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INTRODUCTION
Chronic lymphocytic leukemia (CLL)

is characterized by the clonal expansion
of CD5+CD19+CD23+ cells in peripheral
lymphoid organs, tissues and bone mar-
row (1,2). The disease has a variable
clinical course, progression and survival
rate. It is proposed that CLL cell growth,
survival and expansion are driven by
unknown antigens/autoantigens

through the B-cell antigen receptor
(BCR), and supported by microenviron-
mental signals (3) including the toll-like
receptors (TLRs), in particular
CD180/RP105 (4,5) and TLR9 (6–10).
CD180/RP105 is a membrane-associated
orphan receptor that drives normal
human and mouse B-cell activation and
proliferation (11–14). Anti-CD180 mono-
clonal antibody (mAb) induces upregu-

lation of MHC class II, CD40 and
CD80/CD86 on human and mouse
B cells (4,11,15) and differentiation and
rapid secretion of immunoglobulin G
(IgG) in vivo (16).

We have shown previously that ap-
proximately 60% of CLL samples express
CD180. Half of these responded to liga-
tion with anti-CD180 mAb by activation
and proliferation, and were termed re-
sponders (R-CLL) (4,5). We further
demonstrated that CD180 ligation led to
a strong upregulation of phosphorylated
zeta-chain- associated protein kinase 70
(ZAP-70)/Syk, p38 mitogen- activated
protein kinase (p38MAPK), extracellular-
signal-regulated kinase (ERK) and, par-
ticularly, AKT protein kinase in normal 
B cells and R-CLL cells (5). Since phos-
phorylation of AKT has been associated
with prosurvival signaling pathways in
CLL previously (17,18) we have exam-
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ined the relationship between AKT phos-
phorylation and CLL survival/apoptosis
following CD180 ligation.

The BCR plays an important role in the
maintenance and survival of CLL cells
(19–23) and IgM-mediated prosurvival
signaling is associated with activation of
AKT, ERK and nuclear factor kappa-
light-chain-enhancer of activated B cells
(NF-κB) (24).Therefore CLL samples ex-
pressing CD180 and BCR could receive
both antigen-mediated and environmen-
tal signals, possibly via overlapping sig-
naling pathways. BCR and CD180-
 mediated responses have not been
correlated in CLL previously. Here we in-
vestigate cross-talk between BCR and
CD180 pathways and how CD180 liga-
tion impinges on BCR-driven CLL cell
signaling and survival.

MATERIALS AND METHODS

Patients
Heparinized peripheral blood was col-

lected with informed consent from 60 pa-
tients with CLL (47 to 89 years of age,
median age 67.9 years) following ethical
approval from the University College
London Hospitals (UCLH, 08/H0714/6).
Fifty three patients were at Binet stage A
with white blood cell (WBC) count of
14.0–100.2 × 109/L, three at stage B (WBC
count of 27.6–76.6 × 109/L) and four at
stage C (WBC count of 12.3–81.0 ×
109/L). From this cohort, 28 patients
have been identified as IGHV mutated
(M)-CLL and 19 patients as IGHV unmu-
tated (U)-CLL. Patients were untreated
or had not received treatment for 6
months prior to the study. Fifteen age-
matched (50 to 78 years of age, median
age 63.5 years) healthy volunteers served
as controls.

Isolation of Peripheral Blood
Mononuclear Cells (PBMCs) and
Purified CD19+ cells

PBMCs were isolated in Histopaque-
1077 gradient (Sigma-Aldrich, Dorset,
UK), and cell concentration was adjusted
as required in RPMI-1640 medium sup-
plemented with 10% fetal bovine serum

(both Sigma-Aldrich). Control CD19+

B cells were enriched from PBMCs using
an EasySep Human B Cell Enrichment
Kit (Stemcell Technologies, Vancouver,
BC, Canada). The level of purification
was routinely >95%.

Cell Phenotyping
Fc-receptors on PBMCs were blocked

with purified human immunoglobulins
(Sigma-Aldrich) and the cells were im-
munophenotyped using unconjugated
primary mAbs: IgG1 isotype control,
anti-CD180 (clone G28-8, IgG1), anti-IgM
(BD Biosciences, Oxford, UK), anti-
CD79b, anti-CD38 (both: Fitzgerald,
North Acton, MA) and anti-IgD (Sigma-
Aldrich). The cells were stained with
FITC-conjugated rabbit anti-mouse F(ab)2

(Dako, Ely, UK), blocked with mouse
serum (Dako), treated with PE-Cy5 anti-
CD19 mAb and fixed. The results were
analyzed by flow cytometry (CyAn,
Beckman Coulter, High Wycombe, UK)
and expressed as percentages of positive
cells (4,5).

