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The promise afforded by attenuated sporozoite vaccines in the 1970s led many researchers to believe that anAbstract
efficacious malaria vaccine was an attainable medium-term goal. Over 30 years later, no licensed vaccine is
currently available for public health intervention. This is despite global expenditure on research and develop-
ment for malaria vaccines that is estimated to have increased from $US42 million in 1999 to $US84 million in
2004. Serious questions must therefore be asked: is this a good investment of research and public health funds,
and are we really any nearer to producing a viable product for global use?

Proponents of a malaria vaccine promote this technology as a viable way to combat both the current economic
and humanitarian burden of malaria and the decreasing efficacy of many front-line antimalaria drug therapies.
The recent successful phase IIb trial of the RTS,S/AS02A vaccine showed that the production of a subunit
vaccine with significant efficacy is technically possible. The combined efforts and financial commitment of
researchers, pharmaceutical companies, and not-for-profit organizations, including the Malaria Vaccines Initia-
tive, have resulted in a significant scaling up in the number of products suitable for testing in humans. In
addition, new technologies, such as genetically attenuated vaccines and the exploitation of malaria genomes,
offer exciting possibilities for vaccine development. There is now a real possibility of producing a malaria
vaccine licensed for public health. However, this positive outlook must be tempered with the challenges facing
vaccine development and distribution. The efficacy levels seen with RTS,S/AS02A are well below those of all
vaccines currently in use for public health. Furthermore, poor preclinical and clinical predictors of efficacy,
allele-specific immunity, and an imperfect understanding of natural and induced immunity to malaria may yet
delay (or even prevent) the development of a vaccine suitable for global use.
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Fig. 1. Schematic of the Plasmodium falciparum life cycle: different stages to which a malaria vaccine can be targeted.

1. The Need for a Vaccine inability to deliver the vaccine to the target populations within
existing infrastructures such as the Expanded Program on Immuni-
zation.[10,11] Nonetheless, the acceptance that these problems areWith the exception of Plasmodium knowlesi,[1,2] there are four
insurmountable is not universal,[12,13] and many strategies havespecies of Plasmodium that infect humans: P. falciparum, P.
been proposed to overcome them. If the economics and logistics ofvivax, P. ovale, and P. malariae. The majority of research and
vaccine manufacture, distribution, and delivery can be dealt with,development into malaria vaccines is currently directed towards
then the advantages of an effective vaccine are clear.those products that would protect against Plasmodium falciparum,

the most virulent of the human malarias.[3] This species is respon-
sible for an estimated 300–500 million cases of clinical malaria 2. What Stage Should a Malaria Vaccine
and well in excess of 1 million deaths per year.[4] This in turn Work Against?
causes a major impact on the gross domestic product (GDP) of
countries where malaria is endemic and the cost, in terms of lost A major factor when considering the component(s) to include
productivity and medical care, exceeds $US1.7 billion each year. in a malaria vaccine is the different outcomes that a vaccine can be
Sachs and Melaney[5] estimated that the gross national product per devised to produce. Vaccines can be directed to prevent infection,
capita in malaria endemic countries has been reduced by >50% reduce disease/parasite burden, or prevent the spread of infection
compared with non-malarious countries. from existing hosts depending on the stage of the P. falciparum

life cycle to be targeted. As shown in figure 1, this life cycle can beGlobally, there is a marked increase in resistance to front-line
divided into four main parts, three of which lie in the human hostantimalarial drugs, such as chloroquine[6,7] and sulfadoxine/pyri-
(pre-erythrocytic, erythrocytic, and sexual stages) while the fourthmethamine.[8] Even the newly licensed artemisinin derivatives run
occurs within the mosquito vector.the risk of being rendered ineffective by the occurrence and spread

of mutations within the P. falciparum  genome.[9] Thus, there is a Pre-erythrocytic-stage vaccines are designed to target either the
real need for novel intervention programs. However, were a suc- sporozoites before they can invade hepatocytes, or the infected
cessful vaccine to be licensed, it is uncertain whether a global hepatocytes before they can produce infective merozoites.[14] It is
market could effectively sustain such a product. Major concerns at the pre-erythrocytic stage that the irradiated sporozoite vaccine
include the problem of a limited global vaccine production capa- works.[15-17] Such a vaccine would be expected to produce sterile
city and global production and distribution costs, together with an immunity and would, theoretically, have little effect on the pro-
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gression of disease once liver stage merozoites have successfully ble for a global vaccination program has so far precluded this
established an erythrocytic infection. Candidate antigens for such approach as a viable public health intervention strategy. Even if it
a pre-erythrocytic vaccine include those expressed in either sporo- were possible, the requirement for thousands of infected bites
zoites or within the hepatocyte, such as cirscumsporozoite protein makes it unfeasible to advocate such a vector-based approach in
(CSP) and liver stage antigen (LSA)-1, respectively. the field.

