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Inside eukaryotic cells, small RNA duplexes, called small interfering RNAs (siRNAs), activate a conservedAbstract
RNA interference (RNAi) pathway which leads to specific degradation of complementary target mRNAs
through base-pairing recognition. As with other viruses, studies have shown that replication of the HIV-1 in
cultured cells can be targeted and inhibited by synthetic siRNAs. The relative ease of siRNA design and the
versatility of RNAi to target a broad spectrum of mRNAs have led to the promise that drug discovery in the
RNAi pathway could be effective against pathogens.

This review discusses the current experimental principles that guide the application of RNAi against HIV and
describes challenges and limitations that need to be surmounted in order for siRNAs to become practical antiviral
drugs. The practical use of RNAi therapy for HIV infection will depend on overcoming several challenges,
including the ability to establish long-term expression of siRNA without off-target effects and the capacity to
counteract mutant escape viruses.

RNA interference (RNAi) has emerged as a common in vitro the siRNA duplex is loaded onto RISC to serve as the guide strand
while the second strand, the passenger RNA, is degraded.[10] RISCtool for silencing gene expression.[1,2] The introduction of small
uses its guide RNA for base-pairing-mediated recognition of targetRNA duplexes of 19 to 21 nucleotides into cells can elicit specific
messenger RNA (mRNA). Once this specific hybridization isdegradation of complementary gene sequences through base-pair-
achieved, the PIWI domain of the Ago2 protein within the RISCing.[3] It is thought that the RNAi pathway serves as part of the
complex degrades and silences the targeted substrate mRNA.[11]innate immune defense of eukaryotes against invasion by exoge-
Because siRNAs are easy to design and synthesize and becausenous nucleic acids.[4] Hence, in plants and Drosophila, when a cell
they have sequence specificity for silencing mRNAs, these smallis infected by a virus, an RNAi response is triggered by the foreign
RNAs potentially represent a future class of antiviral drugs.double-stranded RNA (dsRNA) molecules that originate from the

virus.[5] It has been shown recently that retroviruses such as human
1. Inhibition of HIV Replication in Tissue CultureT-cell leukemia virus (HTLV) and HIV generate dsRNAs that can
Using Small Interfering RNA (siRNA)potentially be engaged into the RNAi pathway of mammalian

cells.[6,7]
In a relatively short period of time, RNAi has been shown in

An early step in the RNAi response enlists an RNase III enzyme cultured cells to be efficacious against various viruses including
called Dicer to bind and cleave long dsRNAs into small duplexes respiratory syncytial virus (RSV),[12] influenza virus,[13]

of 19 to 21 nucleotides, termed small interfering RNA (siRNA). poliovirus,[14] and hepatitis C virus (HCV).[15] For HIV, a variety
Dicer-siRNA complex is then recognized by trans activation re- of siRNAs have also been reported to be effective in interrupting
sponse region (TAR) RNA-binding protein (TRBP) and protein viral infection. Two siRNA strategies have been considered for
activator of PKR (PACT), two cellular dsRNA binding proteins. HIV; the first is to target essential viral genes and the second is to

target cellular genes required by HIV for replication (table I).The multi-protein entity is shuttled through interaction with the
argonaute 2 (Ago2) protein into an effector complex, the RNA- To date, HIV sequences that have been targeted include the
induced silencing complex (RISC).[8,9] One of the two strands of structural gag gene,[16] the infectivity factors vif and nef,[3] tat, rev,
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3. export of HIV-1 RNA from the nucleus into the cytoplasm
(e.g. siRNA against RPA interacting protein [RPAIN; hRIP][31] or
Src-associated protein in mitosis [Sam68][32])
4. virus assembly and budding (e.g. targeting LYST interacting
protein 5 [LIP5], a cellular protein involved in multivesicular body
formation,[33] and targeting tumor susceptibility gene 101
[TSG101], also called vacuolar protein-sorting protein 23, in-
volved in endocytic trafficking[36])
5. other cellular proteins used by HIV-1 for replication such as
peptidylprolyl isomerase A (cyclophilin A),[34] the RAS oncogene
family member RAB9,[35] and CDK2.[29]

In many of the above examples, it should be pointed out that
instead of directly introducing siRNA duplexes into cells the effect
of which is transient, in many cases, RNAi was expressed using a
DNA plasmid expressing a short hairpin RNA (shRNA). It is
recognized that the cell’s Dicer enzyme can remove the hairpin
loop from shRNA molecules, processing them to their siRNA
counterparts. Currently, a myriad of systems are available for
expressing shRNAs (e.g. under the control of an RNA polymerase
III U6 or H1 promoter or an RNA polymerase II CMV promoter)
in several vector systems (e.g. adenoviral or lentiviral vector[17,41]),
allowing for long-term silencing even in nondividing cells.

