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Abstract The prescription of pharmaceuticals in the critically ill is complicated by a paucity of knowledge con-

cerning the pharmacokinetic implications of the underlying disease state. Changes in organ function can be

dramatic in this population, both as a consequence of the primary pathophysiology and in response to

clinical interventions provided. Vascular tone, fluid status, cardiac output and major organ blood flow can

be significantly altered from baseline, influencing the volume of distribution and clearance of many com-

monly prescribed agents.

Although measurable endpoints can be used to titrate doses for many drugs in this setting (such as

sedatives), for those agents with silent pharmacodynamic indices, enhanced excretory organ function can

result in unexpectedly low plasma concentrations, leading to treatment failure. This is particularly relevant

to the use of antibacterials in the critically ill, where inadequate, inappropriate and/or delayed prescription

can have significant effects on morbidity and mortality.

Augmented renal clearance (ARC) refers to enhanced renal elimination of circulating solute and is being

described with increasing regularity in the critically ill. However, defining this process in terms of current
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measures of renal function is problematic, as although the glomerular filtration rate (GFR) is largely

considered the best index of renal function, there is no consensus on an upper limit of normal. In addition,

the most readily available and accurate estimate of the GFR at the bedside is still widely debated. From a

pharmacokinetic point of view, ARC can result in elevated renal elimination and subtherapeutic plasma

concentrations of pharmaceuticals, although whether this process solely involves augmented filtration (as

opposed to enhanced tubular secretion and/or reabsorption) remains uncertain.

The primary contributors to this process are likely to be the innate immune response to infection and

inflammation (with its associated systemic and haemodynamic consequences), fluid loading and use of

vasoactive medications. The resultant increase in cardiac output and renal blood flow prompts enhanced

glomerular filtration and drug elimination. Current evidence suggests that young patients without pre-

existing co-morbidity or organ dysfunction who present with trauma are most likely to manifest ARC. As

this phenomenon has received little attention in the literature, dose modification has rarely been considered.

However, with increasing data supporting the concept, and many investigators demonstrating sub-

therapeutic concentrations of drugs in the critically ill, consideration of ARC and alternative dosing regi-

mens is now mandatory, both to improve the likelihood of treatment success and to reduce the rate of

development of antibacterial resistance.

Augmented renal clearance (ARC) in patients without organ

dysfunction is being increasingly described in subsets of criti-

cally ill patients.[1-11] In the context of antibacterial therapy,

ARC has the potential to result in subtherapeutic dosing,

treatment failure or selection of resistant micro-organ-

isms.[11,12] This has significant implications in patients with

sepsis, whereby the consequences of inappropriate antibacterial

therapy may be catastrophic.[13-16] Given the persisting high

associated intensive care unit (ICU) and in-hospital mortality

rates,[17] action against any pathophysiology that alters anti-

bacterial efficacy should be considered mandatory. ARC is also

likely to be a key mechanism underlying the high antibacterial

clearances previously described in patients with significant

burn injury[4,18-24] or haematological malignancy.[25-28]

Current evidence stresses that the prescription of antibacterials

in critically ill patients with sepsis is complex. Pharmacokinetic

variability may be significant, with fluid shifts, altered capillary

permeability, impaired vascular tone, organ dysfunction and

multi-organ failure all likely to alter the pharmacokinetics of

many routinely prescribed agents.[29] Although ARC is a factor

rarely considered in this context, it increases the likelihood of

suboptimal antibacterial concentrations.

The aims of this article are to define ARC, review its sig-

nificance in the critically ill and explore the underlying mechan-

ismswithin the context ofmethods commonly used to assess renal

function. We also seek to describe those subpopulations of cri-

tically ill patients most ‘at risk’ from ARC and review the im-

plications for antibacterial dosing strategies in these groups.

Data for this review were identified by searches of MED-

LINE (from 1966 to January 2009) and EMBASE (from 1966

to January 2009). The search terms included ‘creatinine clear-

ance’, ‘antibiotics’, ‘pharmacokinetics’ and ‘critical illness’. In

addition, other references were identified from the extensive

files of the authors and from reference lists of identified papers.

1. What is Augmented Renal Clearance (ARC)?

A key function of the human kidney is excretion of circu-

latingmetabolites, toxins, waste products and pharmaceuticals,

through a combination of glomerular filtration, tubular secre-

tion and reabsorption. ARC refers to enhanced elimination of

solute as compared with an expected baseline. However, ac-

curately defining this process is problematic and is reliant on

the accepted ‘normal’ values of renal function for a particular

patient or population. The most widely accepted descriptor of

renal function in health and disease is the glomerular filtration

rate (GFR), and ‘normal’ values are roughly 130mL/min/1.73m2

and 120mL/min/1.73m2 in young men and young women, re-

spectively.[30] Importantly, these values decline with age[30]

(figure 1). Previously, some authors have attempted to define

abnormal glomerular filtration on the basis of elevated GFRs.

