Skip to main content
Log in

Pharmacogenetics of Antihypertensive Drug Responses

  • Practical Pharmacogenomics
  • Published:
American Journal of Pharmacogenomics

Abstract

The blood pressure (BP) response to any single antihypertensive drug is characterized by marked interindividual variation, and the known predictors of response are of limited value in identifying the optimum drug for an individual patient. Analysis of genetic variation has the potential to improve our understanding of determinants of antihypertensive drug response in order to individualize drug selection. Genetic variation can influence both pharmacokinetic and pharmacodynamic mechanisms underlying variation in drug response.

Classic pharmacogenetic investigations have identified variations in single genes that have a large effect on antihypertensive drug metabolism and are inherited in a Mendelian fashion. These include a polymorphism in the CYP2D6 gene, encoding a cytochrome P450 family member involved in phase I drug metabolism, and polymorphisms in genes encoding enzymes involved in phase II drug metabolism, including N-acetyltransferase (NAT2), catechol-O-methyltransferase (COMT), and phenol sulfotransferase (P-PST, SULT1A1). Although these polymorphisms have major effects on the pharmacokinetic profiles of both commonly used antihypertensive drugs such as metoprolol (CYP2D6), and lesser used drugs such as hydralazine (NAT2), methyldopa (COMT), and minoxidil (SULT1A1), they have not been shown to influence variation in the antihypertensive effect of these drugs at conventional doses.

Interest is now focused on identifying genetic polymorphisms that influence the pharmacodynamic determinants of antihypertensive response. Using a candidate gene approach, such polymorphisms have been identified in genes encoding α-adducin (ADD1), subunits of G-proteins (GNB3 and GNAS1), the β1-adrenergic receptor (ADRB1), endothelial nitric oxide synthase (NOS3), and components of the renin-angiotensin-aldosterone system (angiotensinogen [AGT], angiotensin converting enzyme [ACE], the angiotensin type I receptor [AGTR1], and aldosterone synthase [CYP11B2]). These polymorphisms have been shown to influence the BP response to diuretics (ADD1, GNB3, NOS3, and ACE), β-blockers (GNAS1 and ADRB1), ACE inhibitors (AGT, ACE, and AGTR1), angiotensin receptor blockers (ACE and CYP11B2), and clonidine (GNB3).

An emerging consensus from these studies is that single gene effects on antihypertensive drug responses are small, and even the combined effects of all presently known polymorphisms do not account for enough variation in response to be clinically useful. New genome-wide scanning techniques may lead to the identification of genes previously unsuspected of influencing drug response. Additional requirements for pharmacogenetic approaches to become clinically useful are the characterization of the effects of haplotypes and multi-locus genotypes on drug response, and consideration of gene-by-environment interactions. Such studies will require huge sample sizes and novel statistical methods, but the theoretical and technical framework is in place to make this possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I

Similar content being viewed by others

References

  1. Hajjar I, Kotchen TA. Trends in the prevalence, awareness, treatment and control of hypertension in the United States, 1988–2000. JAMA 2003; 290: 199–206

    Article  PubMed  Google Scholar 

  2. Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA 1996; 275(20): 1571–6

    Article  PubMed  CAS  Google Scholar 

  3. Whelton PK, He J, Perneger TV, et al. Kidney damage in ‘benign’ essential hypertension. Curr Opin Nephrol Hypertens 1997; 6(2): 177–83

    Article  PubMed  CAS  Google Scholar 

  4. Skoog I, Lernfelt B, Landahl S, et al. 15-year longitudinal study of blood pressure and dementia. Lancet 1996; 347(9009): 1141–5

    Article  PubMed  CAS  Google Scholar 

  5. Staessen JA, Wang JG, Thijs L. Cardiovascular protection and blood pressure reduction: a meta-analysis. Lancet 2001; 358(9290): 1305–15

