics potentially perti-
nent for the decision problem. Modellers and
decision makers should be aware of both cohort-
and population-based modelling approaches and
accordingly be able to assess the implications of a
model’s results.
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