Cell Stimulation
PBMCs or purified CD19+ cells were in-

cubated with anti-CD180 mAb for 10 to 20
min or with goat anti-human IgM F(ab)2

(Southern Biotech, Birmingham, AL, USA)
for 10 min at a final concentration 
20 μg/mL at 37°C and 5% CO2. Optimal
stimulation time (20 min) for anti-CD180
mAb was established previously (data not
shown). Unstimulated cultures were used
as negative controls. In separate experi-
ments, cells were sequentially incubated
with anti-CD180 for 10 to 20 min followed
by anti-IgM for 10 min or vice versa.

Prior to the stimulation with anti-
CD180, ten CLL samples were pretreated
at 37°C for 2 h with specific inhibitors 
of AKT (Akti-1/2, Sigma-Aldrich, 
20 μmol/L) or p38MAPK (SB2035804,
Sigma-Aldrich, 20 μmol/L).

Assessment of Phosphorylation of
Intracellular Protein Kinases

Flow cytometry. Following stimulation,
cells were stained with PE-Cy5 conjugated
anti-CD19 mAb, washed, fixed and perme-

abilized with Fix&Perm Kit (ADG [An Der
Grub Bio Research GmbH] [Nordic-MUbio,
Susteren, the Netherlands]). Cells were fur-
ther stained with either of the following
anti-human Abs: anti-phospho(p)-ZAP-70/
Syk-Alexa Fluor-647 (BD Phosflow [BD,
Franklin Lakes, NJ, USA]), anti-p-AKT-
Alexa Fluor-488, anti-p-p38MAPK-Alexa
Fluor-488 (Cell Signaling Technology, Dan-
vers, MA, USA), anti-p-ERK-Alexa Fluor-
488 (BD Biosciences [BD]), anti-p-BTK-
Alexa Fluor-647 (BD Phosflow) and
incubated at room temperature for 30 min.
Cells were analyzed by flow cytometry, and
the results expressed as percentages of posi-
tive cells compared with unstimulated cells.

Immunoblotting. Proteins were ex-
tracted from stimulated and unstimulated
cells (10 × 106/mL) and applied to gel
electrophoresis as described previously
(25). Rainbow Molecular Weight Markers
(3.5-260 kDa, Invitrogen [Thermo Fisher
Scientific Inc., Waltham, MA, USA]) and
the following primary antibodies were
used against: AKT, p-AKT(Ser473),
ERK(p44/42), p-ERK(Thr202/Tyr204),
p38MAPK, p-p38MAPK(Thr180/Tyr182),
PI3K(p85), p-PI3Kp85(tyr458)/p55(tyr199),
Mcl-1 and Bcl-xL, (all Cell Signaling Tech-
nology). B-cell lymphoma 2 (Bcl-2; Sigma-
Aldrich) was used as a loading control
(25). Bands were visualized using appro-
priate secondary antibodies (Dako) and
enhanced chemiluminescence system
(Amersham [GE Healthcare, Little Chal-
font, UK]). Relative optical density nor-
malized to Bcl-2 was measured.

Apoptosis. Stimulated and unstimu-
lated cells were stained with anti-human
CD19 mAb conjugated to PE-Cy5,
loaded with 0.2 μmol/L of DiOC6 (3,3′-
dihexyloxacabocyanine iodide; Molecular
Probes [Thermo Fisher Scientific]) and in-
cubated at 37°C for 20 min, washed and
analyzed by flow cytometry. Apoptosis
was measured as the percentages of
DiOC6

dim cells in the CD19+ subset as de-
scribed previously (5).

Statistical Analysis
Mann-Whitney nonparametric U test

and paired t test were applied where 
appropriate.
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RESULTS

Ligation of CD180 on CLL Cells from
Most Patients Leads to an Alternative
Phosphorylation of Either AKT or
p38MAPK

We have established that CD180+CLL
samples can be subdivided into respon-
ders (R-CLL) and nonresponders (NR-
CLL), based on upregulation of CD86 and
Ki67 following ligation of CD180 (4).
Treatment of R-CLL cells, but not NR-CLL
cells, with anti-CD180 mAb led to an in-
crease in phosphorylation of AKT(Ser473)
(5). Here, using a larger cohort of patients,
we recategorized CLL samples into AKT
signalers (AKT-S) and AKT nonsignalers
(AKT-NS) based on their ability to in-
crease phosphorylation of AKT above the
basal levels following CD180 ligation

(Figures 1A, C, D). It was important to de-
termine other signaling molecules in-
volved in these two categories of cells.

Stimulation with anti-CD180 of AKT-S
CLL samples showed a significant down-
regulation of p-p38MAPK basal expres-
sion (Figure 1B) compared with AKT-NS
CLL samples that showed a significant
increase in p-p38MAPK measured by
flow cytometry (see Figure 1B) and con-
firmed by immunoblotting (Figures 1C, E).
We categorize this group as p38MAPK
signalers (p38MAPK-S). These data are
consistent with a hypothesis that eleva-
tion of AKT-P or p-p38MAPK indicates
two possible alternative pathways fol-
lowing CD180 ligation.

