Skip to main content
Log in

Postoperative Analgesia and Sedation in the Adult Intensive Care Unit

A Guide to Drug Selection

  • Therapy In Practice
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

An essential goal of all critical care physicians should be to maintain an optimal level of pain control and sedation for their patients. This has become increasingly important because of evidence showing that the combined use of sedatives and analgesics may ameliorate the detrimental stress response in critically ill patients. Unfortunately, both pain and anxiety are subjective and difficult to measure, thereby limiting our ability to analyse these states and making management more challenging.

Although there is still a lack of high quality, randomised, prospective, controlled trials comparing agents, monitoring techniques and scoring scales, several societies have come together to publish some clinical practice guidelines for sedation and analgesia. Recommended opioids are fentanyl or hydromorphone for short-term use, and morphine or hydromorphone for longer-term therapy. Midazolam or diazepam are recommended for sedation of the acutely agitated patient, while lorazepam is recommended for longer infusions. Propofol is preferred when rapid awakening is desired.

The challenge for critical care physicians is to use these medications to provide comfort and safety without increasing morbidity or mortality. Most studies support the use of protocols in order to help achieve these goals. The bottom line is that most protocols end up stressing some common issues. These include daily cessation of drugs to evaluate the patient and frequent reassessment of the level of sedation required by each specific patient.

Much is still unknown about the long-term effects of sedative and analgesic drugs used as infusions that may last from days to weeks to months. Hopefully, as more studies are performed, we will have more defined clinical end-points, newer drugs with rapid onset and offset and no active metabolites, and decreased morbidity and mortality for our patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Lewis KS, Whipple JK, Michael KA, et al. Effect of analgesic treatment on the physiological consequences of acute pain. Am J Hosp Pharm 1994; 51(12): 1539–54

    PubMed  CAS  Google Scholar 

  2. Mangano DT, Siliciano D, Hollenberg M, et al. Postoperative myocardial ischemia: therapeutic trials using intensive analgesia following surgery. Anesthesiology 1992; 76(3): 342–53

    Article  PubMed  CAS  Google Scholar 

  3. Britton BJ, Hawkey C, Wood WG, et al. Stress: a significant factor in venous thrombosis? Br J Surg 1974; 61(10): 814–20

    Article  PubMed  CAS  Google Scholar 

  4. Slade MS, Greenberg LJ, Yunis EJ, et al. Integrated immune response to standard major surgical trauma in normal patients. Surg Forum 1974; 25: 425–7

    PubMed  CAS  Google Scholar 

  5. Swinamer DL, Phang PT, Jones RL, et al. Effect of routine administration of analgesia on energy expenditure in critically ill patients. Chest 1988; 93(1): 4–10

    Article  PubMed  CAS  Google Scholar 

  6. Moller IW, Dinesen K, Sondergard S, et al. Effect of patient-controlled analgesia on plasma catecholamine, cortisol and glucose concentrations after cholecystectomy. Br J Anaesth 1988; 61(2): 160–4

    Article  PubMed  CAS  Google Scholar 

  7. Modig J, Borg T, Bagge L, et al. Role of extradural and of general anesthesia in fibrinolysis and coagulation after total hip replacement. Br J Anaesth 1983; 55: 625–9

    Article  PubMed  CAS  Google Scholar 

  8. Salomaki TE, Leppaluoto J, Laitinen JO, et al. Epidural versus intravenous fentanyl for reducing hormonal, metabolic and physiologic responses after thoracotomy. Anesthesiology 1993; 79(4): 672–9

    Article  PubMed  CAS  Google Scholar 

  9. Jones C, Griffiths RD, Macmillan RR, et al. Psychological problems occurring after intensive care. Br J Int Care 1994; 2: 46–53

    Google Scholar 

  10. Parker M, Schubert W, Shelhamer J, et al. Perceptions of a critically ill patient experiencing therapeutic paralysis in an ICU. Crit Care Med 1984; 12: 69–71

    Article  PubMed  CAS  Google Scholar 

  11. Stoll C, Haller M, Briegel J, et al. Health-related quality of life in long-term survivors after treatment with extracorporeal membrane oxygenation (ECMO) for the acute respiratory distress syndrome (ARDS). Anaesthesist 1998; 47(1): 24–9

    Article  PubMed  CAS  Google Scholar 

  12. Bond M. Psychological and psychiatric aspects of pain. Anaesthesia 1978; 33: 355–61

    Article  PubMed  CAS  Google Scholar 

  13. Chapman CR, Casey KL, Dubner R, et al. Pain measurement: an overview. Pain 1985; 22(1): 1–31

    Article  PubMed  CAS  Google Scholar 

  14. Ramsay MA, Savege TM, Simpson BR, et al. Controlled sedation with alphaxalone-alphadolone. BMJ 1974; 2(920): 656–9

    Article  PubMed  CAS  Google Scholar 

  15. Shapiro BA. Bispectral index: better information for sedation in the intensive care unit [editorial]? Crit Care Med 1999; 27(8): 1663–4