Sunder-PlassmannandHorl[31] have proposed a categorization

system for elevated GFRs, which they term ‘glomerular hyper-

filtration’. In their article, the authors defined glomerular

hyperfiltration on the basis of a GFR ‡120mL/min/1.73m2

(>149mL/min/1.73m2 in young adults). However, this cate-

gorization system does not differentiate between the sexes, re-

quires further validation in the critically ill and may represent

values within the normal range for some patients. In addition,
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the term ‘glomerular hyperfiltration’ describes changes typi-

cally seen in chronic kidney disease, and may not be re-

presentative of the mechanisms in critical illness.

Our proposed definition of ARC uses values 10% above the

upper limit of normal – namely, GFRs >160mL/min/1.73m2

in men and >150mL/min/1.73m2 in women. Albeit conservative,

these cutoffs are more likely to identify patients with truly

augmented clearances. In addition, as a number of separate

authors have identified creatinine clearance (CLCR) as a key

pharmacokinetic covariate in predicting the clearance of many

antibacterials,[5,32-41] this definition is an important step in

identifying subpopulations at risk of subtherapeutic anti-

bacterial exposure. Further work is clearly needed to refine

these values and correlate them with pharmacokinetic and

outcome data.

1.1 Physiological Changes in Critical Illness Likely to

Contribute to ARC

The systemic inflammatory response syndrome (SIRS), a

part of the innate immune response, describes a syndrome of

physiological and laboratory derangements that can be re-

cognized in the critically ill, regardless of the underlying ae-

tiology.[42] Potential causes include trauma,[43] pancreatitis,

burn injury, autoimmune disorders, ischaemia and major sur-

gical procedures.[44] Sepsis is then defined as the presence of

infection in conjunction with SIRS.[45]

The primary haemodynamic manifestations include a low

systemic vascular resistance index and high cardiac output.[46]

The underlying hypermetabolic and inflammatory state is dri-

ven by the release of endogenous cytokines and inflammatory

mediators, in addition to the relative cellular dysoxia. How

these changes impact on renal function is still being studied. In

large animal models of sepsis, renal blood flow has been

documented to increase in concert with cardiac output,[47] and

in postoperative critically ill patients, cardiac output has been

closely correlated with CLCR.
[3]

Measures to improve cardiovascular function in the critically

ill commonly involve administration of intravenous resuscitation

fluids and use of vasoactive medications.[48,49] Animal research

has confirmed that crystalloid administration can result in an

increase in CLCR,
[50] although the influence of vasoactive agents

on renal blood flow is continuing to be investigated.[51] Recent

experimental data suggest that norepinephrine (noradrenaline)

[a commonly employed vasopressor/inotrope] acts to increase car-
diac output,[52,53] renal blood flow[52] andCLCR,

[52,53] particularly

in states characterized by marked vasodilation.[54] Previous stu-

dies in human sepsis and septic shock have confirmed a positive

effect of norepinephrine on CLCR.
[55-57] Figure 2 schematically

illustrates the potential mechanisms underlying ARC in the

critically ill.

These data suggest that in critically ill patients without sig-

nificant renal dysfunction and in whom adequate resuscitation

has been achieved, ARC is likely to be common. However,
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many patients can develop acute kidney injury with sepsis,

secondary to mechanisms that are still being investigated,[58]

and often in concert with significant laboratory and physiolo-

gical derangement.[59] As a consequence, consideration of dose

reduction of drugs in this setting may also be necessary.

1.2 Assessing the Presence of ARC in the Critically Ill

The most accurate, routinely available method of assessing

the GFR is still uncertain, although serum creatinine con-

centrations are routinely used as an index of glomerular fil-

tration in a clinical setting. However, isolated serum creatinine

concentrations within the ‘normal’ reference range are in-

sensitive indicators of the GFR in the ICU.[60] In addition, age,

sex, race, state of hydration, muscle mass, metabolic state and

muscle injury may all influence this value.[61] Despite these

limitations, and perhaps incorrectly, acute elevations in serum

creatinine concentrations are routinely interpreted as renal

dysfunction, particularly in concert with oliguria (urine output

<0.5mL/kg/h).
In contrast, a ‘normal’ serum creatinine concentration within

the laboratory reference range is assumed to equate to normal

renal function, especially when the urine output is greater than

0.5mL/kg/h. However, this interpretation of renal function may

not always be correct. In patients whose protein stores or intake

may be low, such as those who are elderly, malnourished, de-

bilitated, hospitalized for long periods, or at the end of preg-

nancy, a ‘normal’ serum creatinine concentration may represent

significant renal impairment.Recentwork has also suggested that

low baseline serum creatinine concentrationsmay be a risk factor

for mortality in the critically ill.[62]