One explanation for this dichotomy
could be related to the surface density of
the CD180. However, no significant dif-

ferences in CD180, CD38 or CD79b ex-
pression were observed between AKT-S
and p38MAPK-S (data not shown).

Only six CLL samples responded to
CD180 ligation by increasing levels of both
p-AKT and p-p38MAPK, however, all con-
trol B cells did (Figures 1A–E) and were
marked as double-signalers (DS). By con-
trast, the remaining CLL samples down-
regulated percentages of both p-AKT– and
p-p38MAPK–expressing cells following
CD180 ligation (Figures 1A, B) and were
categorized as NS.

We have therefore identified CLL B cells
with four patterns of CD180- mediated sig-
naling: AKT-S, p38MAPK-S, NS and a
minor subset of AKT/ p38MAPK DS. No
significant differences in phosphorylation
of ERK were detected between the four
categories of cells.

Figure 1. Phosphorylation of AKT and p38MAPK protein kinases in AKT-S, p38MAPK-S, double signaler (DS) and nonsignaler (NS) categories
of CLL samples following stimulation with anti-CD180 mAb. (A and B) CLL cells and control B cells were incubated with anti-CD180 mAb
for 20 min (CD180 mAb) or left unstimulated in medium (Medium), washed, stained with anti-CD19 mAb, fixed, permeabilized and stained
with anti-p-AKT(Ser473) (A) or with p-anti-p38MAPK (B) mAbs as described in the Materials and Methods, analyzed by flow cytometry
and expressed as percentages of positive cells. P values were calculated using the paired t test. (C) Representative immunoblots with
the levels of total AKT, p-AKT(Ser473), total p38MAPK and p-p38MAPK in CLL samples following stimulation with anti-CD180 mAb and in
unstimulated cultures (Medium) as described in the Materials and Methods. Bcl-2 was used as a loading control. (D and E) Relative opti-
cal density, normalized to Bcl-2, for p-AKT and p-p38MAPK immunoblots respectively, n = 6.
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CD180-Induced AKT-Mediated
Signaling in CLL Cells Involves BTK and
PI3K and Leads to the Survival of CLL
Cells, While the p38MAPK Pathway
Favors Apoptosis

Since AKT (26) and associated 
phosphatidylinositol-4,5-bisphosphate 3-
kinase (PI3K) and Bruton tyrosine kinase
(BTK) pathways (23,27) have been shown
to be important in the survival of CLL
cells mediated through the BCR
(18,28–31), we next determined whether

CD180-mediated survival of CLL cells in-
volved these pathways.

CD180 ligation of AKT-S CLL samples
induced upregulation of p-BTK (Figure 2A)
and p-PI3K, accompanied by an in-
creased expression of Bcl-xL and Mcl-1
(Figures 2B, C) and substantial survival
from apoptosis (Figure 2D). Control B cells
also exhibited increased survival, follow-
ing CD180 ligation (5) (see Figure 2D).

By contrast, treatment of p38MAPK-S
CLL cells with anti-CD180 mAb resulted

in a significant decrease in the percentages
of p-BTK-expressing cells below the basal
level (see Figure 2A) with no appreciable
changes in p-PI3K (Figures 2B, C). Most
importantly, there was a significant (if het-
erogeneous) increase in DiOC6

dim apoptotic
p38MAPK-S cells after CD180 ligation (see
Figure 2D) accompanied by a decrease in
Mcl-1, but not Bcl-xL (Figures 2B, C).

In the small cohort of DS samples,
there were no CD180-mediated changes
in either the cell survival or the levels of

Figure 2. Anti-CD180 mediated phosphorylation of BTK and PI3K, expression of Mcl-1, Bcl-xL and apoptosis in AKT-S, p38MAPK-S and DS CLL
cells. (A) Percentages of cells expressing p-BTK in AKT-S, p38MAPK-S and DS categories of CLL samples. Cells were incubated with anti-CD180
mAb for 20 min (CD180 mAb) or left unstimulated (Medium), washed, stained with anti-CD19 mAb, fixed, permeabilized and stained with
anti-p-BTK mAb as described in the Materials and Methods and analyzed by flow cytometry. P values were calculated using paired t test.
(B) Representative immunoblots show the levels of total PI3K, p-PI3K, Bcl-xL and Mcl-1 in AKT-S, p38MAPK-S and DS categories of CLL samples
following stimulation with anti-CD180 mAb (CD180 mAb) or in unstimulated cultures (Medium) as described in the Materials and Methods.
Bcl-2 was used as loading control. (C) Relative optical density, normalized to Bcl-2, for p-PI3K, Mcl-1 and Bcl-xL immunoblots, n = 6. (D) The
percentages of DiOC6

dim (apoptotic) cells in control B cells, AKT-S, p38MAPK-S and DS CLL samples measured following stimulation with anti-
CD180 mAb for 24 h, compared with unstimulated cultures (Medium), as described in the Materials and Methods. The values are mean ± SD,
p values were calculated using a nonparametrical U test. (E) Percentages of cells expressing p-AKT and p-p38MAPK in unstimulated (US)
and stimulated with anti-CD180 mAb AKT-S and p38MAPK-S CLL samples untreated (white bars) or pretreated (gray bars) with specific in-
hibitors AKTi1/2 or SB2035804. P values between the treated and untreated with inhibitors cells were calculated using the paired t test.
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Bcl-xL and Mcl-1 (Figures 2B–D), despite
a decrease in p-BTK (see Figure 2A).