By comparison, vaccines containing antigens expressed within Given the problems associated with an irradiated sporozoite
the erythrocytic stage of the disease would be expected to reduce vaccine, subunit vaccines have been explored as possible alterna-
the overall parasite burden and associated morbidity.[18] Candidate tives. Human and animal subjects presenting with sterile immunity
parasite-derived antigens for erythrocytic-stage vaccines include due to irradiated sporozoite inoculation appear to show elevated T
merozoite surface protein (MSP)-1 (the major surface component cell-mediated responses to a limited number of P. falciparum
of the merozoite), apical membrane antigen (AMA)-1 (released antigens.[17,20-23] Thus, there is a real possibility that subunit vac-
from the apical organelles of the merozoite prior to invasion and cines using a defined panel of polypeptides could induce protec-
also expressed in the sporozoite stage), and P. falciparum erythro- tive sterile immunity.
cyte membrane protein 1 (exported to the surface of infected Such immunity would be different from that presented by
erythrocytes and associated with parasite virulence). Individuals people living in areas where malaria is hyperendemic, such as The
would most likely be rendered semi-immune, capable of maintain- Gambia. People in these locations develop the capacity to maintain
ing infections without succumbing to clinical episodes of the low-level infections without associated clinical disease over the
disease. An alternative strategy is to induce immune responses to course of repeated infections, with the greatest burden of malaria
detoxify by-products of infection, such as glycosylphosphatidyli- being carried by children <5 years of age.[24] The requirement for
nositol, which may play a role in the severity of clinical morbidi- repeated infection is such that in areas of low endemicity no
ty.[19]

effective immune response is generated, resulting in an equal
Finally, transmission-blocking vaccines have been promoted as burden of disease in both adults and children. The humoral compo-

a way to interrupt the sexual stage of the life cycle. The vaccine nent of this immunity has been demonstrated by the passive
would not directly protect an inoculated individual, but rather act transfer of immunoglobulin G (IgG) from healthy semi-immune
to reduce the rate at which new infections are established via the African volunteers to non-immune children infected with P. falci-
mosquito vector, thereby reducing overall disease rates in endemic parum, resulting in an accelerated clearance of clinical morbidi-
regions. Such actions would undoubtedly complement the effects ty.[25,26] It has been shown that people living in locations endemic
of insecticide-treated bed nets and residual spraying. Transmis- for malaria possess cellular reactivity to specific malaria anti-
sion-blocking vaccines would induce antibodies against antigens gens[27] and some of these are associated with protection.[28] How-
expressed during the sexual stages of the malaria parasite, either ever, with a lack of antigen processing in erythrocytes the majority
on the gametocytes resident within the human blood stream or, in of immunity to blood-stage malaria parasites will most likely be
the case of the Pfs25 protein, in the stages found within the conferred by humoral immune responses. Any malaria vaccine
mosquito mid gut. formulated to mimic natural immunity against blood-stage para-

One possible way forward is to include multiple antigens within sites would be expected to elicit high titers of antibodies against
a vaccine in order to replicate the activity of all three vaccine specific antigenic targets that are capable of controlling an infec-
types. However, the inclusion of multiple antigens within a single tion. However, the specific mechanisms of protection and how to
vaccine may be hampered by the higher development and produc- measure them are poorly understood, limiting the quality of infor-
tion costs to produce a homogeneous product and ensure that no mation that can be used to guide vaccine design.[24]

interference occurs between the different antigens.
The major problem with subunit vaccines containing recombi-

nantly produced polypeptides is the limited number that can cur-3. Irradiated Sporozoites and Subunit Vaccines
rently be accommodated within a single vaccine. The first licensed

In the early 1970s, sterile immunity was achieved in naive subunit vaccine, developed for hepatitis B, contained a single
volunteers using the bites of irradiated mosquitoes infected with P. hepatitis B surface antigen (Recombivax HB®,1 Merck & Co
falciparum. Using this approach, ≤90% sterile protection was Inc.).[29] Although vaccination with DNA-based constructs offer
achieved against experimental infection.[15-17,20] Unfortunately, the the potential to overcome these limitations by the incorporation of
logistics required to produce infected irradiated mosquitoes suita- epitopes from multiple antigens, success with these systems has