Numerous equations have been developed to estimate the

GFR from serum creatinine values in ambulatory or ward-

based patients with chronic kidney disease. The Modification

of Diet in Renal Disease (MDRD) equation[63] was developed

using data from 1628 patients with chronic kidney disease and

calculates an estimated GFR adjusted to body surface area.

Although it is a useful tool to screen for and monitor chronic

kidney disease, its main limitation is in those without renal

impairment, where inaccuracies have been reported at higher

GFRs.[64-66] The Cockcroft-Gault equation[67] was developed

in 1973 in 249 male patients and, although widely employed,

has poor application in the critically ill.[60,68-70] Using historical

data, Jelliffe[71] has proposed a method of estimating CLCR in

those with unstable renal function. Although of significant

merit, this method includes a requirement for at least two serum

creatinine values (usually separated by 24 hours), and it suffers

from the pitfalls of measuring serum creatinine concentrations

in the critically ill. Further validation in this setting is needed.

Although these equations potentially provide more useful

data than serum creatinine concentrations alone, particularly in

patients recently admitted to the ICU,[72] clinicians should be

dissuaded fromusing such equations to calculate theGFR, as they

ignore the important effects of disease pathophysiology. Urinary

creatinine collections of 8, 12 and 24 hours have been used

to determine the GFR in critically ill patients,[73-75] although a

2-hour collection may be just as accurate.[9,72] Some authors

have advocated using longer collection periods to improve the

accuracy of GFR estimates[76] although, given the dynamic

nature of critical illness, controversy exists over the most useful

time for specimen collection. This is compounded by the cir-

cadian nature of the GFR,[77] and intraindividual variability

is likely to be substantial. More frequent measurement is sug-

gested in the critically ill, as there is potential for rapid changes

in organ function.

Other markers such as inulin,[78] sinistrin[79] and cystatin

C[30,80] may also have benefits for estimating the GFR but have

not been widely adopted in clinical practice. Thus, because of

the established correlation with drug clearance[5,7] and ease of

measurement in the ICU, we believe that a timed urinary

creatinine collection remains the most appropriate and con-

venient method for identifying patients with ARC.

1.3 ARC versus Renal Tubular Secretion or Reabsorption

Although it is convenient to define ARC on the basis of an

elevated GFR, it is unknown whether there is a concomitant

Inflammation
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Vasodilation

↑ RBF

↑ CO
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Renal
reserve
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Vasoactive
medications
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Fig. 2. Mechanisms underlying augmented renal clearance (ARC) in

the critically ill. CO = cardiac output; GFR= glomerular filtration rate;

IV= intravenous; RBF= renal blood flow; SIRS= systemic inflammatory

response syndrome; m indicates increase.
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change in tubular secretion or reabsorption. Assessment of

either component of renal function remains a difficult task,

particularly as there is no specific agreed test that evaluates each

process simultaneously or is routinely available. In a research

context, this has prompted the administration of a ‘cocktail’ of

different markers to characterize each process in the individual

patient.[81,82] Future work is urgently needed in this area to

outline any role in the critically ill.

1.4 Prevalence of ARC and Subpopulations Likely to

Develop It

Although few robust studies are available, some data exist

that may be instructive as to the prevalence of ARC as well as

the patients most at risk. In a single-centre ICU observational

study, Fuster-Lluch et al.[6] reported an incidence of glomerular

hyperfiltration of 17.9% on admission to the ICU, with a mean

CLCR of 142mL/min/1.73m2. Patients with an elevated GFR

were primarily multi-trauma victims or postoperative patients,

were younger, and had lower Acute Physiology and Chronic

HealthEvaluation (APACHE) II scores andhigher urine outputs.

Brown et al.[3] also demonstrated elevated CLCR in a small

cohort of young postoperative trauma patients, whose peak

CLCR values reached 190mL/min/1.73m2. Albanese et al.[1]

documented elevated CLCR in a subgroup of isolated traumatic

brain-injured patients receiving norepinephrine. Significantly,

clearances were elevated prior to institution of the vasopressor

and remained elevated for the 24 hours of the study. A similar

result was noted by Benmalek et al.[2] in their paper in-

vestigating the effects of dopamine in addition to nor-

epinephrine in the management of post-traumatic intracranial

hypertension. Recently, we demonstrated ARC in a cohort

of patients with severe head injury receiving osmotherapy

(hypertonic saline) and/or vasopressor infusion for the main-

tenance of cerebral perfusion pressure (unpublished data). The

mean age of this group was 26 years, and 85% met the criteria

for ARC during their ICU stay. Of note, clearances were ele-

vated both on and off cerebral perfusion pressure therapy.

