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A Genotypic-Oriented View of CFTR Genetics Highlights
Specific Mutational Patterns Underlying Clinical
Macrocategories of Cystic Fibrosis
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Cystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis franssnembrane conductance regulator
(CFTR) gene.The genotype-phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic chal-
lenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological
and genetic point of view. Overall, there were 125 different mutated alleles (11 with novel mutations and 10 with complex muto-
fions) and 225 genotypes. A strong correlation between mutational patterns at the genotypic level and phenotypic macrocate-
gories emerged. This specificity appears to largely depend on rare and individual mutations, as well as on the varying prevalence
of common alleles in different clinical macrocategories. However, 19 genotypes appeared to underlie different clinical forms of
the disease. The dissection of the pathway from the CFTR mutated genotype to the clinical phenotype allowed to identify at least
two components of the variability usually found in the genotype-phenotype relationship. One component seems to depend on
the genetic variation of CFIR, the other component on the cumulative effect of variations in other genes and cellular pathways
independent from CFTR. The experimental dissection of the overall biological CFTR pathway appears to be a powerful approach
for a better comprehension of the genotype-phenotype relationship. However, a change from an allele-oriented to a genotypic-
oriented view of CFTR genetics is mandatory, as well as a better assessment of sources of variability within the CFTR pathway.
Online address: hitp://www.molmed.org
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INTRODUCTION The airway of CF patients with poly-

symptomatic forms is affected by a CFTR

genetic analysis, biochemical assessment

Cystic fibrosis (CF) (MIM 219700) is the
most common lethal genetic disease
among Caucasians. It is caused by muta-
tions in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene (1-3).
The CFTR is a transmembrane multifunc-
tional protein expressed mainly at the
apical membrane of epithelial cells (4).

deficiency that causes anomalous ion
transport, altered water absorption, sticky
mucus, multiresistant bacterial infections
and respiratory impairment (1-4). CF is a
multiorgan disease with poly-, oligo- and
mono-symptomatic forms (5,6) that are
diagnosed by means of a combination of
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and clinical presentation (7). The different
forms of the disease can be grouped, ac-
cording to recent guidelines and recom-
mendations (7,8), as classic CF with or
without pancreas sufficiency, CFTR-
related disorders (CFTR-RD) and congen-
ital bilateral absence of vas deferens
(CBAVD). The most severe clinical find-
ings are pulmonary symptoms. An as yet
unclear relationship between the geno-
type and phenotype has been highlighted
(1,5,9). Although almost 2,000 sequence
variations of the CFTR gene are known
(10), few of them have actually been
functionally characterized. A considerable
effort is currently being made to identify
the disease-causing mutations (11) (Clini-
cal and Functional Translation of CFTR
[CFTR2] database) and to group them
into mutational classes (12-14).
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A GENOTYPIC-ORIENTED VIEW OF CFTR GENETICS

Although the model of an inverse cor-
relation between protein residual func-
tion and phenotype severity is generally
accepted, the poor functional characteri-
zation of most of the CFTR sequence var-
iations that have been identified, espe-
cially with regard to their quantitative
effect, hampers the practical application
of this concept. In addition to these criti-
cal issues, the problems encountered in
recognizing the different clinical forms of
CF, as well as the influence of modifier
genes, further complicate the framework.

The aim of the present work is to
improve our understanding of the
genotype-phenotype relationship in CF
by means of a genotypic-oriented ap-
proach based on the selection of specific
mutational patterns underlying different
clinical forms of the disease. A general
approach in which a specific pathogenic
role is assigned to each CFTR sequence
variation, also taking into account dis-
ease severity, is proposed. The results of
this study also shed light on the sources
of variability, acting at different levels,
involved in the path from genotype to
protein residual function and, eventually,
to clinical phenotype.