In a pilot experiment, we used specific
inhibitors of p-AKT and p-p38MAPK to
confirm involvement of these protein ki-
nases in CD180-mediated signaling. As ex-
pected, pretreatment of AKT-S CLL cells
with AKT inhibitor Akti1/2 resulted in a
significant decrease in the number of p-
AKT cells, while no effect was seen for
p38MAPK-S cells (Figure 2E). Likewise,
p38MAPK inhibitor SB2035804 suppressed
CD180-stimulated levels of p-p38MAPK
in p38MAPK-S, but not in AKT-S cells.

Thus, our data suggest that CD180-
 mediated intracellular signaling in

CD180+CLL cells can engage two major
pathways: one being prosurvival, operat-
ing via BTK/PI3K/AKT, and the other
being proapoptotic and favoring the
p38MAPK pathway.

sIgM-Induced Activation Favors the
Prosurvival Signaling Pathway in AKT-S
CLL Cells, but Not a Proapoptotic
Pathway in p38MAPK-S CLL Cells

Since AKT also plays a central role in
BCR-mediated prosurvival signaling in
CLL cells (23,32,33), it was important to
compare the signaling patterns of sIgM
with those mediated by CD180 in the
major categories of CLL cells defined

above. Double positive CD180+sIgM+

CLL samples were selected for this
study.

Our data showed striking similarities
between CD180 and sIgM-mediated sig-
naling in the AKT-S category of cells.
Treatment of AKT-S CLL samples with
anti-IgM induced significant phospho-
rylation above the basal levels of AKT
(Figure 3A), BTK (Figure 3C) and PI3K
(Figures 3D, E), downregulation of the
basal levels of p-p38MAPK (Figure 3B)
accompanied by an increase in Mcl-1
and Bcl-xL (Figures 3D, E) and protec-
tion from apoptosis (Figure 3F). Whilst
anti-CD180 induced activation of the

Figure 3. Anti-IgM mediated phosphorylation of AKT, p38MAPK, BTK and PI3K, expression of Mcl-1, Bcl-xL and apoptosis in AKT-S and
p38MAPK-S CLL cells. (A, B, C) Control B cells or AKT-S and p38MAPK-S CLL samples were incubated with anti-IgM F(ab)2 for 10 min (anti-
IgM) or left unstimulated in medium (Medium), washed, stained with anti-CD19 mAb, fixed, permeabilized and stained with anti-p-AKT,
anti-p-p38MAPK and anti-p-BTK mAbs as described in the Materials and Methods. The results were analyzed by flow cytometry and ex-
pressed as percentages of positive cells. P values were calculated using the paired t test. (D) Representative immunoblots show the lev-
els of total PI3K, p-PI3K, Mcl-1 and Bcl-xL in AKT-S and p38MAPK-S CLL samples in unstimulated cultures (Medium) and following stimulation
with anti-IgM F(ab)2 as described in the Materials and Methods. Bcl-2 was used as a loading control. (E) Relative optical density, normal-
ized to Bcl-2, for p-PI3K, Mcl-1 and Bcl-xL immunoblots, n = 5. (F) The percentages of DiOC6

dim (apoptotic) cells in control B cells, AKT-S,
p38MAPK-S and DS CLL samples measured following stimulation with anti-IgM F(ab)2 for 24 h, compared with unstimulated cultures (Me-
dium), as described in the Materials and Methods. The values are mean ± SD, p values were calculated using a nonparametrical U test.
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circuit BTK/PI3K/AKT in all AKT-S
CLL samples studied (Figures 1, 2), the
effect of anti-IgM was more heteroge-
neous: 4/20 AKT-S samples responded
instead by downregulation of p-AKT
(see Figure 3A) and 2/15 AKT-S sam-
ples by phosphorylation of p38MAPK
(see Figure 3B). However, overall, we
can conclude that responses of 70% of
AKT-S CLL samples to anti-CD180 and
anti-IgM were similar and led to the re-
cruitment of BTK/PI3K/AKT, downreg-
ulation of p-p38MAPK and protection
from apoptosis.