    Article  PubMed  CAS  Google Scholar 

  6. Turner ST, Schwartz GL, Chapman AB, et al. Antihypertensive pharmacogenetics: getting the right drug into the right patient. J Hypertens 2001; 19: 1–11

    Article  PubMed  CAS  Google Scholar 

  7. Chapman AB, Schwartz GL, Boerwinkle E, et al. Predictors of antihypertensive response to a standard dose of hydrochlorothiazide in African-American an Caucasians with essential hypertension. Kidney Int 2002; 1(3): 1047–55

    Article  Google Scholar 

  8. Guyton A, Hall J, Lohmeier T, et al. Blood pressure regulation: basic concepts. Fed Proc 1981; 40: 2252–6

    PubMed  CAS  Google Scholar 

  9. Motulsky A. Drug reactions, enzymes and biochemical genetics. JAMA 1957; 165: 835–7

    Article  CAS  Google Scholar 

  10. Vogel F. Moderne prblems der humangenetik. Ergeb Inn Med Kinderheilk 1959; 12: 52–125

    Article  Google Scholar 

  11. Kaplan N. Treatment of hypertension: drug therapy. In: Kaplan N, editor. Clinical hypertension. Baltimore (MD): Williams & Wilkins, 1998: 181–264

    Google Scholar 

  12. Israili Z. Correlation of pharmacological effects with plasma levels of antihypertensive drugs in man. Annu Rev Pharmacol Toxicol 1979; 19: 25–52

    Article  PubMed  CAS  Google Scholar 

  13. Von Bahr C, Collste P, Frisk-Holmberg M, et al. Plasma levels and effects of metoprolol on blood pressure, adrenergic beta receptor blockade, and plasma renin activity in essential hypertension. Clin Pharmacol Ther 1976; 20: 130–7

    Google Scholar 

  14. Beermann B, Groschinsky-Grind M. Antihypertensive effect of various doses of hydrochlorothiazide and it relation to the plasma level of the drug. Eur J Clin Pharmacol 1978; 13: 195–201

    Article  PubMed  CAS  Google Scholar 

  15. Materson B, Reda D, Cushman W, et al. Single-drug therapy for hypertension in men: a comparision of six antihypertensive agents with placebo. N Engl J Med 1993; 328: 914–21

    Article  PubMed  CAS  Google Scholar 

  16. Materson B, Reda C, Cushman W. Department of Veterans Affairs single drug therapy of hypertension study: revised figures and new data. Am J Hypertens 1995; 8: 189–92

    Article  PubMed  CAS  Google Scholar 

  17. Materson B, Reda D, Preston R, et al. Response to a second single antihypertensive agent used as monotherapy for hypertension after failure of the initial drug. Arch Intern Med 1995; 155: 1757–62

    Article  PubMed  CAS  Google Scholar 

  18. Hall W, Reed J, Flack J, et al. Comparison of the efficacy of dihydropyridine calcium channel blockers in African American patients with hypertension. ISHIB Investigators Group. International Society on Hypertension in Blacks. Arch Intern Med 1998; 158(18): 2029–34

    Article  PubMed  CAS  Google Scholar 

  19. Zusman R. Are there differences among angiotensin receptor blockers? Am J Hypertens 1999; 12: 231S–5S

    Article  PubMed  CAS  Google Scholar 

  20. Burnier M, Brunner H. Comparative antihypertensive effects of angiotensin II receptor antagonists. J Am Soc Nephrol 1999; 10: S278–82

    PubMed  CAS  Google Scholar 

  21. Wahl J, Turlapaty P, Bramah N, et al. Comparison of acebutolol and propranolol in essential hypertension. Am Heart J 1985; 109: 313–21

    Article  PubMed  CAS  Google Scholar 

  22. Leonetti G, Cuspidi C. Choosing the right ACE inhibitor: a guide to selection. Drugs 1995; 49: 516–35

    Article  PubMed  CAS  Google Scholar 

  23. Fletcher A, Franks P, Bulpitt C. The effect of withdrawing antihypertensive therapy: a review. J Hypertens 1988; 6: 431–6