MATERIALS AND METHODS

Case Series: Characterization and
Diagnostic Criteria

We evaluated all patients already diag-
nosed and enrolled at the CF Reference
Center of the Lazio Region up to 1996 and
all subsequent new diagnoses from 1996
to 2012. This step yielded a consecutive
case series comprising 692 patients. A
total of 82 patients were excluded from
this study because of incomplete genetic,
biochemical, microbiological, clinical
and/or family data. The remaining 610
patients (1,220 alleles) with complete data,
mainly from central Italy, were enrolled in
the study. According to generally ac-
cepted procedures, clinical (15,16), instru-
mental, laboratory (17) (Supplementary
Table S1), microbiological (18,19) and bio-
chemical and genetic (see below) evalua-
tions were performed. Depending on
these characterizations, the patients were

classified according to recent CF guide-
lines and recommendations (7,8,17,20) in
the following four clinical macrocate-
gories (also called “populations” in the
text): (a) CF with pancreatic insufficiency
(CF-PI) (354 patients, 708 alleles); (b) CF
with pancreatic sufficiency (CE-PS) (138
patients, 276 alleles); (c) mono- or oligo-
symptomatic forms of CF, which for the
purposes of this work included both
CFTR-related disorders and atypical CF
forms (here called CFTR-RD, 71 patients,
142 alleles); and (d) congenital bilateral
absence of vas deferens (CBAVD), which
for the purposes of this work was selected
as the only clinical manifestation (with no
other CF symptoms) (CBAVD, 47 patients,
94 alleles). When the diagnosis according
to CF guidelines and recommendations
was in contrast to clinical evidence, the
latter prevailed.

Ethics Statement

Informed consent was obtained from
every patient (or parents) before enroll-
ment. The study was approved by the
institutional ethics committee and car-
ried out according to the Helsinki
Declaration.

Biochemical Characterization

All patients underwent a sweat test, at
least twice, performed by means of a
quantitative pilocarpine iontophoresis
method (21) by using the Macroduct de-
vice (Delcon, Milan, Italy) for sweat collec-
tion and the PCL M3 chloride analyzer
Jenway (VWR International, Milan, Italy)
for measurement. In accordance with re-
cent guidelines (17), the sweat test in sub-
jects up to 6 months of age was considered
negative if [CI'] was <30 mEq/L, patho-
logic if 260 mEq/L and borderline if in the
30-59 mEq/L range; for all other subjects,
the sweat test was considered negative if
<40 mEq/L, pathologic if =260 mEq/L and
borderline if in the 40-59 mEq/L range.

Exocrine pancreatic function was eval-
uated by the dosage of fecal elastase 1
(22) by using the immunometric pancre-
atic fecal elastase test (Meridian Bio-
science, Milan, Italy). The status of
pancreatic sufficiency for all CF-PS,
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CFTR-RD and CBAVD patients was as-
certained from the nonpathological levels
of fecal elastase 1 (>200 ug/g) in at least
two independent dosages as well as from
the absence of steatorrhea. All the pa-
tients with elastase 1 level well below this
threshold were characterized by reduced
growth and were classified as CF-PL

Mutational Search Strategy

DNA was extracted from peripheral
blood by using the QIAamp DNA blood
midi kit (Qiagen, Hilden, Germany). The
mutational search on the CFTR gene
(RefSeq NM_000492.3, NG_016465.3) was
initially conducted by using a multistep
approach, with the progressive applica-
tion of five sequential steps for the analy-
sis of the following;:

(a) the 32 most common mutations
worldwide, by means of the CF-OLA
assay (Abbott, Wiesbaden, Germany);

(b) the 14 most frequent mutations in
our geographical area, by means of
our assay based on primer extension
(CF-SNAP+20);

(c) the (TG)mTn variant tracts, specifi-
cally the (TG)13T5 (c.[1210-14TGJ[13];
1210-12T[5]]), the (TG)12T5 (c.[1210-
14TG[12];1210-12T[5]]) and the
(TG)11T5 (c.[1210-14TGJ[11];1210-
12T[5]]), by means of our assay (23)
based on DNA sequencing;

(d) the proximal 5'-flanking, all exons and
adjacent intronic zones, by means of
our assay based on DNA sequencing
(24), always applied to completion
when included (this step is referred to
as “SEQ” in this article); and

(e) the seven most frequent macrodele-
tions worldwide, by means of the FC
del assay (Nuclear Laser Medicine,
Milan, Italy) (this step is referred to
as “DEL” in this article).