2. Escape and Evasion of HIV from RNA Interference

HIV-1 is a notoriously mutable virus. To be effective, antiviral

Table I. Examples of siRNAs directed against human immunodeficiency
virus

Target References

Viral sequences targeted

gag 16-19

env 20

vif 3

tat 21

rev 21,22

nef 3

LTR (long terminal repeat) 3

Cellular genes targeted

CD4 16,23,24

CXCR4 (chemokine [C-X-C motif] receptor 4) 25,26

CCR5 (chemokine [C-C motif] receptor 5) 27

CCNT1 (cyclin T1) 28

CDK2 (cyclin-dependent kinase 2) 29

CDK9 (cyclin-dependent kinase 9) 28

SUPT5H; SPT5 (suppressor of Ty5 homolog) 30

RPAIN; hRIP (RPA interacting protein) 31

Sam68 (Src-associated protein in mitosis) 32

LIP5 (LYST interacting protein 5) 33

PPIA (peptidylprolyl isomerase A; cyclophilin A) 34

RAB9 (member RAS oncogene family) 35

TSG101 (tumor susceptibility gene 101) 36

drugs based on sequence hybridization must take into account that
HIV-1 mutates its sequence easily. Indeed, HIV-1 can escapeenv, and TAR RNA.[21,37,38] In each instance, sequence-specific
siRNAs through nucleotide mutations. For example, Das et al.[42]silencing of viral RNA and transient suppression of HIV replica-
observed that an siRNA targeted to nef rapidly elicited the emer-tion over a period of 3 to 4 days in single round infection of
gence of siRNA-resistant viruses with point mutations in the nefcultured cells have been achieved. However, it is important to note
gene. Alternatively, the deletation of an siRNA recognition sitethat virion-associated HIV-1 genomic RNA that infects cells ap-
can also allow the virus to evade restriction.[43] Moreover, there is

pears to be resistant to RNAi-mediated degradation.[39] This find-
evidence that HIV-1 can undergo nucleotide substitutions that

ing argues that if a goal is to prevent the genesis of integrated
induce an alternative RNA folding, thus shielding a previously

provirus then, by using siRNA, one should target cellular factors targeted sequence from access by the siRNA.[42]

required for early steps of HIV-1 replication rather than viral To minimize the mutational escape of HIV, one strategy is to
sequences. simultaneously use multiple siRNAs to target discrete sequences.

siRNA directed to several HIV-1 relevant cellular factors have The likelihood that a single viral RNA molecule would mutate all
targeted sequences becomes increasingly small as the number ofindeed been tested for antiviral efficacy. These include siRNA
targets is escalated.[44] This multi-targeting strategy is aided bytargeted to:
computational modeling, which can predict how HIV-1 might

1. viral entry (e.g. siRNA against HIV coreceptors chemokine
evolve in cells that express multiple antiviral siRNAs.[45] Another

[C-C motif] receptor 5 [CCR5] and chemokine [C-X-C motif]
way to circumvent viral escape is to target, not virus sequences,

receptor 4 [CXCR4][25,26])
but cellular genes needed by HIV-1. An example of dual-specific

2. HIV transcription (e.g. siRNA against cyclin T1, cyclin- shRNAs that efficiently inhibited viral entry[23] by simultaneously
dependent kinase 9 [CDK9], or suppressor of Ty5 homolog targeting HIV-1 cell surface receptors CXCR4 and CD4 or CCR5
[SUPT5H; SPT5][28,30,40]) and CXCR4 have been reported.[46]
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In addition to evolving siRNA-escape mutations, viruses can target effects can arise from as few as 7 nucleotides of fortuitous
also encode suppressor factors that attenuate the cell’s RNAi base-pairing between siRNA and mRNA.[62] Considered this way,
response.[47,48] While much remains to be elucidated, HIV-1 ap- a particular siRNA could potentially suppress the expression of its
pears to have multifaceted ways to suppress the cell’s RNAi intended target and several unintended mRNAs.[63] This off-target
machinery.[49] The viral Tat protein appears to work as a protein phenomenon can be a significant drawback should siRNAs be
suppressor of RNAi.[50] In addition, the viral RNA, TAR,[51] is also envisioned for in vivo use as human drugs. One anticipates that
used by HIV-1 as a suppressor of RNAi.[52,53] If siRNA-based methods and modifications that minimize off-target hybridization
therapy of HIV-1 and other viruses is to be usefully contemplated, would need to be greatly improved to enable further siRNA drug
one needs to consider strategies that address virus-encoded RNAi development.[64]

suppressors. Despite virally encoded suppressors, there is ample Another unwelcome adverse effect of siRNA use is the poten-
evidence for RNAi-mediated inhibition of HIV-1 replication. It is tial to inappropriately elicit interferon and inflammatory
possible that the suppressors are either synthesized too late or in cytokines. Normally, RNA duplexes shorter than 30 nucleotides in
amounts too small to counter the effect of a pre-existing siRNA or length would not be expected to trigger the interferon-linked
shRNA. protein kinase R pathway. However, recently it was found that

some GU-rich sequences, such as 5′-UGUGU-3′and 5′-GUC-
CUUCAA-3′, which are toll-like receptor (TLR) immunostimu-3. Toxicity and Off-Target Effects from sh(si)RNAs
latory motifs, can trigger an interferon response[65] even when
presented in duplexes shorter than 30 nucleotides. To minimizeThe siRNA machinery used in eukaryotic cells is the same as
nonspecific interferon responses, judicious care must be exercisedthat used to process a class of endogenous small RNAs called
in the sequence design of siRNA drugs.microRNAs (miRNAs). miRNAs are important regulators of at

least 30% of cellular genes, including those involved in develop-
ment, signal transduction, apoptosis, cell proliferation, and 4. Development of Antiviral siRNA Drugs: Strategies
tumorigenesis.[54-57] To date, 474 human miRNAs have been de- and Limitations
scribed, with more likely to be discovered (see miRNA
database[58]).[59] Recent optimism regarding the possibility of siRNA drugs