Shikuma et al.[83] have previously investigated the clearance

of piperacillin in critically ill surgical patients with sepsis and

normal renal function. In this relatively young cohort (mean

age 44 years), wide interindividual variations were reported in

key pharmacokinetic parameters, in addition to significantly

elevated drug clearance. CLCR values and haemodynamic

parameters were not provided, although amoderate correlation

was reported between drug elimination and CLCR.
[83] In con-

trast, Jacolot et al.[84] were unable to demonstrate any sig-

nificant changes in the pharmacokinetics of cefpirome

administered to traumatized patients with SIRS, as compared

with matched healthy controls. Estimated CLCR values were

elevated in the trauma group (median 147mL/min), although

this finding did not reach statistical significance. Of note, cef-

pirome was administered on average 9 days post-admission, no

haemodynamic data were reported, and patients requiring va-

sopressor administration were excluded.[84]

It follows that younger patients (roughly <55 years), admitted

post-trauma (particularly after head injury) or post-surgery ap-

pear to be at greatest risk ofARC.Higher antibacterial clearances

have also been reported in patients with sepsis, haematological

malignancy[25-28] and significant burn injury.[4,18-24,85]

1.5 Time Course of ARC

The time course of ARC in the critically ill is still uncertain,

and some patients may develop this phenomenon later in their

ICU admission. It is likely to vary between patients and depends

on the pathophysiology of the presenting disease process and the

type of clinical interventions undertaken. In the study by Fuster-

Lluch et al.,[6] the authors observed that the prevalence of glo-

merular hyperfiltration (CLCR >120mL/min/m2) was greatest on

day 5 of the study. Brown et al.[3] reported peak CLCR levels on

the fourth day, with levels returning to immediate postoperative

values by day 7. In our recent observational study in traumatic

brain injury, peak CLCR values were recorded after a mean of

4.7 days (range 0–11.5 days) of treatment (unpublished data). As

the likely mechanisms involve a SIRS response, fluid loading and

use of vasoactive medications,[83,86] ARC should always be con-

sidered in such a context. Where doubt exists, a timed urinary

creatinine collection should be performed.

The clinical importance of ARC relates primarily to en-

hanced drug elimination, leading to subtherapeutic con-

centrations and potentially to treatment failure. Where drugs

are administered to achieve a desired clinical effect (e.g. anti-

hypertensives and sedatives), doses can be easilymodified in the

presence of ARC. However, for drugs with more subtle end-

points, such as antibacterials, and where the consequences of

suboptimal therapy can be catastrophic, an estimate of drug

clearance should be considered early to enable accurate dosing.

2. ARCas It Relates toAntibacterial Pharmacokinetics

and Pharmacodynamics: Considerations for Dosing

in the Intensive Care Unit

Antibacterials can be clearly classified on the basis of their

bacterial kill characteristics. The b-lactam group of agents

Augmented Renal Clearance in the Critically Ill 5
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demonstrates time-dependent killing and, as such, the time for

which the drug concentration remains above the minimum in-

hibitory concentration (MIC) for bacterial growth (T>MIC), is

the best predictor of antibacterial efficacy.[87] Maintaining

adequate plasma concentrations throughout the dosing interval

is therefore essential, and the implications of ARC are most

notable for b-lactams. In contrast, aminoglycosides have a

concentration-dependent kill characteristic, whereby the effect

is determined by the ratio of the maximum plasma drug con-

centration (Cmax) to theMIC (Cmax/MIC).[88] For other agents,

such as fluoroquinolones and glycopeptides, the ratio of the

area under the plasma concentration time curve from 0 to

24 hours (AUC24) to the MIC (AUC24/MIC) is the key phar-

macokinetic-pharmacodynamic factor[89,90] associated with

efficacy. Although more speculative, ARC could significantly

influence the pharmacokinetic profile of renally eliminated

agents in this group,[11] mandating more frequent dosing.