The mutational search was usually in-
terrupted when the first two CFTR muta-
tions already characterized as disease-
causing were found on different alleles.
Those genotypes reported to have at least
one unknown allele (see Results) under-
went all the steps, including DEL step.

To shed further light on the relationship
between genotype and phenotype, for



specific genotypes, the mutational search
was extended up to the SEQ step, even if
two mutations on different alleles had al-
ready been found. These specific geno-
types were the following (see Results):
the 19 genotypes found in different clini-
cal macrocategories, the 19 genotypes in-
volving the (TG)13T5 (c.[1210-14TGJ[13];
1210-12T[5]]) , (TG)12T5 (c.[1210-14TG[12];
1210-12T[5]]) or (TG)11T5 (c.[1210-14TG[11];
1210-12T[5]]) variant tracts and all geno-
types involving mutations with a contro-
versial functional effect, as listed in Sup-
plementary Table S2. Furthermore, among
these specific genotypes, those found in
CF-PI also underwent the DEL step. The
controversial complex allele [1249-8A>G;
G576A;R668C] (c.[1117-8A>G;1727G>C;
2002C>T]) and mutations G1069R
(p.Gly1069Arg), D614G (p.Asp614Gly),
S42F (p.Ser42Phe) and S912L (p.Ser912Leu)
should also be considered as part of this
extension, even if not found in CF-PI but
studied up to the DEL step because they
are found in genotypes with an unknown
allele. For the specific protocol of muta-
tional search applied to each genotype,
see Supplementary Table S4.

The mutational search from step (a)
to step (d) [CF-OLA, CF-SNAP+20,
(TG)mTn and SEQ] was performed in a
96-well format, using a semi-automated
platform made up of a robotic system
(Microlab Starlet; Hamilton) for the reac-
tion setup and two genetic analyzers
(ABI PRISM 3100 Avant and ABI PRISM
3130 xI; Applied Biosystems [Thermo
Fisher Scientific Inc., Waltham, MA,
USA]) for the development of the electro-
pherograms. For data analysis, the spe-
cific CF-OLA template (Abbott) and our
specific CF-SNAP+20 template, based,
respectively, on the Genotyper and
GeneMapper software (Applied Biosys-
tems [Thermo Fisher Scientific]) were
used for the CF-OLA and CF-SNAP+20
steps, respectively. The results of the
(TG)mTn tracts were analyzed as previ-
ously described (23). Sequences obtained
in the SEQ step were analyzed by using
our specific template based on Segscape
software (Applied Biosystems [Thermo
Fisher Scientific]) (25). The segregation of

all mutated alleles was ascertained by
analysis of parents.

Mutations are reported with both the
old (legacy name) and the new nomen-
clature (HGVS name) in all of the tables
and in the text; for practical purposes, the
legacy name alone is used in the figures.