    Article  PubMed  CAS  Google Scholar 

  24. Ekbom T, Lindholm L, Oden A, et al. A 5-year prospective, observational study of the withdrawal of antihypertensive treatment in elderly people. J Intern Med 1994; 235: 581–8

    Article  PubMed  CAS  Google Scholar 

  25. Kalow W. Pharmacogenetics: its biologic roots and the medical challenge. Clin Pharmacol Ther 1993; 54: 235–41

    Article  PubMed  CAS  Google Scholar 

  26. Murphy E. One cause? Many causes? The argument from the bimodal distribution. J Chronic Dis 1964; 17: 301–24

    Article  PubMed  CAS  Google Scholar 

  27. Shah R, Oates N, Idle J, et al. Beta-blockers and drug oxidation status. Lancet 1982; I: 508–9

    Article  Google Scholar 

  28. Dayer P, Balant L, Kupfer A, et al. Conbtribution of the genetic status of oxidative metabolism to variability in the plasma concentrations of beta-adrenoreceptor blocking agents. Eur J Clin Pharmacol 1983; 24: 797–9

    Article  PubMed  CAS  Google Scholar 

  29. Shepherd A, McNay J, Ludden T, et al. Plasma concentration and acetylator phenotype determine response to oral hydralazine. Hypertension 1981; 3: 580–5

    Article  PubMed  CAS  Google Scholar 

  30. Spielsberg SP. N-acetyltransferases: pharmacogenetics and clinical consequences of polymorphic drug metabolism. J Parmacokinet Biopharm 1996; 24: 509–19

    Google Scholar 

  31. Campbell N, Dunnette J, Mwaluko G, et al. Platelet phenol sulfotransferase and erythrocyte catechol-O-methyltransferase activities: correlation with methyldopa metabolism. Clin Pharmacol Ther 1984; 35: 55–63

    Article  PubMed  CAS  Google Scholar 

  32. Anderson RJ, Kudlacek PE, Clemens DL. Sulfation of minoxidil by multiple human cytosolic sulfotransferases. Chem Biol Interact 1998; 109: 53–67

    Article  PubMed  CAS  Google Scholar 

  33. Evans WE, Johnson JA. Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu Rev Hum Genet 2001; 2: 9–39

    Article  CAS  Google Scholar 

  34. Hallberg P, Karlsson J, Kurland L, et al. The CYP2C9 genotype predicts the blood pressure response to irbesartan: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. J Hypertens 2002; 20: 2089–93

    Article  PubMed  CAS  Google Scholar 

  35. Sakeda T, Nakamura T, Okumura K. Pharmacokinetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs. Pharmacogenomics 2003; 4(4): 397–410

    Article  Google Scholar 

  36. Bianchi G, Swales J. Do we need more anti-hypertensive drugs: lessons from the new biology. Lancet 1995; 345: 1555–7

    Article  PubMed  CAS  Google Scholar 

  37. Ferari P. Pharmacogenomics: a new approach to individual therapy of hypertension? Curr Opin Nephrol Hypertens 1998; 7: 217–22

    Article  Google Scholar 

  38. Cusi D, Barlassina C, Azzani T, et al. Polymorphisms of α-adducin and salt sensitivity in patients with essential hypertension. Lancet 1997; 349: 1353–7

    Article  PubMed  CAS  Google Scholar 

  39. Glorioso N, Manunta P, Filigheddu F, et al. The role of α-adducin polymorphism in blood pressure and sodium handling regulation may not be excluded by a negative association study. Hypertension 1999; 34 (4 Pt 1): 649–54

    Article  PubMed  CAS  Google Scholar 

  40. Sciarrone MT, Stella P, Barlassina C, et al. ACE and alpha-adducin polymorphism as markers of individual response to diuretic therapy. Hypertension 2003 Mar; 41(3): 398–403