    Article  PubMed  CAS  Google Scholar 

  16. Glass PS, Bloom M, Kearse L, et al. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 1997; 86(4): 836–47

    Article  PubMed  CAS  Google Scholar 

  17. Liu J, Singh H, White PF. Electroencephalographic bispectral index correlates with intraoperative recall and depth of propofol-induced sedation. Anesth Analg 1997; 84(1): 185–9

    PubMed  CAS  Google Scholar 

  18. Shah N, Clack S, Chea F, et al. Does bispectral index of EEG correlate with Ramsay sedation score in ICU patients [abstract]? Anesthesiology 1996; 85: A469

    Google Scholar 

  19. Frenzel D, Greim C, Sommer C, et al. Is the bispectral index appropriate for monitoring the sedation level of mechanically ventilated surgical ICU patients? Intensive Care Med 2002; 28: 178–83

    Article  PubMed  Google Scholar 

  20. De Deyne C, Struys M, Decruyenaere J, et al. Use of continuous bispectral EEG monitoring to assess depth of sedation in ICU patients. Intensive Care Med 1998; 24(12): 1294–8

    Article  PubMed  Google Scholar 

  21. Jacobi J, Fraser G, Coursin D, et al. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med 2002; 30(1): 119–41

    Article  PubMed  Google Scholar 

  22. Hsu HO, Hickey RF, Forbes AR. Morphine decreases peripheral vascular resistance and increases capacitance in man. Anesthesiology 1979; 50(2): 98–102

    Article  PubMed  CAS  Google Scholar 

  23. Osborne R, Joel S, Slevin M. Morphine intoxication in renal failure: the role of morphine-6-glucuronide [letter]. BMJ (Clin Res Ed) 1986; 293(6554): 1101

    Article  CAS  Google Scholar 

  24. Stanley T, Webster L. Anesthetic requirements and cardiovascular effects of fentanyl-oxygen and fentanyl-diazepam-oxygen anesthesia in man. Anesth Analg 1978; 57: 411–6

    PubMed  CAS  Google Scholar 

  25. Bodenham A, Shelly MP, Park GR. The altered pharmacokinetics and pharmacodynamics of drugs commonly used in critically ill patients. Clin Pharmacokinet 1988; 14(6): 347–73

    Article  PubMed  CAS  Google Scholar 

  26. Haberer J, Schoeffler P, Courderc E, et al. Fentanyl pharmacokinetics in anaesthetized patients with cirrhosis. Br J Anaesth 1982; 54: 1267–70

    Article  PubMed  CAS  Google Scholar 

  27. Sarhill N, Walsh D, Nelson KA. Hydromorphone: pharmacology and clinical applications in cancer patients. Support Care Cancer 2001; 9(2): 84–96

    Article  PubMed  CAS  Google Scholar 

  28. Zheng M, McErlane KM, Ong MC. Hydromorphone metabolites: isolation and identification from pooled urine samples of a cancer patient. Xenobiotica 2002; 32(5): 427–39

    Article  PubMed  CAS  Google Scholar 

  29. Davis MP, Walsh D. Methadone for relief of cancer pain: a review of pharmacokinetics, pharmacodynamics, drug interactions and protocols of administration. Support Care Cancer 2001; 9(2): 73–83

    Article  PubMed  CAS  Google Scholar 

  30. Felder C, Uehlinger C, Baumann P, et al. Oral and intravenous methadone use: some clinical and pharmacokinetic aspects. Drug Alcohol Depend 1999; 55(1–2): 137–43

    Article  PubMed  CAS  Google Scholar 

  31. Irifune M, Shimizu T, Nomoto M, et al. Ketamine-induced anesthesia involves the N-methyl-D-aspartate receptor-channel complex in mice. Brain Res 1992; 596(1–2): 1–9

    Article  PubMed  CAS  Google Scholar 

  32. Gooding J, Dimick A, Tavakoli M, et al. A physiologic analysis of cardiopulmonary responses to ketamine anesthesia in non-cardiac patients. Anesth Analg 1977; 56: 813–6

    PubMed  CAS  Google Scholar 

  33. Waxman K, Shoemaker W, Lippmann M. Cardiovascular effects of anesthetic induction with ketamine. Anesth Analg 1980; 59: 355–8

    Article  PubMed  CAS  Google Scholar 

  34. Joachimsson PO, Hedstrand U, Eklund A. Low-dose ketamine infusion for analgesia during postoperative ventilator treatment. Acta Anaesthesiol Scand 1986; 30(8): 697–702