2.1 b-Lactam Antibacterials

The b-lactam group of antibacterials includes the penicillins,

cephalosporins, carbapenems and monobactams, and is the

group for which the greatest amount of data exist concerning

the implications of ARC. In the absence of any significant post-

antibacterial effect for a given agent, dosing schedules should

aim to keep plasma concentrations above theMIC for 90–100%
of the dosing interval.[91] In addition, concentrations 4–5 times

the MIC are ideal, as bacterial killing is maximal.[92,93]

The majority of these agents are renally eliminated (through

a mixture of glomerular filtration and tubular secretion), and a

number of pharmacokinetic-pharmacodynamic papers have

been published using different dosing regimens in the critically ill

(table I). In addition, a correlation between CLCR and total

drug clearance has been reported for a number of

agents,[20,32,36,38-41,97,99,101,110,112,121,122] and recent work by

Conil et al.[5] has highlighted the importance of CLCR as a key

covariate in drug elimination, with a strong inverse relationship

between CLCR and the minimum plasma drug concentration.

Furthermore, both increased drug clearance and significant

interindividual variability have been reported in the critically

ill[34,40,83,95,99,109,119] (table I).

Although for some antibacterials the mean pharmacokinetic

data reported for critically ill patients may not be greatly dif-

ferent from those in studies of healthy subjects (table I), the

significant interindividual variability that is often documented

indicates that summary statistics are not accurate in describing

this phenomenon. In addition, as many critically ill patients

manifest acute kidney injury and renal dysfunction, studies of

small numbers in a heterogenous critically ill population will be

underpowered to detect ARC. In those patients with normal

renal function, ARC is likely to be common.[107,114]

A recent study by Noel et al.[123] involving the new, in-

vestigational, broad-spectrum cephalosporin ceftobiprole is

worth consideration, as it highlights the potential clinical im-

plications of ARC. Inferior cure rates, when compared with the

combination of linezolid/ceftazidime, were documented in

patients with ventilator-associated pneumonia (VAP), who

were young (<45 years) or had an elevated CLCR at baseline

(‡150mL/min).[123]Although the clinical implications of thiswork

are significant, it must be regarded primarily as hypothesis gen-

erating, as the study has yet to be published in a peer-reviewed

journal, and no pharmacokinetic data have been provided.

2.1.1 Carbapenems

The carbapenems (meropenem, imipenem, panipenem, er-

tapenem, doripenem and biapenem) are considered a separate

class of b-lactam antibacterials and also demonstrate time-de-

pendent killing.[124] In vitro models have suggested that the

carbapenem post-antibacterial effect enables these agents to

require less T >MIC[125] for bacteriostatic activity (20%) and

bactericidal activity (40%).[126] As demonstrated with other b-
lactams, CLCR is a key covariate in predicting drug elimina-

tion,[36,37] which can be elevated in the critically ill (table I).[34,119]

This in turn can lead to potentially subtherapeutic drug con-

centrations for large portions of the dosing interval.[34]

2.1.2 Implications of ARC for Dosing of b-Lactams

These data serve to underline the importance of ARC in

dosing of b-lactam antibacterials in the critically ill and raises

important questions as to the optimal strategy in this setting.

Given the time-dependent kill characteristics of this class of

antibacterials and the increased clearances documented in the

critically ill, maintaining adequate drug concentrations

through more frequent, extended or continuous dosing must be

considered. Pharmacokinetic-pharmacodynamic data support

administration by extended or continuous infusion,[32,103,127-133]

and recent work has demonstrated improved clinical outcomes

in subsets of critically ill patients, particularly VAP.[127,134-137]

However, a recent systematic review of continuous dosing

strategies has failed to demonstrate any clinical advantage,[138]

although any role in the setting of ARC remains unknown.

Despite the lack of conclusive outcome data, continuous infu-

sion of b-lactams offers an attractive strategy to maintain

therapeutic drug concentrations, and ongoing, prospective

work in this area is needed to address the paucity of evidence.
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2.2 Glycopeptide Antibacterials

The specific pharmacokinetic-pharmacodynamic profile of

the glycopeptides is not fully understood, as some data suggest

that these agents have time-dependent properties,[139-141] while

animal studies have suggested that the Cmax/MIC ratio predicts

efficacy against some micro-organisms.[142] Vancomycin is the

most commonly prescribed glycopeptide, and recent studies

have indicated that the AUC24/MIC ratio is the most import-

ant pharmacokinetic-pharmacodynamic parameter correlating

with efficacy.[90,143] Clinical data have linked AUC24/MIC ra-

tios of ‡400 with superior clinical and bacteriological responses

in patients treated with vancomycin for meticillin-resistant

Staphylococcus aureus infections of the lower respiratory

tract.[144]

Vancomycin is primarily renally eliminated[145] through

a mixture of glomerular filtration and renal tubular secretion.