1 The use of trade names is for identification purposes only, and does not imply endorsement.
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been very limited. Recently, Dunachie et al.[30] showed that a While positive results with preclincial assays suggest that creat-
ing an efficacious malaria vaccine is possible, there are problemsprime boost regimen using TRAP (thrombospondin-related anon-
inherent in the interpretation of such data that have prevented anyymous protein) but not CSP produced partial protection in healthy,
one assay being universally accepted as a ‘gold-standard’ appro-malaria-naive adults. However, recent vaccine trials have failed to
priate for all candidates. Furthermore, there is no standardizedshow protective efficacy in either Gambian adults[31] or Kenyan
criterion that would allow a like-for-like comparison of candidateschildren.[32] This is despite strong immunogenicity data with rela-
analyzed by different methodologies (table I). It is difficult there-tion to induction of effector T-cell responses in volunteers.[31]

fore to prioritize candidacy of different antigens, especially whenSubunit vaccines that are produced by fragmenting whole para-
assays may give conflicting results; purified human IgG that issites may contain many more components but require the capacity
capable of reducing clinical morbidity in passive transfer experi-for large-scale culture of the infectious organisms. For example,
ments has no effect on invasion rates of parasites in vitro but isthe Pneumovax® II (Sanofi Pasteur MSD) pneumococcal vaccine
associated with ADCI.[120,141] Even within a single assay, such ascontains capsule polysaccharides from 23 common types of Strep-
in vitro invasion inhibition, there is often no standardized cut-off

tococcus pneumoniae. The major problem for subunit vaccines
constituting a positive result. Additionally, different immuno-

remains which (if any) out of the predicted 5000 plus components
epidemiologic studies will often yield conflicting results for a

of the P. falciparum proteome in isolation are likely to induce an
given antigen, perhaps as a result of differences in the ethnicity of

effective immune response capable of combating infection. It is
the cohorts, malaria transmission, or misclassification of an indi-

sobering to note that this is a parasite that has been shaped through
vidual’s immune responsiveness.[24]

evolution to evade an immune system that is exposed to its full
For animal immunization models there are also drawbacks,antigenic repertoire during the course of a natural infection.[33] The

making it impossible to guarantee how a vaccine candidate willquest to answer this question has seen the development of numer-
function within an endemic location. In the mouse model system,ous preclinical assays to determine the suitability of a candidate
the rodent malaria parasites P. yoelii and P. berghei are often usedantigen as a vaccine component.
to analyze the homologs of P. falciparum vaccine candidates.
However, there is a predicted evolutionary distance of >60 million

4. Preclinical Analysis of Candidate Antigens for years between these species of malaria.[142] The effect of this
a Vaccine divergence is that direct homologs are not always identifiable (as

seen with many of the P. falciparum erythrocyte binding antigen
Table I provides a summary of candidate antigens currently genes).[143] Even when the homolog is readily identifiable there is

under investigation for use in subunit vaccines. It can be seen that no guarantee the identified genes would have an identical function
there are numerous lines of evidence that can be used to support in the two species, as shown by gene knockout and transcriptional
development of a particular candidate to a good manufacturing studies (S. Polley, unpublished). It is also of interest to note that

mice are not the natural host of these parasites and may not be thepractice (GMP) product suitable for use in human trials. These
best model organisms to use if a natural infection is to be studied.include in vitro invasion inhibition (with both hepatocyte and
Mice have a strong innate immune response against P. berghei noterythrocyte models), cytoadherance inhibition, antibody-depen-
seen in the natural host Grammomys surdaster (thicket rat).[144] Adant cellular inhibition (ADCI), immuno-epidemiology studies,
severe combined immunodeficiency disease (SCID) mouse modelopsonization studies, and vaccination of animal models. For exam-
with humanized erythrocytes offers the ability to use P. falcipar-ple, the addition of anti-AMA-1 antibodies to in vitro cultured
um;[145] however, even this system is hampered as a result of themalaria parasites causes a significant decrease in the asexual
differences that exist between the human and murine immunegrowth rate, interfering with the erythrocyte invasion process.[34]

system.In addition, immuno-epidemiology studies with recombinant
AMA-1 have shown a significant association of naturally occur- The use of monkey and primate models offers a closer approxi-
ring anti-AMA-1 antibodies with reduced occurrence of clinical mation to the human immune system for preclinical safety and
disease in the subsequent transmission season in Kenyan chil- efficacy studies. The common model organisms are Aotus and
dren.[35] Finally, immunizations in animal model systems with rhesus monkeys together with splenectomized chimpanzees. The
AMA-1 (alone or as a hybrid) preclincial vaccines have elicited Aotus monkey model system offers the flexibility to use erythro-
immune responses capable of either preventing or limiting experi- cytic challenge with strains of P. falciparum that have been
mental infections,[36,37] supporting their development to GMP adapted to this host;[146] in addition, certain Aotus species have the
products. ability to be infected with sporozoites from infectious mosquito

© 2007 Adis Data Information BV. All rights reserved. Biodrugs 2007; 21 (6)
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Table I. Summary of potential malarial vaccine candidates currently under investigation

Stage-specific candidates Supporting experimental evidence for candidacy

(expected outcome) protection/transmission- immuno-epidemiology invasion/growth inhibition antibody-dependent cellular
blocking in experimental inhibition
infectiona

Liver stage (anti-infection)

CSP-1 +[21,38,39] +[40,41] +[42]