Pathogenic Classification of Mutated
Alleles

The general principle applied for the
clinical classification of alleles was that
the clinical effect is determined by the
overall residual functionality of the
CFIR protein and thus, ultimately, by
the allele with the highest functionality.
A set of three rules was established to
assign a phenotypic effect to each mu-
tated allele found in patients and to de-
termine its ability to induce clinical
manifestations belonging to one (or
more) of the four clinical macrocate-
gories identified. It was possible to
apply this procedure because the diag-
nosis in patients had previously been
made on the basis not only of guidelines
and recommendations, but also of a con-
clusive clinical assessment. The rules
were subsequently applied and their
performance was experimentally vali-
dated according to the clinical classifica-
tion of patients. Upon the application of
each rule, a suitability control was ap-
plied to the previously classified alleles,
which in some cases led to alleles being
reclassified. The first rule consisted in
the assignment of all alleles found in ho-
mozygosis to the specific macrocategory
in which they had been identified. The
second rule consisted in the classifica-
tion, as CF-Pl-causing alleles, of all alle-
les found in compound heterozygosis in
the CF-PI macrocategory. The third rule
consisted in the classification of all alle-
les found in CF-PS, CFTR-RD and/or
CBAVD in compound heterozygosis
with a previously classified allele (see
the Supplementary Materials for the al-
gorithm, Supplementary Figure S1 and
examples). By applying these rules, it
proved possible to assign each allele to
(a) a single macrocategory and label it as
an allele with a unique phenotypic ef-
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fect; (b) more than one macrocategory
and label it as an allele with a variable
effect; and (c) no category and label it

with an uncertain classification.

Statistical Analysis

Contingency tables, analysis of vari-
ance (ANOVA), Student ¢ test and Bon-
ferroni multiple comparison test were
used for the statistical analysis of experi-
mental data, by using the SPSS software
(SPSS [IBM, Armonk, NY, USA]).

All supplementary materials are available
online at www.molmed.org.

RESULTS

Allele Frequencies Reveal Genetic
Heterogeneity between Clinical
Macrocategories

The results on allele frequencies are re-
ported in Figure 1A and Supplementary
Table S3. We identified 125 different CFTR
mutated alleles. Eleven mutations were
novel (described below). We also identified
10 complex alleles (with two or more mu-
tations in cis on the same allele, described
below), two of which included two of the
novel mutations. The different mutated al-
leles found were 69 in CE-PI, 60 in CE-PS,
37 in CFTR-RD and 24 in CBAVD. Forty-
three (34.4%) of the 125 mutated alleles
were found in at least two different macro-
categories (4 alleles in all 4 populations, 14
alleles in 3 different populations, 25 alleles
in 2 different populations) (Figure 1B),
whereas 82 alleles (65.6%) were exclusive
to a single population (Supplementary
Table S3). Among the latter, 39 were found
exclusively in CF-PI (56.5% of CF-PI alle-
les), 21 exclusively in CE-PS (35.0% of CF-
PS alleles), 16 exclusively in CFTR-RD
(43.2% of CFTR-RD alleles) and 6 exclu-
sively in CBAVD (25.0% of CBAVD alleles).
By summing all the populations (Supple-
mentary Table S3), the frequency of the
F508del (p.Phe508del) mutation was 0.400;
the number of additional moderately fre-
quent mutated alleles, with a prevalence
=0.008 in CF (PI + PS), was 16 of 125
(12.8%), with an overall prevalence of
0.343; the number of rare nonindividual
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A BCF (PI+PS) Frequency B
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Figure 1. Allele frequencies and probabilities. (A) Frequencies of mutated alleles, with a prevalence =0.006 in the CF (Pl + PS) population,
are reported in frequency decreasing order according to CF (Pl + PS); the last mutation with a prevalence = 0.008 in the CF (Pl + PS)
population is the R334W (p.Arg334Trp). (B) Allele distribution between populations. Only alleles found in at least two different populations
are shown. The length of the bars is proportional to the frequency of each allele in the specific population; it represents the probability
that the specific allele is found in each clinical form. See Supplementary Table S3 for allele HGVS name.