A large population pharmacokinetic study has demonstrated a

significant correlation between vancomycin clearance and

CLCR.
[146] Additional work in the critically ill has confirmed

this relationship[85,147,148] and suggests that CLCR accounts for

>50% of the variability in vancomycin clearance in this popu-

lation.[35] Furthermore, higher dose requirements have been

demonstrated in patients concurrently receiving vasoactive

medications,[145] in addition to augmented clearances in burns

patients[85] and haematological malignancy.[27] Recently, Pea

et al.[148] have developed dosing nomograms for vancomycin

based on CLCR estimates, with good correlation between pre-

dicted and observed plasma concentrations.

Teicoplanin has a spectrum of activity similar to that of van-

comycin, although its longer elimination half-life (in excess of

90 hours, due to high protein binding)[149] allows for once-daily

dosing. A correlation between drug clearance and estimated

CLCR of this agent has been reported in the critically ill,[28,33,150]

and enhanced elimination has been demonstrated in the setting of

hypoalbuminaemia[33] and severe neutropenia.[28]

2.2.1 Implications of ARC for Dosing of Glycopeptides

Despite a greater understanding of the relevant pharmacoki-

netic-pharmacodynamic properties of vancomycin, the optimal

dosing regimen in the critically ill remains uncertain. Present le-

vels of bacterial resistance suggest that trough concentrations of

at least 15–20mg/Lare required, and in those displayingARC, an

increased frequency of dosing or continuous infusion may be

appropriate. Using Monte Carlo simulations, previous studies

have demonstrated that doses higher than those routinely pre-

scribed in the ICU are needed to achieve the desired pharmaco-

kinetic-pharmacodynamic targets, particularly with intermediateT
a
b
le

I.
C
o
n
td

A
n
ti
b
a
ct
e
ri
a
l

H
e
a
lt
h
y
s
u
b
je
c
ts

C
ri
ti
c
a
lly

ill
p
a
ti
e
n
ts

n
a
n
ti
b
a
c
te
ri
a
l

d
o
s
e

C
L
[m

L
/m

in
]a

p
o
p
u
la
ti
o
n

n
a
n
ti
b
a
c
te
ri
a
ld

o
s
e

C
L
[m

L
/m

in
]a

C
L
C
R

[m
L
/m

in
]a

in
te
ri
n
d
iv
id
u
a
l

v
a
ri
a
b
ili
ty
?

in
c
re
a
se

d

C
L
?

N
o
s
o
c
o
m
ia
l

p
n
e
u
m
o
n
ia

[1
1
7
]

2
0

1
g
+
c
ila
s
ta
ti
n
1
g
IV

q
8
h
o
r

2
g
+
c
ila
s
ta
ti
n
2
g
C
I

2
0
5
(7
0
)

C
I
1
2
2
(3
3
)

IB
1
2
8
(3
5
)

�
�

E
rt
a
p
e
n
e
m

1
6

1
g
IV

[1
1
8
]

2
9
.5

(3
.4
)

S
e
v
e
re

s
e
p
s
is
[1
1
9
]

8
1
g
IV

q
2
4
h

2
0
0
.5

(3
0
6
.9
)

9
6
.8

(4
3
.3
)

�
�

V
A
P
[1
2
0
]

1
5

1
g
IV

q
2
4
h

7
3
.3

(6
3
.3
–
8
1
.7
)f

7
4

(6
6
–
1
0
9
)f

�

V
A
P
[3
4
]

1
7

1
g
IV

q
2
4
h

4
3
.2

(2
3
.7
)

9
3
.8

(5
2
.4
)

�

a
D
a
ta

a
re

e
x
p
re
ss
e
d
a
s
m
e
a
n
(S
D
)
e
x
c
e
p
t
w
h
e
re

in
d
ic
a
te
d
o
th
e
rw

is
e
.

b
M
e
a
n
(i
n
te
ri
n
d
iv
id
u
a
lv
a
ri
a
b
ili
ty
).

c
M
e
d
ia
n
(r
a
n
g
e
).

d
A
ss
u
m
in
g
th
a
t
b
o
d
yw

e
ig
h
t
is
7
0
k
g
.

e
M
e
a
n
(r
a
n
g
e
).

f
M
e
d
ia
n
(i
n
te
rq
u
a
rt
ile

ra
n
g
e
).