TRAP +[40,43,44] +[40,45,46]

STARP +[46]

LSA-1 +[28,40,47-49] +[50]

LSA-3 +[51,52]

EXP-1 +[53]

Erythrocytic stage (anti-disease)

MSP-1 +[54,55] +[41,56,57] +[54,57-60]

AMA-1 +[36,61-65] +[35] +[58,60,66-70]

EBA-175 +[71-73] +[74] +[41,71,75,76]

RAP-1 +[77] +[78-80] +[77,81-84]

RAP-2 +[80] +[81]

SERA-5 +[85,86] +[87,88] +[89]

MSP-2 +[90,91]

MSP-3 +[92] +[53,93,94] +[95,96]

MSP-4 +[97-100] +[101]

MSP-5 +[97-100]

PfEMP-1 +[102-106] +[107-110] +[111,112]

GLURP +[92] +[53,94,113-118] +[119] +[120,121]

RESA +[122,123] +[113,124,125] +[126,127]

Sexual stage (anti-transmission)

Pfs48/45 +[128] +[128-130]

Pfs230 +[131] +[130,132,133]

Pfg27 +[134]

Pfs16 +[135]

Pfs25/28 +[134,136-140]

a In humans or animals. In sexual stages, transmission-blocking activity prevents infection of the mosquito vector.

AMA = apical membrane antigen; CSP = cirscumsporozoite protein; EBA = erythocyte binding antigen; EXP = exported protein; GLURP = glutamate-rich
protein; LSA = liver stage antigen; MSP = merozoite surface protein; PfEMP = Plasmodium falciparum erythrocyte membrane protein antigen; Pfg =
Plasmodium falciparum genetocyte antigen; Pfs = Plasmodium falciparum sexual stage antigen; RAP = rhoptry associated protein; RESA = ring-infected
erythrocyte surface antigen; SALSA = sporozoite- and liver stage antigen; SERA = serine repeat antigen; STARP = serine threonine asparagine rich
protein; TRAP = thrombospondin-related anonymous protein; + indicates evidence has been reported.

bites.[147] However, the progression of disease in Aotus species malaria parasites (P. knowlesi and P. cynomolgi) with the asso-
deviates from that seen in humans in a number of ways. These ciated problems due to evolutionary divergence.[148] Even the
include a tendency to life-threatening anemia and a rapid acquisi- chimpanzee (our nearest genetic relative) shows substantial differ-
tion of effective blood-stage immunity.[148] In addition to this, ences in its susceptibility to P. falciparum, most likely due to
there are substantial differences between human and Aotus major alterations on the erythrocyte surface.[149] These potential draw
histocompatibility complex gene sequences. Although genetically backs, along with substantial financial, ethical, and time consider-
closer to humans than Aotus monkeys, the rhesus monkey system ation associated with monkey trials, have prompted some to ques-
is refractory to P. falciparum, necessitating the use of homologous tion the utility of this methodology.

© 2007 Adis Data Information BV. All rights reserved. Biodrugs 2007; 21 (6)
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Table II. Steps in the vaccine development pipeline[152]

Program/trial stage Objectives Duration Population Sample number

Basic research Antigen identification NA NA NA

Applied research Concept NA NA NA

Preclinical development Evaluation in animals NA NA NA

Process development Creation and validation of manufacturing process NA NA NA

Phase Ia Safety and immune response ≤12mo Non-endemic <30

Phase Ib Safety and immune response ≤12mo Endemic <100

Phase IIa Safety, immune response, and preliminary ≤12mo Non-endemic <30
efficacy

Phase IIb Safety, immune response, and preliminary ≥2y Endemic 100–1000
efficacy determination of dosage

Phase III Safety and efficacy 3–5y Endemic >10 000

Licensure Regulatory approval for distribution NA NA NA

Introduction Lives saved NA NA NA

Phase IV Follow-up safety and effectiveness 4–6y Endemic >100 000

NA = not applicable.

Given the heterogeneous outcomes achieved with the current A major problem when considering erythrocytic vaccines is the
preclinical models, it is hardly surprising that 2 of the 11 goals of inability to perform experimental human challenge with blood-
the Malaria Vaccine Technology Roadmap[150] are to improve the stage parasites when assessing the protective efficacy of blood-
understanding of correlates of protection and to establish a system- stage vaccines in phase IIa trials. Although the 3D7 strain is
atic approach for prioritizing subunit vaccine candidates using licensed for human experimental infection, there is no standard-
accepted preclincial criteria. ized measure of correlates of protection when a delay in clinical

presentation of disease is the endpoint. In contrast, presence or
absence of blood-stage infection as a marker of sterile immunity is5. The Pipeline for Development
a well established endpoint for pre-erythrocytic vaccines.[15] How-
ever, even with pre-erythrocytic vaccines, experimental infection