(found in at least two unrelated patients) one patient or in siblings from one family) all o p < 0.0001; for each population pair
mutations was 48 of 125 (38.4%), with an was 60 of 125 (48.0%), with an overall p < 0.0001, with the exception of the CFTR-
overall prevalence of 0.152; lastly, the num-  prevalence of 0.056. Each population dis- RD versus CBAVD comparison, which was
ber of individual mutations (found in only played a peculiar mutational pattern (over-  » p < 0.05).
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When the CF (PI + PS) population alone
was considered (Figure 1A, Supplemen-
tary Table S3), 101 mutations were found.
The most frequent mutation was F508del
(p.Phe508del), with an overall frequency of
0.447, and a well-differentiated frequency
of 0.534 in CF-PI and 0.225 in CF-PS. Only
28 of the 101 mutations were found in
both CF-PI and CF-PS, including 14 muta-
tions also found in other populations (Fig-
ure 1B). Another 41 mutations were found
in CF-PI but not in CF-PS, including 39
that were found exclusively in CF-PL the
other two were found also in other popu-
lations. Another 32 mutations were found
in CF-PS, although not in CF-PL, including
21 that were found exclusively in CF-PS
and 11 found also in other populations.

A total of 37 mutations were found in
the CFTR-RD population (Figure 1A,
Supplementary Table S3). The most fre-
quent mutation in this population was
again F508del (p.Phe508del), with a fre-
quency of 0.254, which is similar to that
of CF-PS. Sixteen of the 37 mutations
found were exclusive to CFTR-RD. By
contrast, the other 21 mutations were also
found in other populations (Figure 1B).

Only 24 mutations were identified in
the CBAVD population (Figure 1A, Sup-
plementary Table S3). The most frequent
mutation was the (TG)12T5 (c.[1210-
14TG[12];1210-12T[5]]) variant allele,
with a frequency of 0.170; F508del
(p-Phe508del) was the second most prev-
alent mutation, with a frequency of
0.128. Six of the 24 mutations found were
exclusive to the CBAVD population,
whereas the other 18 were also found in
other populations (Figure 1B).

Genetic Heterogeneity between
Populations Is Amplified at a
Genotypic Level

The results on genotype frequencies are
reported in Figure 2A and Supplementary
Table S4. A total of 225 different CFTR mu-
tated genotypes were identified, 11 and 20
of which include, respectively, the novel
mutations and the complex alleles found.
The different mutated genotypes found
were 115 in CF-PI, 77 in CF-PS, 44 in
CFTR-RD and 12 in CBAVD. Nineteen

(8.4%) of the 225 different genotypes were
found in at least two different populations
(Figure 2B), whereas the remaining 206
(91.6%) were exclusive to a single popula-
tion (Supplementary Table S4). In particu-
lar, 105 were exclusively found in CF-PI
(91.3% of CF-PI genotypes), 58 exclusively
in CF-PS (75.3% of CF-PS genotypes), 35
exclusively in CFTR-RD (79.5% of CFTR-
RD genotypes) and 8 exclusively in
CBAVD (66.7% of CBAVD genotypes).
Fifty-nine (26.2%) of the 225 genotypes
were found in at least two unrelated indi-
viduals. These 59 nonindividual geno-
types included 4 and 15 (in total, account-
ing for 32.2%) that were found in three
and two different populations, respec-
tively (Figure 2B), and that consequently
underwent a specific extensive genetic
analysis (see Materials and Methods); the
other 40 genotypes (67.8%) proved to be
associated with a single population. The
remaining 166 genotypes (73.8%) were
found to be individual genotypes found
only once in single patients (146 geno-
types) or only in siblings from a single
family (20 genotypes), associated with a
single population.

Taking all the populations together
(Supplementary Table S4), the frequency
of the homozygous F508del/F508del
(p.[Phe508del];[Phe508del]) genotype was
0.180. The number of additional moder-
ately frequent genotypes, with a preva-
lence =0.008 in CF (PI + PS), was 15 out
of 225 (6.7%), with an overall prevalence
of 0.259. The number of rare nonindivid-
ual (found in at least two unrelated pa-
tients) genotypes was 43 out of 225
(19.1%), with an overall prevalence of
0.185. Lastly, the number of individual
genotypes (found in only one patient or
in siblings from one family) was 166 out
of 225 (73.8%), with an overall prevalence
of 0.305. As for mutated alleles, each pop-
ulation displayed a peculiar pattern of
genotypes (overall x* p < 0.0001; for each
population pair y p < 0.0001).