By contrast, in only 3/13 cases (23%)
did p38MAPK-S samples respond to
anti-IgM by increasing phosphorylation of
p38MAPK (see Figure 3B), while expres-
sion of p-BTK and Mcl-1 were decreased
and no changes were detected in the lev-

els of p-PI3K and Bcl-xL (Figures 3C–E).
Our data indicate that (a) phosphoryla-
tion of p38MAPK following ligation of
sIgM is a less frequent event, as com-
pared with the stimulation with anti-
CD180, (b) phosphorylation of
p38MAPK is crucial for the induction of
apoptosis that has not been observed in
p38MAPK signalers in response to anti-
IgM (Figure 3F) in contrast to anti-CD180
(see Figure 2D).

Thus, our data suggest that both
CD180 or sIgM ligation on CLL cells re-
sults in activation of a prosurvival sig-
naling pathway operating via
BTK/PI3K/AKT. However, whereas
anti-CD180 mAb can activate an alterna-
tive proapoptotic pathway mediated via
p38MAPK, anti-sIgM alone rarely leads
to the activation of p38MAPK.

Pretreatment of CLL Cells with Anti-
CD180 mAb Rewires sIgM-Mediated
Intracellular Signaling from Prosurvival
BTK/PI3K/AKT to a Proapoptotic
p38MAPK Pathway

Since Yamashita et al. (34) showed that
pretreatment of murine B cells with anti-
CD180/RP105 led to apoptosis following
ligation of the BCR, we next tested
whether preengagement of CD180 on
CLL cells would affect signaling of CLL
cells through the BCR. In all 15 AKT-S
CLL samples, pretreatment with anti-
CD180 mAb, followed by anti-IgM F(ab)2,
led to a significant decrease in cells ex-
pressing p-AKT (Figures 4A, D, E), albeit
not to baseline level, and a decrease in 
p-PI3K (Figures 4D, E) compared with
anti-IgM alone. Simultaneously, we ob-
served a decrease in percentages of cells

Figure 4. Modulation of sIgM-mediated signaling by sensitization with anti-CD180 mAb. (A–C) Control B cells or CD180+sIgM+CLL samples
were treated with anti-IgM F(ab)2 alone or pretreated with anti-CD180 followed with anti-IgM F(ab)2 as described in the Materials and
Methods. Unstimulated cultures (Medium) were used as controls. The cells were stained with anti-CD19, fixed, permeabilized and stained
with antibodies to p-AKT and p-p38MAPK. P values were calculated using the paired t test. (D) Representative immunoblots of p-AKT, p-
PI3K, p-p38MAPK, Mcl-1 and Bc-xL following sequential ligation of CD180 followed by sIgM. Bcl-2 was used as a loading control. The bands
were assessed and visualized as described in the Materials and Methods. (E) Relative optical density, normalized to Bcl-2, for p-AKT, p-
PI3K, p-p38MAPK, Mcl-1 and Bcl-xL immunoblots, n = 5. (F) The percentages of DiOC6

dim (apoptotic) cells in unstimulated CLL cells (Me-
dium) or stimulated with anti-IgM F(ab)2 alone or first with anti-CD180 followed by anti-IgM F(ab)2 for 24 h, stained with anti-CD19 mAb,
loaded with DiOC6 and analyzed by flow cytometry. The values represent mean ± SD, p value calculated using the nonparametrical U test.
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expressing p-BTK from 44.3 ± 11.4%
(anti-IgM alone) to 32.6 ± 13.5% (anti-
CD180 + anti-IgM, n = 11, p = 0.02) with
baseline levels of 38.3 ± 6.5%. Expression
of Bcl-xL also was decreased appreciably
(Figures 4D, E).

Perhaps most relevant is that the re-
duction in BTK/PI3K/AKT signaling 
in 14 out of 15 of these samples was ac-
companied by a significant increase in
the percentages of cells expressing 
p-p38MAPK following sequential liga-
tion of CD180 and IgM (Figure 4A), as
well as by a significant increase in apo-
ptotic cells compared with the engage-
ment of IgM alone (p = 0.025) and above
baseline apoptosis (p = 0.026, Figure 4F).
Therefore sensitization of AKT-S CLL
cells with anti-CD180 leads to rewiring
of anti-IgM-mediated signaling from the
prosurvival BTK/PI3K/AKT to the
proapoptotic p38MAPK pathway. Inter-
estingly, the modulation appears to be a
feature of CLL cells since no similar
changes were observed in normal B cells
(Figure 4B).

Differences in the optimal stimulation
time for anti-CD180 and anti-IgM anti-
bodies did not affect the redirection
phenomenon described in this study.
The percentages of cells expressing p-
AKT following stimulation with anti-
IgM for 30 min were somewhat lower
than those after 10 min (49.3 ± 8.9% ver-
sus 59.4 ± 11.0%, p = 0.09). However,
this did not affect an outcome of pres-
timulation with anti-CD180 where the
numbers of p-AKT cells further
dropped down to 26.4 ± 13.5%, p =
0.028. The percentages of p-p38MAPK
expressing cells did not differ in the
range of 10 to 30 min stimulation with
anti-IgM (data not shown).