Table II shows the stages a promising vaccine candidate must can be a poor approximation for natural infection in an endemic
go through to arrive at a finished product licensed for use in location, which is illustrated by the conflicting results obtained
humans. The current total development cost of a single pharma- with the multiple epitope (ME)-TRAP vaccine when analyzed
ceutical product is around $US200–800 million over a 7- to with experimental (phase Ia) and natural (phase Ib) infec-
14-year period, and it is unlikely that the costs for a malaria tions.[32,153] Could this be due in part to the nature of the 3D7 strain
vaccine will be significantly lower. This requirement is a serious licensed for experimental infections? This parasite clone has un-
limitation to the number of vaccine candidates that can be taken

dergone numerous passages since it was first adapted for in vitro
forward, even in the current environment of increased funding.

culture. It has been shown that the parasite’s genome has under-
The Bill and Melinda Gates Foundation, a significant financial

gone rearrangement and loss of material with unknown conse-
contributor to malaria vaccine development, admit that the process

quences for the infectivity or virulence of the parasite.[154,155]

is complicated, “and more expensive than we anticipated.”[151] To
A third limitation on the numbers of vaccine candidates that canproceed to any clinical trials (phase I onwards), the product must

be pushed through this pipeline is the number of people needed atfirst be manufactured to a strict set of guidelines, set down as
each stage of the development process (see table II). This isGMP. The limited global capacity for GMP production is another
affected by whether the required endpoint of the trial is protectioncap on the number of products that can advance to clinical trials.
against infection or protection against clinical manifestation ofAddressing this is also a major goal of the Malaria Vaccine
disease (cohort sizes are significantly larger for the latter).[12] TheTechnology Roadmap. Companies in locations such as India and
logistics involved in recruiting volunteers, administering the vac-China offer a viable opportunity to expand GMP production and
cination programs, and collecting endpoint measurement meansfast track a number of promising candidates through to clinical

trials. that there are only a limited number of locations where the phase

© 2007 Adis Data Information BV. All rights reserved. Biodrugs 2007; 21 (6)
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IIb and III studies can be implemented. This is because the immunomodulators in animal models,[159] it is only at the stage of
required infrastructure is often lacking in locations endemic for human testing that antigen/adjuvant combinations can be assessed.
malaria. A recent venture to establish an HIV vaccine trial in Haiti

6. The Success of the RTS,S/AS02A Vaccinehighlights some of the logistical problems associated with vaccine
research in developing countries.[156] These include a weak health

Table III provides a summary of malaria vaccines that areinfrastructure, a shattered economy, high unemployment, residual
currently under development for clinical trials. This list includespolitical instability, and a high rate of illiteracy, as well as daily
subunit vaccines based on recombinant polypeptide products con-logistical hurdles like bad roads, erratic telephone networks, and
jugated with a suitable adjuvant and DNA-based vaccine con-energy blackouts as some of the problems facing would be trial
structs (such as ME-TRAP).administrators.

As can be seen from table III, only a very limited number ofAnother goal of the Malaria Vaccine Technology Roadmap is
products have made it through to any kind of efficacy testingthe scaling up of such vaccine trial facilities, although it is also
(phase IIb or higher) in an endemic location. SPf66 (omitted fromimportant to remember the ethical as well as logistical considera-
table III) was the first malaria vaccine to be taken to phase IIItions of such trials when planning them. Ethical considerations
trials. However, despite promising results from four South Ameri-include the vulnerability of child participants, likely benefits ver-
can trials with SPf66, these trials produced disappointing resultssus risks to the research subjects, ability to ensure informed
when conducted in Africa. For instance, an efficacy of only 2%consent, standard of care for research subjects should the interven-
was seen in a Tanzanian trial of children in their first year of age,tion fail, and access for the subjects and community to the product
resulting in SPf66 being abandoned by many research agencies asgiven a successful intervention. One ethical consideration partic-
a viable vaccine[195] and causing a considerable degree of contro-ularly relevant to malaria vaccines is the issue of safety versus
versy.efficacy of the product. Could more lives be saved with a product

The disappointment of SPf66 has been superseded by a suc-that was more efficacious but caused more severe adverse effects?
cessful phase IIb trial of the RTS,S/AS02A vaccine. This vaccineIn addition to these concerns, communities involved in such
has been developed by GlaxoSmithKline (GSK) Biologicals ininterventions can easily develop research fatigue if they come to
combination with the Walter Reed Army Institute of Researchview themselves as mere guinea pigs for clinical research and
(WRAIR). It is comprised of the CSP antigen repeat region (R)experience a lack of positive outcomes with the trials.[157]