If we consider the CF (PI + PS) popula-
tion alone (Figure 2A, Supplementary Table
S4), 182 different genotypes were found
with the homozygote F508del /F508del
(p.[Phe508del];[Phe508del]), which was the
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most frequent genotype, with an overall
frequency of 0.224. However, although this
genotype was also the most frequent in the
CF-PI population, with a frequency of
0.311, it was never found in the CF-PS pop-
ulation, in which the most frequent geno-
type was the F508del /2789+5G>A
(c.[1521_1523delCTT];[2657+5G>A]), with a
frequency of 0.101. Only 10 of the 182 geno-
types found in this mixed population were
found in both CF-PI and CF-PS (Figure 2B),
but were never found in either CFTR-RD or
CBAVD. An additional 105 genotypes were
found exclusively in CF-PI but were never
found in CF-PS or the other populations.
Another 67 genotypes were found in CF-PS
but not in CF-PI, with 58 of them being
found exclusively in CF-PS and nine also
found in CFTR-RD and/or CBAVD.

A total of 44 genotypes were found in the
CFIR-RD population (Figure 2A, Supple-
mentary Table S4). The F508del /F508del
(p-[Phe508del];[Phe508del]) genotype was
not found in this population either (nor
was it found in CF-PS). The most frequent
genotype was the F508del/(TG)12T5
(c[1521_1523delCTT];[1210-14TG[12];1210-
12T[5]]) with a frequency of 0.070. The 44
genotypes found included 35 that were ex-
clusive to CFTR-RD. By contrast, nine were
also found in CF-PS and/or CBAVD (Fig-
ure 2B). No genotype of this population
was also found in CF-PL

Only 12 genotypes were identified in the
CBAVD population (Figure 2A, Supplemen-
tary Table 54). As occurred in the CF-PS and
CFIR-RD populations, the F508del/F508del
(p-[Phe508del];[Phe508del]) genotype was
not found in CBAVD either. The most fre-
quent genotype was the F508del/(TG)12T5
(c.[1521_1523delCTT];[1210-14TG[12];1210-
12T[5]]), with a frequency of 0.213. Eight of
the 12 genotypes found were exclusive to
the CBAVD population. The remaining
four were also found in both CF-PS and
CFIR-RD (Figure 2B), whereas no geno-
type of CBAVD population was also found
in CF-PL

Phenotypic Description of the
11 Novel Mutations

The characteristics of the 11 novel mu-
tations found are reported in Tables 1-3
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Figure 2. Genotype frequencies and probabilities. (A) Frequencies of mutated genotypes, with a prevalence =0.006 in the CF (Pl + PS) popu-
lation, are reported in frequency decreasing order according to CF (Pl + PS); the last genotype with a prevalence = 0.008 in the CF (Pl + PS)
population is the F508del/D110H (p.[Pheb08del];[Asp110His]). (B) Genotype distribution between populations. Only genotypes found in at
least two different populations are shown. The length of the bars is proportional to the frequency of each genotype in the specific population;
it represents the probability that the specific genotype is found in each clinical form. See Supplementary Table S4 for genotype HGVS name.

and summarized below. Their absence in
at least 100 subjects (200 alleles) from the
general population was verified.

The E479X (p.Glu479*) mutation was
found in a novel complex allele
[E479X;V754M] (p.[Glu479%;Val754Met])
in a CF-PI male patient, enrolled at 1.5
years of age on the basis of symptoms,
with a F508del/[E479X;V754M]
(p.[Phe508del];[Glud79*;Val754Met])
genotype. The average sweat test was
106 + 9 mEq/L. Respiratory manifesta-
tions were already present at diagnosis,
although with no pulmonary bacterial
isolates. The patient is now 37 years old,
with worsened respiratory symptoms
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and chronic bacterial colonization.