    Article  PubMed  CAS  Google Scholar 

  35. Corssen G, Gutierrez J, Reves J, et al. Ketamine in the anesthetic management of asthmatic patients. Anesth Analg 1972; 51: 588–96

    PubMed  CAS  Google Scholar 

  36. Chang T, Glazko A. Biotransformation and disposition of ketamine. Int Anesthesiol Clin 1974; 12: 157–77

    Article  PubMed  CAS  Google Scholar 

  37. Cohen IL. The management of the agitated ICU patient. Crit Care Med 2002; 30Suppl. 1: S97–123

    Article  Google Scholar 

  38. Greenblatt DJ, Shader RI, Franke K, et al. Pharmacokinetics and bioavailability of intravenous, intramuscular, and oral lorazepam in humans. J Pharm Sci 1979; 68(1): 57–63

    Article  PubMed  CAS  Google Scholar 

  39. Pohlman AS, Simpson KP, Hall JB. Continuous intravenous infusions of lorazepam versus midazolam for sedation during mechanical ventilatory support: a prospective, randomized study. Crit Care Med 1994; 22(8): 1241–7

    Article  PubMed  CAS  Google Scholar 

  40. Laine GA, Hossain SMH, Solis RT, et al. Polyethylene glycol nephrotoxicity secondary to prolonged high-dose intravenous lorazepam. Ann Pharmacother 1995; 29(11): 1110–4

    PubMed  CAS  Google Scholar 

  41. Cawley MJ. Short-term lorazepam infusion and concern for propylene glycol toxicity: case report and review. Pharmacotherapy 2001; 21(9): 1140–4

    Article  PubMed  CAS  Google Scholar 

  42. Elliott H. Metabolism of lorazepam. Br J Anaesth 1976; 48: 1017–23

    Article  PubMed  CAS  Google Scholar 

  43. Greenblatt D, Shader R, Harmatz J. Benzodiazepines: a summary of pharmacokinetic properties. Br J Clin Pharmacol 1981; 11: 11–6

    Article  Google Scholar 

  44. Adams P, Gelman S, Reves JG, et al. Midazolam pharmacodynamics and pharmacokinetics during acute hypovolemia. Anesthesiology 1985; 63(2): 140–6

    Article  PubMed  CAS  Google Scholar 

  45. Malacrida R, Fritz ME, Suter PM, et al. Pharmacokinetics of midazolam administered by continuous intravenous infusion to intensive care patients. Crit Care Med 1992; 20(8): 1123–6

    Article  PubMed  CAS  Google Scholar 

  46. Hall R, Zisook S. Paradoxical reactions to benzodiazepines. Br J Clin Pharmacol 1981; 11: 99S–104S

    Article  PubMed  Google Scholar 

  47. Dirksen MS, Vree TB, Driessen JJ. Clinical pharmacokinetics of long-term infusion of midazolam in critically ill patients: preliminary results. Anaesth Intensive Care 1987; 15(4): 440–4

    PubMed  CAS  Google Scholar 

  48. Reves JG, Fragen RJ, Vinik R, et al. Midazolam pharmacology and uses. Anesthesiology 1985; 62(3): 310–24

    Article  PubMed  CAS  Google Scholar 

  49. Mandema JW, Tuk B, Van Steveninck AL, et al. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. Clin Pharmacol Ther 1992; 51(6): 715–28

    Article  PubMed  CAS  Google Scholar 

  50. Hamaoka N, Oda Y, Hase I, et al. Propofol decreases the clearance of midazolam by inhibiting CYP3A4: in vivo and in vitro study [abstract]. Anesthesiology 1999; 91(3A): A451

    Google Scholar 

  51. Ahonen J, Olkkola KT, Salmenpera M, et al. Effect of diltiazem on midazolam and alfentanil disposition in patients undergoing coronary artery bypass grafting. Anesthesiology 1996; 85(6): 1246–52

    Article  PubMed  CAS  Google Scholar 

  52. Ariano RE, Kassum DA, Aronson KJ. Comparison of sedative recovery time after midazolam versus diazepam administration. Crit Care Med 1994; 22(9): 1492–6

    Article  PubMed  CAS  Google Scholar 

  53. Klotz I, Avant G, Hoyumpa A, et al. The effects of age and liver disease on the disposition and elimination of diazepam in adult man [abstract]. J Clin Invest 1975; 55: 347

    Article  PubMed  CAS  Google Scholar 

  54. Barr J, Egan TD, Sandoval NF, et al. Propofol dosing regimens for ICU sedation based upon an integrated pharmacokinetic-pharmacodynamic model. Anesthesiology 2001; 95(2): 324–33

    Article  PubMed  CAS  Google Scholar 

  55. Fulton B, Sorkin EM. Propofol: an overview of its pharmacology and a review of its clinical efficacy in intensive care sedation. Drugs 1995; 50(4): 636–57