The results in Figure 5 demonstrate
that sensitization with anti-IgM antibod-
ies leads to a downregulation of CD180-
mediated expression of p-AKT to basal
levels in all 12 AKT-S CLL samples, ac-
companied by a significant increase in the
expression of p-p38MAPK, compared
with anti-CD180 alone (Figure 5A). In ad-
dition, pretreatment with anti-IgM led to
downregulation of CD180-mediated lev-

Figure 5. Modulation of CD180-mediated signaling by sensitization with anti-IgM F(ab)2.
(A–C) Control B cells or CD180+sIgM+CLL samples were treated with anti-CD180 mAb or
first with anti-IgM F(ab)2 followed by anti-CD180 as described in the Materials and Meth-
ods. Unstimulated cultures (Medium) were used as controls. The cells were stained with
anti-CD19, fixed, permeabilized and stained with antibodies to p-AKT-P and p-p38MAPK. 
P values were calculated using the paired t test. (D) Representative immunoblots of 
p-AKT, p-PI3K, p-p38MAPK, Mcl-1 and Bcl-xL following sequential ligation of sIgM followed
by CD180. Bcl-2 was used as a loading control. The bands were assessed and visualized
as described in the Materials and Methods. (E) Relative optical density, normalized to 
Bcl-2, for p-AKT, p-PI3K, p-p38MAPK, Mcl-1 and Bcl-xL immunoblots, n = 5.
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els of p-PI3K and Bcl-xL (Figures 5D, E)
and percentages of cells expressing
p-BTK from 45.0 ± 15.8% (anti-CD180)
down to 35.8.4 ± 11.3% (anti-IgM + anti-
CD180, n = 11, p = 0.019) with the base-
line levels of 38.6 ± 7.1%. By contrast,
pretreatment of control B cells with anti-
IgM had an additive effect with anti-
CD180 mAb on p-AKT, while no changes
in the levels of p-p38MAPK were ob-
served (Figure 5B). We conclude that
there is cross-talk between the BCR and
CD180 in the AKT-S CLL samples, lead-
ing to substantial rewiring of intracellular
signaling from BTK/PI3K/AKT to
p38MAPK.

Interestingly, pretreatment of all eleven
p38MAPK-S samples with anti-CD180 en-
hanced anti-IgM mediated levels of p-AKT
(Figure 4C), as well as p-PI3K and Bcl-xL
(Figures 4D, E), and increased their sur-
vival (see Figure 4F). Likewise, pretreat-
ment of p38MAPK-S CLL cells with anti-
IgM augmented the CD180-mediated
percentages of p-AKT expressing cells in
8/10 samples (Figure 5C), as well as 
Bcl-xL, but not p-PI3K (Figures 5D, E).
Thus, in contrast to AKT-S cells, sensitiza-
tion of p38MAPK-S cells with either anti-
CD180 or anti-IgM often leads to additive
phosphorylation of AKT by both antibod-
ies. We therefore conclude that in AKT-S
CLL samples where ligation of either
sIgM or CD180 leads to a substantial acti-
vation of the prosurvival BTK/PI3K/AKT
pathway, preengagement of the other re-
ceptor redirected intracellular signaling
toward the proapoptotic p38MAPK path-
way, whereas in p38MAPK-S CLL sam-
ples similar presensitization favors the
BTK/PI3K/AKT pathway.

DISCUSSION

CD180 Ligation on B-CLL Cells Leads
to Alternative Phosphorylation of
Either AKT or p38MAPK

We have identified four patterns of
CD180-mediated signaling in CLL cells:
AKT-signalers (AKT-S); p38MAPK-
 signalers (p38MAPK-S); nonsignalers
(NS); and a minor subset of double
AKT/p38MAPK signalers (DS). Of the 60

CD180+CLL samples, 24 responded to
CD180 ligation by a significant upregula-
tion of p-AKT (AKT-S) (Figures 1A, C, D)
which is essential for the BCR-mediated
growth and survival of B lymphocytes
(35) and survival of CLL cells (23,36,37).
Of the remaining 36 samples 16 re-
sponded by increased phosphorylation
of p38MAPK (p38MAPK-S) (Figures 1B,
C, E) and only in a small cohort of 6 CLL
samples did CD180 ligation result in acti-
vation of both p-AKT and p-p38MAPK
(DS) (Figure 1). Application of specific
inhibitors of AKT and p38MAPK signal-
ing pathways (see Figure 2E) confirmed
that, in many of the CLL samples, activa-
tion of AKT and p38MAPK pathways 
is exclusive. This appears to be a feature
of CLL cells, and not of normal B cells
that responded to CD180 ligation as dou-
ble AKT/p38MAPK signalers (5) (Fig-
ures 1A, B).

There was a significant drop in 
p-p38MAPK basal levels in the AKT-S
cells following CD180 ligation (Figures 1B,
C, E) and in the basal levels of p-AKT in
p38MAPK-S cells (Figures 1A, C, D). De-
crease in the BCR-stimulated signal in-
tensity of p38MAPK has been reported
previously (24), but not linked with AKT
activation. Our data suggest a regulatory
influence of one pathway on another.