    Article  PubMed  CAS  Google Scholar 

  41. Turner ST, Chapman AB, Schwartz GL, et al. Effects of endothelial nitric oxide synthase, α-adducin, and other candidate gene polymorphisms on blood pressure response to hydrochlorothiazide. Am J Hypertens 2003; 16: 834–9

    Article  PubMed  CAS  Google Scholar 

  42. Hingorani AD, Jia H, Stevens PA, et al. Renin-angiotensin system gene polymorphisms influence blood pressure and response to angiotensin converting enzyme inhibition. J Hypertens 1995; 13 (12 Pt 2): 1602–9

    PubMed  CAS  Google Scholar 

  43. Liljedahl U, Karlsson J, Melhus H, et al. A microarray minisequencing system for pharmacogenetic profiling of antihypertensive drug response. Pharmacogenetics 2003 Jan; 13(1): 7–17

    Article  PubMed  CAS  Google Scholar 

  44. Dudley C, Keavney B, Casadei B, et al. Prediction of patient responses to antihypertensive drugs using genetic polymorphisms: investigation of renin-angiotensin system genes. J Hypertens 1996; 14(2): 259–62

    Article  PubMed  CAS  Google Scholar 

  45. Kurland L, Melhus H, Karlsson J, et al. Aldosterone synthase (CYP11B2)-344 C/T polymorphism is related to antihypertensive response: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation Versus Atenolol (SILVHIA) Trial. Am J Hypertens 2002; 15: 389–93

    Article  PubMed  CAS  Google Scholar 

  46. Kurland L, Liljedahl U, Karlsson J, et al. Angiotensinogen gene polymorphisms: relationship to blood pressure response to antihypertensive treatment. Results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. Am J Hypertens 2004 Jan; 17(1): 8–13

    Article  PubMed  CAS  Google Scholar 

  47. Frazier L, Turner ST, Schwartz GL, et al. Multilocus effects of the renin-angiotensin-aldosterone system genes on blood pressure response to a thiazide diuretic. Pharmacogenet J 2004; 4: 17–23

    Article  CAS  Google Scholar 

  48. Li X, Du Y, Huang X. Correlation of angiotensin-converting enzyme gene polymorphism with effect of antihypertensive therapy by angiotensin-converting enzyme inhibitor. J Cardiovasc Pharmacol Ther 2003; 8(1): 25–30

    Article  PubMed  CAS  Google Scholar 

  49. Stavroulakis GA, Makris TK, Krespi PG, et al. Predicting response to chronic antihypertensive treatment with fosinopril: the role of angiotensin-converting enzyme gene polymorphism. Cardiovasc Drugs Ther 2000; 14(4): 427–32

    Article  PubMed  CAS  Google Scholar 

  50. Ohmichi N, Iwai N, Uchida Y, et al. Relationship between the response to the angiotensin converting enzyme inhibitor imidapril and the angiotensin converting enzyme genotype. Am J Hypertens 1997; 10: 951–5

    Article  PubMed  CAS  Google Scholar 

  51. Kurland L, Melhus H, Karlson J, et al., on behalf of the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) Trial. Angiotensin converting enzyme gene polymorphism predicts blood pressure response to angiotensin II receptor type 1 antagonist treatment in hypertensive patients. J Hypertens 2001; 19: 1783–7

    Article  PubMed  CAS  Google Scholar 

  52. Schwartz GL, Turner ST, Chapman AB, et al. Interacting effects of gender and genotype on blood pressure response to hydrochlorothiazide. Kidney Int 2002; 62: 1718–23

    Article  PubMed  CAS  Google Scholar 

  53. Sasaki M, Oki T, Luchi A, et al. Relationship between the angiotensin converting enzyme gene polymorphism and the effects of enalapril on left ventricular hypertrophy and impaired diastolic filling in essential hypertension: M-mode and pulsed doppler echocardiographic studies. J Hypertens 1996; 14(12): 1403–8