    Article  PubMed  CAS  Google Scholar 

  56. McLeod G, Dick J, Wallis C, et al. Propofol 2 percent in critically ill patients: effect on lipids. Crit Care Med 1997; 25(12): 1976–81

    Article  PubMed  CAS  Google Scholar 

  57. Possidente C, Rogers F, Osier T, et al. Elevated pancreatic enzymes after extended propofol therapy. Pharmacotherapy 1998; 18: 653–5

    PubMed  CAS  Google Scholar 

  58. Badr AE, Mychaskiw II G, Eichhorn JH. Metabolic acidosis associated with a new formulation of propofol. Anesthesiology 2001; 94(3): 536–8

    Article  PubMed  CAS  Google Scholar 

  59. Cremer OL, Moons KG, Bouman EA, et al. Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet 2001; 357(9250): 117–8

    Article  PubMed  CAS  Google Scholar 

  60. Veroli P, O’Kelly B, Bertrand F, et al. Extrahepatic metabolism of propofol in man during the anhepatic phase of orthotopic liver transplantation. Br J Anaesth 1992; 68(2): 183–6

    Article  PubMed  CAS  Google Scholar 

  61. Morcos WE, Payne JP. The induction of anaesthesia with propofol (‘Diprivan’) compared in normal and renal failure patients. Postgrad Med J 1985; 61 Suppl. 3: 62–3

    PubMed  Google Scholar 

  62. Fish DN. Treatment of delirium in the critically ill patient. Clin Pharm 1991; 10(6): 456–66

    PubMed  CAS  Google Scholar 

  63. Tesar G, Murray G, Cassem N, et al. Use of haloperidol for acute delirium in intensive care setting. J Clin Psychopharmacol 1985; 5: 344–7

    PubMed  CAS  Google Scholar 

  64. Sharma N, Rosman H, Padhi D, et al. Torsades de pointes associated with intravenous haloperidol in critically ill patients. Am J Cardiol 1998; 81: 238–40

    Article  PubMed  CAS  Google Scholar 

  65. Coursin D, Coursin D, Maccioli G. Dexmedetomidine. Curr Opin Crit Care 2001; 7(4): 221–6

    Article  PubMed  CAS  Google Scholar 

  66. Belleville JP, Ward DS, Bloor BC, et al. Effects of intravenous dexmedetomidine in humans: I, sedation, ventilation, and metabolic rate. Anesthesiology 1992; 77(6): 1125–33

    Article  PubMed  CAS  Google Scholar 

  67. Scheinin B, Lindgren L, Randell T, et al. Dexmedetomidine attenuates sympathoadrenal responses to tracheal intubation and reduces the need for thiopentone and peroperative fentanyl. Br J Anaesth 1992; 68(2): 126–31

    Article  PubMed  CAS  Google Scholar 

  68. Venn R, Bradshaw C, Spencer R, et al. Preliminary UK experience of dexmedetomidine, a bovel agent for postoeprative sedation in the intensive care unit. Anesthesia 1999; 54: 1136–42

    Article  CAS  Google Scholar 

  69. Bhana N, Goa KL, McClellan KJ. Dexmedetomidine. Drugs 2000; 59(2): 263–8

    Article  PubMed  CAS  Google Scholar 

  70. Soliman H, Melot C, Vincent J. Sedative and analgesic practice in the intensive care unit: the results of a European survey. Br J Anaesth 2001; 87(2): 186–92

    Article  PubMed  CAS  Google Scholar 

  71. Christensen BV, Thunedborg LP. Use of sedatives, analgesics and neuromuscular blocking agents in Danish ICUs 1996/97: a national survey. Intensive Care Med 1999; 25(2): 186–91

    Article  PubMed  CAS  Google Scholar 

  72. Murdoch S, Cohen A. Intensive care sedation: a review of current British practice. Intensive Care Med 2000; 26(7): 922–8

    Article  PubMed  CAS  Google Scholar 

  73. Shapiro BA, Warren J, Egol AB, et al. Practice parameters for intravenous analgesia and sedation for adult patients in the intensive care unit: an executive summary: Society of Critical Care Medicine. Critical Care Med 1995; 23(9): 1596–600

    Article  CAS  Google Scholar 

  74. Ely EW, Baker AM, Dunagan DP, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med 1996; 335(25): 1864–9

    Article  PubMed  CAS  Google Scholar 

  75. Brook AD, Ahrens TS, Schaiff R, et al. Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med 1999; 27(12): 2609–15

    Article  PubMed  CAS  Google Scholar 

  76. Kress JP, Pohlman AS, O’Connor MF, et al. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 2000; 342(20): 1471–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda L. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L.L., Gropper, M.A. Postoperative Analgesia and Sedation in the Adult Intensive Care Unit. Drugs 63, 755–767 (2003). https://doi.org/10.2165/00003495-200363080-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200363080-00003

Keywords

Navigation