and T cell epitopes (T) coupled to the core of the licensed surfaceA further complication with trials involving humans is the
antigen (S) subunit hepatitis B vaccine conjugated with proprieta-choice of adjuvant incorporated with the vaccine antigen(s). These
ry adjuvant AS02A. An RTS,S/AS02A trial was carried out inimmunomodulators include a variety of compounds, which are
Mozambique on 1142 children, aged 1–4 years old, who received adesigned to enhance the immunogenicity of antigens, thereby
3-dose regimen of the vaccine with no booster in the follow-upmagnifying, accelerating, and prolonging the immune response.
period. The immunized children showed a reduction in clinicalAdjuvants licensed for use in humans include mineral salts such as
malarial episodes of 35% and severe malaria episodes by 49% inthe commonly used alum, microbial derivatives such as
the 18-month period of follow-up, compared with control sub-monophosphoryl lipid A, oil-in-water emulsions such as Monta-
jects.[161] An even greater (58%) reduction in severe malaria wasnide ISA-51, and the proprietary adjuvant AS02A. The choice of
seen in the initial 6-month follow-up period.[196] This trial hasadjuvant can have a major effect on the performance of a vaccine,
raised hopes that an efficacious malaria vaccine that will induceas shown by a recent trial of malaria vaccine in treatment-naive
long lasting immunity is technically achievable.volunteers.[158] In this study the same recombinant protein was

conjugated with three different adjuvants as follows:
7. Allele-Specific Immunity

• vaccine 1 – alum and monophosphoryl lipid A

• vaccine 2 – an oil-in-water emulsion A major barrier to malaria vaccine development is the

• vaccine 3 – an oil-in-water emulsion plus monophosphoryl polymorphic nature of many of the vaccine candidates. Even the
lipid A and QS21. CSP antigen is polymorphic, with an over-representation of
Vaccines 2 and 3 elicited significantly higher titers of anti- polymorphic residues within sites shown to stimulate a T-cell

bodies against the recombinant protein than vaccine 1, while only response.[197] If the regions of antigens to be used in a vaccine are
those volunteers given vaccine 3 demonstrated a high (>80%) polymorphic in nature, then a suitable diversity of allelic forms
level of protection against subsequent experimental infection. must be included to protect against the total diversity encountered
However, with many human licensed adjuvants being poor through natural infection (strain-transcending immunity). Failure

© 2007 Adis Data Information BV. All rights reserved. Biodrugs 2007; 21 (6)
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to do this will most probably result in the selection of divergent
variants, rapidly reducing any efficacy that a vaccine may have
initially had. The problem posed by polymorphic candidate anti-
gens is highlighted by the outcome of a phase IIb trial with the
Combination B vaccine in Papua New Guinea.[190] While no
significant protection was seen, there was an apparent skew in the
Msp2 gene frequencies within immunized volunteers, such that the
frequency of heterologous allele type increased significantly in the
subsequent transmission season. The Combination B vaccine is
based around three P. falciparum merozoite- and ring-stage de-
rived recombinant protein antigens (MSP-1/MSP-2/RESA) for-
mulated with Montanide ISA 720 as adjuvant. MSP-2 is an antigen
with a highly polymorphic structure, with Msp2 alleles grouping
into two major allelic classes (IC-1 and Fc27). The failure of
Combination B would appear to the result of induction of allele-
specific rather than strain-transcending immunity. Such a phenom-
enon has been observed in experimental challenges in animal
model systems and in vitro growth inhibition assays, whereas
allele-specific antibodies are commonly displayed by people in
areas where malaria is endemic.[35,56,93,198]

Including multiple allelic forms of a given antigen will un-
doubtedly increase the complexity, development time, and overall
cost of a vaccine. Tetteh et al.[199] demonstrated the effectiveness
of using an epitope-mapping strategy in the rational design of a
multi-allelic construct comprising highly polymorphic structures,
such as those found in the N-terminal MSP-1 block 2 region,[56,200]

to induce immunity against a broad spectrum of genotypes. Franks
et al.[201] showed that despite the presence of significant
polymorphic differences between different members of the same
MSP-2 allelic class, conserved epitopes within the IC-1 type (and
to a lesser degree the Fc27 type) can elicit antibodies that bind to
all antigens of a given allelic type. A rational approach to vaccine
design may therefore be capable of limiting the number of allelic
forms needed to induce strain-transcending immunity. The ability
to genetically engineer different allelic sequences into long chi-
meric proteins offers the ability to overcome gene diversity. This
approach has allowed the development of a recombinant polypep-
tide vaccine against the diverse group A streptococcus, a causative
agent of life-threatening necrotizing fasciitis, toxic shock, and
rheumatic fever.[202] Encouragingly, initial trials showed no selec-
tive change in allele frequencies induced by the RTS,S/AS02A
vaccine in Mozambique, suggesting that allele-specific immunity
was not a problem when using this vaccine,[203] despite the
polymorphic nature of CSP-1.

An alternative approach to using divergent allele sequences is
to concentrate on those antigens/antigenic regions that are con-
served amongst isolates. Anti-MSP-3 antibodies were first identi-
fied as correlates of immunity through passive transfer studies.