The fact that 14 CD180+CLL samples
failed to activate either of the two path-
ways (NS, Figure 1) suggests that an al-
ternative pathway could be being used,
or that they are totally refractive to liga-
tion of CD180. Of note, CD180
nonsignaler CLL samples remained unre-
sponsive to the ligation of sIgM that
could indicate their anergic status (38).

The distribution of CD180-mediated sig-
naling categories of CLL cells that we have
identified is shown in Figure 6A. In addi-
tion, more U-CLL samples (71%) were
CD180+sIgM+ than CD180+sIgMneg/low

as demonstrated by us previously (4) 
attributing U-CLL samples mostly to the
AKT-S and NS signaling categories. How-
ever, in our hands, M-CLL samples were
evenly distributed between AKT-S,
p38MAPK-S and NS categories. Interest-
ingly, all six DS CLL samples belonged to

M-CLL group, which is associated with in-
creased anergy (38).

There were no phenotypic differences
between the four signaling groups, apart
from sIgD, that was highly expressed by
p38MAPK-S compared with AKT-S cells:
83.5% ± 15.1% versus 48.5% ± 33.0%, p =
0.0055, n = 10. The relevance of this is
currently unclear, but suggests that sIgD
could be involved in the p38MAPK-
 pathway mediated through CD180,
which we are currently investigating.

CD180-Mediated AKT-Signaling
Pathway in CLL Involves Activation of
BTK and PI3K and is Prosurvival, While
p38MAPK Activation Favors Apoptosis

BTK, a signaling element of the BCR
pathway (39), has been shown to be im-
portant for the survival of CLL cells (40)
as is PI3K (19,28–31,33,36,37,41–48). In
murine B cells, engagement of CD180/
RP105 leads to the activation of PI3K
(49,50) followed by the recruitment of
AKT (51). Our data indicate that CD180
engagement of AKT-S CLL samples in-
volves the recruitment of the prosurvival
kinases BTK and PI3K, while suppress-
ing the p38MAPK pathway and leading
to the reduction in apoptosis.

However, BTK and PI3K are not re-
cruited in the p38MAPK-S CLL samples,
resulting in the increased apoptosis (Fig-
ure 2).The role of p38MAPK-mediated
signaling in CLL is so far unclear. Activa-
tion of p38MAPK has been associated
with proliferation of various cells in re-
sponse to CpG-ODN (52–56). In CLL,
p38MAPK-signaling is involved in the
regulation of cell survival (57–59), estab-
lishment of the tolerant status (60) and
apoptosis (61). Our data strongly sug-
gests that CD180-mediated activation of
p38MAPK is associated with apoptosis
of CLL cells. Thus, stimulation of intra-
cellular signaling via CD180 in the
p38MAPK-S category of CLL cells could
potentially serve as a new profiling tool,
particularly of those patients who do not
respond effectively to BTK inhibitors
(39,40).

CD180 ligation appears to have a
pleiotropic effect on the regulation of
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apoptosis in CLL cells. In our hands,
CD180 ligation enhanced the activation
of the BTK/PI3K/AKT signaling circuit
in AKT-S, but not in p38MAPK-S or
NR-CLL samples (Figure 2). Hypothe-
sizing that CLL cells would have re-
ceived various microenvironmental
stimuli, in vivo, including those through
CD180, our findings suggest that thera-
peutic application of the BTK inhibitors
might be limited to the AKT-S CLL
cells.

sIgM Ligation Favors Prosurvival
BTK/PI3K/AKT Signaling Pathways in
AKT-S CLL Cells

Since our working hypothesis is that,
like the BCR, CD180 is an important re-
ceptor that interacts with microenviron-
mental ligands, we assessed sIgM-
 mediated signaling in the categories of
CLL cells defined through their responses
to CD180. Our data strongly suggest that
the prosurvival BTK/PI3K/AKT pathway
in AKT-S CLL cells is activated following
the ligation of either receptor, CD180 (Fig-
ure 2) or sIgM (Figure 3), leading to the
upregulation of antiapoptotic molecules
(see Figures 3D, E) and significant survival
of CLL cells (Figure 3F). However, unlike
in CD180, we failed to detect appreciable
activation of p38MAPK through the en-
gagement of BCR in the p38MAPK-S or
DS CLL samples. This might suggest that
the lack of BTK phosphorylation abro-
gates both arms of BCR signaling (via
AKT and via p38MAPK, [62–65]), while
leaving CD180-mediated p38MAPK acti-
vation intact.