C
I=

c
o
n
tin

u
o
u
s
in
fu
s
io
n
;
C
L
=
to
ta
ld

ru
g
c
le
a
ra
n
c
e
;
C
L
C
R
=
c
re
a
ti
n
in
e
c
le
a
ra
n
c
e
;
F
=
fe
m
a
le
s
;
IB

=
in
te
rm

it
te
n
t
b
o
lu
s
;
IC
U
=
in
te
n
s
iv
e
c
a
re

u
n
it
;
IV

=
in
tr
a
v
e
n
o
u
sl
y
;
M
=
m
a
le
s
;
q
xh

=
e
v
e
ry

x

h
o
u
rs
;
V
A
P
=
v
e
n
ti
la
to
r-
a
s
s
o
c
ia
te
d
p
n
e
u
m
o
n
ia
.

Augmented Renal Clearance in the Critically Ill 9

ª 2010 Adis Data Information BV. All rights reserved. Clin Pharmacokinet 2010; 49 (1)



or drug-resistant strains.[35] As with b-lactams, continuous infu-

sion has been proposed as a mechanism to achieve target steady-

state concentrations. Although a large, prospective, multicentre

study of intermittent dosing versus continuous infusion of glyco-

peptides failed to show any significant difference in micro-

biological or clinical outcomes,[151] Rello et al.[152] described a

clinical benefit of continuous infusion in critically ill patients with

VAP. As ARC significantly impacts on the elimination of van-

comycin in subsets of critically ill patients, further research is

urgently needed in this area.

Standard dosing strategies for teicoplanin in the critically ill

employ a loading dose of 6mg/kg 12-hourly for three doses,[150]

followed by 6mg/kg 24-hourly thereafter. However, recent

work has recommended higher loading doses in hospitalized

patients with sepsis,[153] likely as a result of an increased volume

of distribution (Vd). In addition, doses of at least 12mg/kg are

required in endocarditis and in bone and joint infections,[154]

and have also been advocated in VAP to achieve sufficient

trough concentrations in lung tissue.[155]

2.3 Fluoroquinolone Antibacterials

This group of antibacterials includes ciprofloxacin, moxi-

floxacin, gatifloxacin and levofloxacin. Although a Cmax/MIC

ratio >10 is critical for bacterial eradication,[156] Forrest et al.[89]

have concluded that achieving an AUC24/MIC ratio >125 is

associated with improved clinical outcomes in critically ill pa-

tients with Gram-negative infections. An AUC24/MIC ratio

>100 also appears to prevent the emergence of bacterial re-

sistance, particularly in the critically ill.[157]

Currently, there are limited data examining the impact of

ARC on fluoroquinolone clearances in the critically ill, although

it must be recognized that the effect may be limited, particularly

as these agents have a large Vd. Data do exist, however, for cipro-

floxacin[158,159] and levofloxacin[160] in this setting.

2.3.1 Implications of ARC for Dosing of Fluoroquinolones

The implications of ARC for dosing of this class of anti-

bacterials is poorly understood. In patients with normal serum

creatinine concentrations, we have previously shown that

8-hourly administration of ciprofloxacin was well tolerated

and effective in severe sepsis,[161] although this regimen is still

unlikely to reach the desired pharmacokinetic-pharmacodynamic

targets.[162] Higher doses or alternative dosing regimens may be

recommended in the future. In addition, there is a growing evi-

dence base for higher doses of levofloxacin in the critically ill,[163]

particularly as this agent is renally excreted. Further research is

needed to address the paucity of knowledge in this area, given the

apparent effect ofARCon some fluoroquinolones. Furthermore,

suboptimal dosing of fluoroquinolones has been shown to pro-

mote the growth of drug-resistant mutants[126] and may be en-

hanced by rapid drug elimination.

2.4 Aminoglycoside Antibacterials

Aminoglycoside antibacterials demonstrate concentration-

dependent killing, are excreted almost entirely unchanged by

glomerular filtration[164] and demonstrate comparable, if not

superior, clinical outcomes with single versus multiple daily

dosing.[165,166] However, doses of 7mg/kg confer a Cmax/MIC

ratio of at least 10 (maximizing bacterial killing);[167] thus, in the

setting of ARC, an increase in the dosing frequency to

18-hourly should be considered. This is particularly relevant in

the critically ill, where investigators have demonstrated a sig-

nificant impact of ICU interventions on pharmacokinetic

parameters,[86] in addition to augmented drug clearances in sep-

sis,[168] haematological malignancy[169] and burns.[170] Recent

work has confirmed that traditional dosing regimens are un-

likely tomeet the required pharmacokinetic-pharmacodynamic

targets in the critically ill,[171] likely due to changes in the Vd in

this population. As therapeutic drug monitoring is regularly

employed in this setting, the impact of ARC can be clearly

observed and dosing can be modified appropriately.