© 2007 Adis Data Information BV. All rights reserved. Biodrugs 2007; 21 (6)
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The N-terminal region is highly polymorphic (with sequences be produced in culture and a suitable delivery system (preferably
clustering into two main allelic types) and allele-specific immune not vector-based) can be developed for human use.[209]

responses to this region have been shown to be associated with
protection.[93] It could be argued, therefore, that an MSP-3-based 9. Current and Future Developments in
vaccine should contain both sequence types to induce strain- Malaria Vaccines
transcending immunity. The Pasteur Institute (Paris, France) has
instead looked to construct a vaccine containing only the relatively Many of the vaccine candidates in table I were initially identi-
conserved C-terminal region of MSP-3.[204] In human volunteers, fied based on the reactivity of human sera against them (due to
this vaccine has been shown to induce antibodies capable of either natural infection or experimental sporozoite immunization)
clearing infection in the humanized SCID mouse model,[204] rais- or an abundance of the antigen in fractionated parasite extracts.
ing hopes for its efficacy and proving the utility of such an The analyses of these candidates through classical techniques
approach. It is important to consider why certain antigen regions, (such as cloning from bacterial expression libraries or purification
such as the C-terminus of MSP-3, show little or no diversity in the and protein sequencing) were time consuming, resulting in a slow
wild. It is possible that these sequences may not be under suffi- (but steady) progress towards defining candidates antigens. Novel
ciently strong immune-selection pressure to maintain polymorph- approaches in identifying new vaccine candidates and speeding up
isms in natural populations. Alternatively, they may be under such their molecular characterization will greatly increase the number
strong purifying selection that mutations can not accumulate with- of candidates brought to preclincial analysis. If this can be done in
out causing a serious deleterious effect on the parasites fitness. It is a framework of standardized assays that identify correlates for
important to note that under novel positive-selection pressures, protection, then the number of antigens to go through to GMP
even sequences subject to purifying selection can accumulate products will be greatly increased. A milestone towards achieving
polymorphisms that would normally be deleterious. This has been this was the sequencing of several malarial genomes. The com-
seen in HIV infections from patients undergoing antiretroviral pletion of the P. falciparum genome in 2002[210] provided re-
therapy, and poses a serious limit to the lifespan of front-line searchers with the opportunity to develop these approaches
treatments.[205]

through a better understanding of malarial parasite biology and its
interaction with its hosts. Approximately 5300 P. falciparum

8. Genetically Attenuated Vaccines genes were revealed upon completion of the genome and nearly
65% of these were hypothetical genes of unknown function. There
is a real need for novel methods of high throughput characteriza-A number of groups have recently developed attenuated whole-
tion in order to rapidly interrogate these hypothetical genes toorganism vaccine candidates in an attempt to replicate the immu-
discover their usefulness as novel putative vaccine candidates.nity induced by irradiated sporozoites. Van Dijk et al.[206] de-
Hall et al.[211] recently completed ‘a comprehensive survey of thescribed the genetic attenuation of P. berghei sporozoites by disrup-
Plasmodium life cycle’ (reviewed in Fraunholz[212]). This studytion of the p36 gene, which encodes a member of the P48/45
defined 4391 genes in P. falciparum with homologs in rodentfamily of sporozoite surface proteins. When infected into mice, the
malaria parasites allowing these species (which are more amena-attenuated parasites invaded hepatocytes but failed to develop
ble to genetic manipulation)[213] to be used in determining genebeyond this stage. These arrested infections induced immune
function. This integration of genomic, transcriptomic, and prote-responses capable of protecting against subsequent experimental
omic datasets offers the prospect of a rationale approach to identi-challenge with non-attenuated parasites. More recently, Mueller et
fying key vaccine and drug targets using high throughput method-al.[207] showed that disruption of the UIS3 gene gave rise to
ologies. Such an approach will be more powerful when used ingenetically attenuated parasites that were incapable of developing
conjunction with classical biochemical and cell biology tech-into liver stage merozoites and, therefore, did not lead to disease.
niques.[212]Immunization of mice with the uis3(–) parasites led to a sustained,

stage-specific protection. Although questions of safety and poten- The development of transfection technologies for P. falciparum
cy need to be addressed,[208] it is worth noting that neither of the (including the recent advances in double crossover integration into
early phase studies for RTS,S or the DNA-based vaccines demon- the genome)[214] provides a powerful molecular tool to define the
strated the level of protection observed following immunization role of individual genes within the cellular biology of this
with irradiated sporozoites.[207,208] As with irradiated sporozoites, organism. However, the application of this technique is limited by
the attenuated vaccine approach can only be viable for global the process being relatively inefficient, labor intensive, and time
vaccination if sufficient material for large-scale immunization can consuming. Genetic manipulations of essential asexually ex-