Our data indicate, that, differently
from BCR, CD180 can signal down-
stream to p38MAPK, bypassing BTK,
and this pathway favors apoptosis over
survival. Although there is a substantial
overlap by CD180 and sIgM in activation
of a prosurvival signaling circuit
BTK/PI3K/AKT, ligation of CD180 can
activate an alternative proapoptotic path-
way mediated via p38MAPK. This
prompted us to study how sequential
ligation of CD180 and BCR would im-
pact signal transduction through the
AKT and p38MAPK pathways.

Figure 6. Proportion of CLL samples exhibiting four different patterns of signaling and hy-
pothetical scheme of a cross-talk between CD180 and BCR signaling pathways. (A) treat-
ment with anti-CD180 mAb of CD180+CLL samples or treatment with anti-IgM F(ab)2 of
CD180+sIgM+ CLL samples. AKT-S, AKT-signalers; p38MAPK-S, p38MAPK signalers; DS, double
AKT/p38MAPK signalers; NS, nonsignalers; (B) CD180-mediated pathway can operate via
both prosurvival BTK/PI3K/AKT or proapoptotic p38MAPK pathway, while sIgM-mediated
signaling mostly operates through BTK/PI3K/AKT. Cross-talk between the two receptors
redirects signaling pathway from BTK/PI3K/AKT to p38MAPK. Hypothetical precursors of
p38MAPK activation are suggested.
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Pretreatment of CLL Cells with 
Anti-CD180 Antibodies Rewires the
sIgM Signaling Pathway from
Prosurvival to Proapoptotic

Treatment with anti-CD180 mAb of
murine B cells sensitized them toward
anti-IgM-induced apoptosis (34), while
combining CD180 and BCR signaling, in
vivo, induced rapid proliferation and
antigen-specific antibody responses in
mice (66). Our data indicate that pre-
treatment of AKT-S CLL cells with anti-
CD180 mAb substantially diminished
the prosurvival BTK/PI3K/AKT signal-
ing pathway induced through subse-
quent ligation of sIgM and redirected it
toward the p38MAPK pathway (Figures
4A, D, E) and, most importantly, apo-
ptosis (see Figure 4F). Similar results
were obtained when the sequence of the
ligation of the two receptors was re-
versed (Figure 5). Since CLL cells are be-
lieved to express BCR in proliferation
centers (67) and we have shown in pilot
experiments that CD180 is expressed in
bone marrow and lymph nodes of CLL
patients (data not shown), it seems plau-
sible that CD180+sIgM+ CLL cells could
receive simultaneous signals through
both receptors in vivo. We hypothesize
that CD180-mediated activation of CLL
cells through a putative endogenous lig-
and might mimic continuous BCR-medi-
ated signaling postulated recently (68).
The resulting cross-talk between CD180
and BCR in AKT-S CLL samples, could
rewire intracellular signaling in favor of
the proapoptotic p38MAPK pathway.
Such modulation of signaling could in-
fluence blood cell counts, long-term dis-
ease progression and could provide a
basis for therapy. Future experiments
will address the significance of these
pathways in relation to prognosis and
clinical criteria. A hypothetical scheme
for cross-talk between CD180 and the
BCR is shown in Figure 6B. Why there
appears to be no cross-talk of this kind
between BCR and CD180 in control B
cells (Figures 4B, 5B), is unclear at pres-
ent, but indicates that this modulation is
unique to CLL, facilitating possible ther-
apeutic interventions.

That a universal approach to CD180
treatment of CLL patients might be in-
appropriate is clear from the data on
p38MAPK-S CLL samples. Where sIgM
ligation alone (Figures 4C, D) or CD180
alone (Figures 5C, D) resulted in poor
activation of PI3K/AKT pathway,
preengagement of CD180 or sIgM re-
spectively led to the opposite effect, 
that is, potentiation of the prosurvival
signal.

By using stimulatory antibodies we at-
tempted to mimic, in vivo, interactions of
CD180+sIgM+ CLL cells with the putative
microenvironmental ligand CD180 and
sIgM (auto)antigen(s) that would define
their cellular fate. We have shown previ-
ously that CD180neg CLL cells were poor
responders to anti-CD40 and IL-4 (5) and
failed to upregulate p-AKT orp-
p38MAPK in response to anti-IgM (data
not shown). Thus, it appears that CD180
represents an essential component of the
CLL signaling machinery through its in-
teraction with and modulation of sIgM-
 mediated responses.

CONCLUSION
In conclusion, we hypothesize that in-

teraction between CD180 and sIgM leads
to convergence of certain key signaling
pathways. Whereas the prosurvival path-
way appears to be operating through the
BTK/PI3K/AKT circuit, the proapoptotic
pathway is activated via p38MAPK, 
perhaps leading to inhibition of
BTK/PI3K/AKT. The elements of the
proapoptotic pathway upstream to
p38MAPK have yet to be identified.

Our data suggest that, in a substantial
number of CLL samples, by preengaging
CD180, we could prevent further prosur-
vival signaling mediated via sIgM and,
instead, induce CLL cell apoptosis,
which opens the door to new strategies
for the treatment of a large cohort of CLL
patients.
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