    Article  PubMed  CAS  Google Scholar 

  54. Moriyama T, Kitamura H, Ochi S, et al. Association of angiotensin I-converting enzyme gene polymorphism with susceptibility to antiproteinuric effect of angiotensin I-converting enzyme inhibitors in patients with proteinuria. J Am Soc Nephrol 1995; 6: 1674–8

    CAS  Google Scholar 

  55. Nakano Y, Oshima T, Watanabe M, et al. Angiotensin I-converting enzyme gene polymorphism and acute response to captopril in essential hypertension. Am J Hypertens 1997; 10: 1064–8

    Article  PubMed  CAS  Google Scholar 

  56. Benetos A, Cambien F, Gautier S, et al. Influence of the angiotensin II type 1 receptor gene polymorphism on the effects of perindopril and nitrendipine on arterial stiffness in hypertensive individuals. Hypertension 1996; 28: 1081–4

    Article  PubMed  CAS  Google Scholar 

  57. Ortlepp JR, Hanrath P, Mevissen V, et al. Variants of the CYP11B2 gene predict response to therapy with candesartan. Eur J Pharmacol 2002; 445: 151–2

    Article  PubMed  CAS  Google Scholar 

  58. Haiyan J, Hingorani AD, Pankaj S, et al. Association of the Gs alpha gene with essential hypertension and response to beta-blockade. Hypertension 1999; 34(1): 8–14

    Article  Google Scholar 

  59. Turner ST, Schwartz GL, Chapman AB, et al. C825T polymorphism of the G protein beta (3)-subunit and antihypertensive response to a thiazide diuretic. Hypertension 2001; 37: 739–43

    Article  PubMed  CAS  Google Scholar 

  60. Nürnberger J, Dammer S, Mitchell A, et al. Effect of the C825T polymorphism of the G protein β3 subunit on the systolic blood pressure-lowering effect of clonidine in young, healthy male subjects. Clin Pharmacol Ther 2003; 74: 53–60

    Article  PubMed  Google Scholar 

  61. Johnson JA, Zineh I, Puckett BJ, et al. β1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther 2003; 74: 44–52

    Article  PubMed  CAS  Google Scholar 

  62. O’Shaughnessy KM, Fu B, Dickerson C, et al. The gain-of-function G389R variant of the beta1-adrenoceptor does not influence blood pressure or heart rate response to beta-blockade in hypertensive subjects. Clin Sci (Lond) 2000; 99(3): 233–8

    Article  Google Scholar 

  63. Jia H, Sharma P, Hooper R, et al. β2-adrenoceptor gene polymorphisms and blood pressure variations in East Anglian Caucasians. J Hypertens 2000 Jun; 18(6): 687–93

    Article  PubMed  CAS  Google Scholar 

  64. Manunta P, Burnier M, D’Amico M, et al. Adducin polymorphism affects renal proximal tubule reabsorption in hypertension. Hypertension 1999; 33: 694–7

    Article  PubMed  CAS  Google Scholar 

  65. Grant FD, Romero JR, Jeunemaitre X, et al. Low-renin hypertension, altered sodium homeostasis, and an α-adducin polymorphism. Hypertension 2002; 39: 191–6

    Article  PubMed  CAS  Google Scholar 

  66. Schunkert H, Hense HW, Doring A, et al. Association between a polymorphism in the G protein beta3 subunit gene and lower renin and elevated diastolic blood pressure levels. Hypertension 1998; 32: 510–3

    Article  PubMed  CAS  Google Scholar 

  67. Siffert W, Rosskopf D, Moritz A, et al. Enhanced G protein activation in immortalized lymphoblasts from patients with essential hypertension. J Clin Invest 1995; 96: 759–66