© 2007 Adis Data Information BV. All rights reserved. Biodrugs 2007; 21 (6)



Development of Malaria Vaccines 367

pressed genes are often not possible due to deleterious effects. to overcome the barriers to vaccine development and licensing is
Despite these limitations, gene knockout has been effectively used key to the scale of undertaking necessary to move an increasing
to characterize genes involved in processes such as the invasion of number of vaccine candidates through the pipeline. In addition to
red blood cells[215] and cellular adhesion,[216-218] many of which MVI, the European Malaria Vaccine Initiative, the US Army
represent either current or putative vaccine candidates. Medical Research and Materiel Command (via the WRAIR), as

well as private pharmaceutical companies such as GSK Biologi-The ability to identify homologs in rodent malaria systems
cals are providing key resources and technical knowledge to pushmeans that the more efficient and rapid knockout technologies of
forward vaccine development.P. Berghei can be used to characterize gene function in P. falcipar-

um.[213] Alternatively, more rapid gene knockout technologies for Although there is a real philanthropic nature to the development
P. falciparum using transposable elements[219] will speed up gene of malaria vaccines for developing countries, there is realization
characterization; Balu and colleagues[219] employed the that an increase in GDP resulting from the distribution of an
lepidoptearan transposable element piggyBac to efficiently trans- efficacious vaccine[223] would produce a substantial increase in
form P. falciparum. Such a technique offers the potential to market potential for European and American countries. Therefore,
perform large scale mutagenesis of the P. falciparum genome in there is real financial incentive for private companies to become
order to screen for interesting phenotypes and identify the loci involved in the race for a malaria vaccine. Technological progress
which have been disrupted. Other advances in transfection tech- in the field of vaccine development to protect against organisms
niques include the use of the mycobacterium Bxb1 integrase to such as group A Streptococcus can also be applied to the develop-
produce genetically and phenotypically homogeneous transgenic ment of malaria vaccines. The ability of chimeric constructs to
parasite populations.[220] This integration occurred within 1 month deliver strain-transcending immunity make it reasonable to predict
in the absence of drug pressure.[221] With regards to the knockout that multiple allelic forms and/or multiple life-cycle stages of P.
of essential genes, the development of a successful inducible falciparum could be targeted by a malaria vaccine to increase
promoter (as has been achieved in the apicomplexan Toxoplasma efficacy. Promising results have also been achieved in genetically
gondii and currently being developed in P. falciparum)[222] re- attenuating P. falciparum for the production of live attenuated
mains a key goal. Such a system would allow essential genes to be vaccines, an approach which is receiving serious financial invest-
knocked out and their function studied by regulating the expres- ment.
sion level of episomal copies as well as looking at the effects of These positives must be tempered with some concerns. So far,
inappropriate timing of expression. In addition to gene knockout, the best efficacy seen with a malaria vaccine has been around 30%
green fluorescent protein (GFP) tagging has provided the ability to against clinical malaria, yet currently there is no vaccine widely in
look at the cellular location of putative vaccine candidates in live use as a public health tool that does not provide at least 75%
cells, allowing scientists to investigate processes such as proteo- sustained protection against infection and/or disease. It is also
lytic cleavage and cellular export. worth noting that all of the vaccines widely used as a public health

tool in infants and young children in the developing world were
first licensed, manufactured, and sold for use in children and/or10. Conclusion
adults in the developed world. While there are attempts to define
better preclincial and clinical models to predict the efficacy ofIn the last 5 years, malaria vaccine development has seen
vaccines, there are no current models to accurately predict theadvances on many fronts. A long-lasting immunity with a signif-
usefulness of an asexual protein as a vaccine candidate. In addi-icant protective effect generated by RTS,S/AS02A has proved that
tion, there are still no reliable immunologic correlates of protec-a vaccine is technically feasible. This is coupled with a dramatic
tion for natural infections or immunizations. The requirement forincrease in the number of candidates being taken forward into
multiple allelic forms to overcome allelic diversity (althoughGMP development for human trials and development on vaccine
technically possible) will no doubt increase the complexity of adelivery platforms. The development of RTS,S/AS02A has un-
vaccine and its developmental and production costs. This woulddoubtedly been advanced due to an agreement between GSK
also be the likely outcome of combining multiple antigens to targetBiologicals and the MVI. The MVI is a nonprofit organization
different life-cycle stages of the parasite. It can be seen that thededicated to overcoming the barriers to malaria vaccine develop-
field of malaria vaccine research has several challenges to over-ment. CSP has been under development as a vaccine for 18 years
come before a viable product for global usage can be produced.by GSK Biologicals, with a current cumulative expenditure of

between $US75 and $US100 million. The financial and political Whether the increase in GDP of developing countries and the
power behind MVI, coupled with the definition of strategic goals philanthropy of developed countries could sustain annual costs of
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