The mechanism of miRNA action and the relevance of arises from studies that indicate that intravenous injections of an
miRNAs to HIV-1 infection have been reviewed elsewhere[47,60] siRNA directed against Fas can protect mice from liver injury and
and will not be elaborated further here. What needs to be empha- fibrosis in two models of autoimmune hepatitis[66] and from find-
sized is the fact that the shared factors for shRNA, siRNA, and ings that intranasal administrations of separate siRNAs protected
miRNA processing are saturable entities. Because miRNAs are mice from RSV infection[67] and Rhesus macaques from SARS
essential to cellular metabolism and viability, if the machinery for coronavirus infection.[68] siRNA application to the mouse genital
miRNA genesis is diverted to handle exogenous siRNA or tract has also been found to be protective against lethal herpes
shRNA, then a dearth of miRNAs can potentially manifest as simplex virus type 2 infection.[69] These preliminary positive find-
cellular toxicity. This hitherto unexpected finding was indeed ings have prompted phase I studies to be initiated in humans. To
demonstrated in a recent study of in vivo overexpression of shRNA date, three clinical trials have been completed in humans and show
in mice.[61] In that study, severe liver toxicity and the death of 150 no significant siRNA toxicity.[70] siRNAs are currently in clinical
mice occurred within 2 weeks of shRNA treatment. The explana- investigation for two diseases: age-related macular degeneration
tion for the fatalities was the saturation by shRNA of the pathway (AMD) caused by an overexpression of the vascular endothelial
normally used in the liver to process miRNAs. Hence, the high growth factor (VEGF) and respiratory infection caused by the
shRNA expression in the mouse liver overwhelmed the export RSV.
pathway (i.e. exportin-5) needed to transport precursor miRNAs At this time, there is no siRNA drug for HIV-1. As outlined
from the nucleus into the cytoplasm. The interruption of proper above, there are several issues unique to the targeting of viral
transport of miRNA precursors led to reduced levels of mature genes which do not apply to the targeting of cellular genes.
miRNAs with resulting cellular toxicity. However, a question that is relevant to all siRNA applications is

Apart from the problem of pathway saturation, off-target ef- how best to deliver siRNA into virus-infected cells. In this regard,
fects of siRNAs raise additional concerns. On-target effects ema- several methods are being considered. For example, in HCV
nate from perfect complementarity between guide-RNA and target infections, a procedure that couples siRNA to cholesterol[71] al-
mRNA (i.e. 19 of 19 matched nucleotide base-pairings), while off- lows for efficient targeting of hepatocytes, the cells preferentially
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Fig. 1. Challenges and limitations that need to be surmounted in order for small interfering RNAs (siRNAs) to become practical antiviral drugs. Ago2 =
argonaute 2; miRNA = microRNA; mRNA = messenger RNA; RISC = RNA-induced silencing complex; RNAi = RNA interference; shRNA = short hairpin
RNA; siRNA = small interfering RNA; TRBP = TAR RNA-binding protein.

infected by virus. Elsewhere, a novel strategy using antibody- sette, which was shown to be effective in inhibiting HIV replica-
mediated siRNA delivery has been proposed for HIV-1-infected tion[22] and a doxycycline-dependent lentivector.[73] Going for-
cells.[18] Whether these biochemical delivery techniques can dis- ward, a major challenge is to perfect vectors that are wholly silent
tribute siRNAs effectively to in vivo compartments awaits further for shRNA expression unless specifically triggered by HIV-1
verification. infection.

There are also virus-based approaches to deliver shRNA; how- Despite the optimized delivery of siRNA and shRNA into cells,
ever, this type of gene therapy approach does raise issues related to the ability of viruses to mutate and escape from RNAi is a
biosafety.[72] A major focus for HIV-1-infected cells has been the significantly daunting problem. A multi-modal approach may
use of lentiviral vectors, which have the ability to infect nondivid- have to be adopted in order to minimize viral escape.[44] For
ing cells, such as resting T-cells, macrophages, and progenitor example, shRNA targeted to Rev can be used at the same time as a
hematopoietic cells (CD34+ cells). Examples of progress in vector trans dominant-negative Rev protein (RevM10) to inhibit HIV-1
design include an HIV-1 inducible vector with an anti-Rev cas- infection.[74] When tested in tissue culture, RevM10 protected
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