2.5 ARC Demonstrated with Other Antibacterials

ARC is likely to be relevant for any renally excreted anti-

bacterial agent prescribed in the critically ill, particularly those

agents that demonstrate time-dependent bacterial killing.

Daptomycin is a novel lipopolypeptide antibacterial with good

activity against most Gram-positive pathogens. Dose reduction

has been recommended in patients with moderate to severe

renal impairment,[172] as the primary route of elimination is via

the kidneys. Currently, there are no data examining the impact

of ARCon its prescription in the critically ill, although this may

be of limited importance, as bacterial killing appears to be

concentration dependent.[173] A lack of ARC was recently

demonstrated in a study of febrile neutropenic patients com-

pared with data from other patient populations.[174]

Linezolid is an oxazolidinone antibacterial with activity

against multi-resistant Gram-positive pathogens. It is mostly

hepatically metabolized before being renally cleared,[175] and

dose modification is not currently recommended in patients

with renal dysfunction.[176] However, previous data have con-

firmed time-dependent bacterial killing,[177,178] and a recent

10 Udy et al.
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trial of alternate dosing strategies in the critically ill confirmed a

pharmacokinetic advantage of continuous infusions in this

population.[179] Increased total drug clearance was reported by

the authors[179] and may represent augmented hepatic blood

flow and/or function, in a manner similar to that of ARC.

However conflicting data have been presented by others, sug-

gesting that there is no difference in key tissue and plasma

pharmacokinetic parameters in patients suffering from severe

sepsis and septic shock compared with healthy subjects.[180]

3. Therapeutic Drug Monitoring

With increasing knowledge of the pharmacokinetic-

pharmacodynamic properties ofmany antibacterials and the ability

to measure plasma concentrations with relative precision,

therapeutic drug monitoring (TDM) has a crucial role in opti-

mizing antibacterial prescription in the critically ill. TDM is

well established for aminoglycosides, where Cmax and trough

concentration monitoring can be used to limit toxicity and

improve efficacy.[181] In addition, trough concentrations can be

used to guide vancomycin and teicoplanin prescriptions, in

order to ensure adequate plasma concentrations.[29,182,183]

However, outside these situations, TDM has played only a

minor role in monitoring the adequacy of therapy with other

routinely prescribed agents.

The significant pathophysiological changes encountered in the

critically ill – and, in particular, the recognition of ARC – require

the clinician to consider alternate dosing strategies for many

agents. TDM represents a useful tool to enable accurate and

timely dose modification to achieve the desired pharmacokinetic-

pharmacodynamic targets and may significantly improve the

clinical efficacy of antibacterial therapy in this population.

In addition, the dynamic nature of critical illness and rapid changes

in organ function mandate that dosing schedules be consistently

evaluated, in order to reduce the likelihood of therapeutic failure

or toxicity. As such, TDM should be regarded as an essential

component of this process and must be readily available for a

wide range of agents in the critical care environment.

4. Conclusions

Determining the optimal dosing regimen for any pharma-

ceutical is important but is of particular relevance for agents

where the clinical response is difficult to assess. In addition,

administering ‘the right dose’ is paramount where any delay in

achieving therapeutic concentrations will result in increased

morbidity and mortality. Such is the case with the prescription

of antibacterials in the critically ill.

Accurate assessment of renal function in this setting is a

complex task and usually focuses on identifying renal dysfunc-

tion, using regular estimation of serum creatinine concentrations.

However, a growing literature base reinforces the hypothesis that

‘normal’ serum creatinine values may be associated with aug-

mented clearances, particularly in young patients without pre-

existing co-morbidity. Previous data have also identified several

limitations in a number of commonly used equations to estimate

the GFR in the critically ill. As such, a timed urinary creatinine

collection remains the most accurate and routinely available

method of assessing renal function in this population and should

be employed routinely at the clinical level.

The likely mechanisms underlying this phenomenon involve

an innate immune response characterized by SIRS and driven

by endogenous mediator release. In the critically ill, this is

further compounded by administration of intravenous fluids

and vasoactive medications. Current evidence highlights young

trauma patients as a population particularly ‘at risk’ although,

to date, increasing drug doses in response to higher clearances

has seldom been considered.

The implications in terms of enhanced drug elimination are

significant, and subtherapeutic concentrations for lengthy

periods of the dosing interval may predispose to treatment

failure and/or emergence of resistant organisms. As this has

largely been neglected in the clinical arena, more frequent es-

timations of CLCR and TDM are warranted to allow optimi-

zation of individual dosing requirements. Further research

should now focus on identifying readily measurable predictors

of ARC in the critically ill, validation of bedside tests to allow

more frequent measurement and empirical adjustment of dos-

ing regimens in this setting.
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