    Article  PubMed  CAS  Google Scholar 

  68. Virchow S, Ansorge N, Rübben H, et al. Enhanced fMLP-stimulated chemotaxis in human neutrophils from individuals carrying the G protein beta3 subunit 825 T-allele. FEBS Lett 1998; 436: 155–8

    Article  PubMed  CAS  Google Scholar 

  69. Mason DA, Moore JD, Green SA, et al. A gain-of-function polymorphism in a G-protein coupling domain of the human β1-adrenergic receptor. Biol Chem 1999; 274: 12670–4

    Article  CAS  Google Scholar 

  70. Rathz DA, Brown KM, Kramer LA, et al. Amino acid 49 polymorphisms of the human β1-adrenergic receptor affect agnoist-promoted trafficking. J Cardiovasc Pharmacol 2002; 39: 155–60

    Article  PubMed  CAS  Google Scholar 

  71. Levin MC, Marullo S, Muntaner O, et al. The myocardium-protective Gly-49 variant of the β1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation. J Biol Chem 2002; 277(34): 30429–35

    Article  PubMed  CAS  Google Scholar 

  72. Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992; 71: 169–80

    Article  PubMed  CAS  Google Scholar 

  73. Rigat B, Hubert C, Alhenic-Gelas F, et al. An insertion/deletion polymorphism in the angitoensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343–6

    Article  PubMed  CAS  Google Scholar 

  74. Macmahon S. Blood pressure and the risk of cardiovascular disease. N Engl J Med 2000; 342: 50–2

    Google Scholar 

  75. Stamler J, Stamler R, Neaton JD. Blood pressure, systolic and diastolic, and cardiovascular risks: US population data. Arch Intern Med 1993; 153: 590–615

    Google Scholar 

  76. Brass LW, Alberts MJ. Genetic epidemiology and family studies of stroke. In: Alberts MJ, editor. Genetics of cerebrovascular disease. Armonk (NY): Futura, 1999: 159–82

    Google Scholar 

  77. Peyser PA. Genetic epidemiology of coronary artery disease. Epidemiol Rev 1997; 19: 80–90

    Article  PubMed  CAS  Google Scholar 

  78. Fredman BI, Satko SG. Genes and renal disease. Curr Opin Nephrol Hypertens 2000; 9: 273–7

    Article  Google Scholar 

  79. Psaty BM, Smith NL, Heckert SR, et al. Diuretic therapy, the α-adducin gene variant, and the risk of myocardial infarction and stroke in persons with treated hypertension. JAMA 2002; 287: 1680–9

    Article  PubMed  CAS  Google Scholar 

  80. Vincent M, Samani NJ, Gauguier D, et al. A pharmacogenetic approach to blood pressure in Lyon hypertensive rats: a chromosome 2 locus influences the response to a calcium antagonist. J Clin Invest 1997; 100: 2000–6

    Article  PubMed  CAS  Google Scholar 

  81. Kruglyak L. The use of a genetic map of biallelic markers in linkage studies. Nat Genet 1997; 17: 21–4

    Article  PubMed  CAS  Google Scholar 

  82. Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928–33

    Article  PubMed  CAS  Google Scholar 

  83. Olivier M. A haplotype map of the human genome. Physiol Genomics 2003; 13: 3–9

    PubMed  CAS  Google Scholar 

  84. Nelson MR, Kardia SL, Ferrell RE, et al. A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation. Genome Res 2001; 11: 458–70

    Article  PubMed  CAS  Google Scholar 

  85. Sing CF, Stengard JH, Kardia SLR. Genes, environment, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2003; 23(7): 1190–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants R01-HL53330 and R01-HL7473 from the US Public Health Service and National Heart, Lung, and Blood Institute, and by funds from the Mayo Foundation. ## The authors have no conflicts of interest relevant to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, G.L., Turner, S.T. Pharmacogenetics of Antihypertensive Drug Responses. Am J Pharmacogenomics 4, 151–160 (2004). https://doi.org/10.2165/00129785-200404030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200404030-00002

Keywords

Navigation