The K442X (p.Lys442*) mutation was
found in a CF-PI male patient with a
F508del /K442X (p.[Phe508del];[Lys442*])
genotype. The average sweat test was
82 + 8 mEq/L. The patient was enrolled
at 2 months of age on the basis of neona-
tal screening (26,27) with no symptoms
or bacterial pulmonary isolates. He is
now 5 years old and displays respiratory
manifestations, although with no bacter-
ial isolates.

The D529N (p.Asp529Asn) mutation was
found in a CF-PI female patient with a
F508del /D529N (p.[Phe508del];[Asp529Asn])
genotype. The average sweat test was 42 +
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5mEq/L. A late diagnosis was performed
at 32 years of age, when severe respiratory
manifestations as well as pulmonary bac-
terial isolates were already present. The
patient is now 39 years old and has been
displaying persistent severe pulmonary
manifestations with chronic bacterial
colonization.

The T465N (p.Thr465Asn) mutation was
found in a CF-PI male patient with a
W1282X/T465N (p.[Trp1282*];[Thr465Asn])
genotype. The average sweat test was
83 + 7 mEq/L. Meconium ileus was pres-
ent at diagnosis, which was made at 3
months of age. No other symptoms, res-
piratory manifestations or pulmonary



bacterial isolates were present. He died at
33 years of age, with severe pulmonary
manifestations, chronic bacterial coloniza-
tion, liver disease and cholelithiasis.

The W19X(TAG) (p.Trp19*) mutation
was found in a CF-PI male patient with a
G542X/W19X(TAG) (p.[Gly542*];[Trp19*])
genotype. The average sweat test was
58 + 5 mEq/L. Diagnosis was performed
at birth, when the patient exhibited
meconium ileus. No other symptoms, res-
piratory manifestations or pulmonary
bacterial isolates were present. The pa-
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Table 1. Genetic, biochemical, microbiological and clinical characterization of the
patients with the 11 novel mutations found: position and nomenclature of novel mutations

found.

Old nomenclature (legacy name)

New nomenclature (HGVS name)

tient is now 3 years old and displays
cholelithiasis and mild respiratory mani-
festations with intermittent bacterial

colonization.
The H1375P (p.His1375Pro) mutation

was found in 3 CF-PS patients (a brother
and sister and a third unrelated male pa-
tient) with the same 2789+5G>A /H1375P
(c.[2657+5G>A];[4124A>C]) genotype. The
average sweat tests ranged from 63 + 2 to

Nucleotidic ~ Aminoacidic Nucleotidic Aminoacidic
Position notation notation Position notation notation
Exon 10 1567G>T E479X exon 11 c.1435G>T p.Glu479*
Exon 9 1456A>T K442X exon 10 C.1324A>T p.Lys442*
Exon 11 1717G>A D529N exon 12 C.15685G>A P.AspP529Asn
Exon 10 1526C>A T465N exon 11 c.1394C>A p.Thrd65Asn
Exon 2 188G>A WI19X(TAG) exon 2 c.56G>A p.Trp19*(TAG)
Exon 22 4256A>C H1375P exon 25 c.4124A>C p.His1375Pro
Exon 13 2467C>T Q779X exonl4 c.2335C>T p.GIn779*
Exon 20 3871G>C G1247R(G>C)  exon 23 c.3739G>C p.Gly1247Arg
Exon 20 3862G>A G1244R exon 23 c.3730G>A p.Gly1244Arg
Intron 7 1249-8A>G — infron 8 c.1117-8A>G —
Exon 3 299A>G ES56G exon 3 c.167A>G p.Glub6Gly

91 + 8 mEq/L. The diagnosis of the male
sibling was performed at 32 years of age
on the basis of symptoms, when some pul-
monary manifestations were present, al-
though with no bacterial isolates, and de-

hydration occurred. He is now 41 years
old, no longer displays pulmonary symp-
toms but has intermittent bacterial colo-
nization. The female sibling was enrolled
at 33 years of age because of familiarity

Table 2. Genetic, biochemical, microbiological and clinical characterization of the patients with the 11 novel mutations found: CFTR
genotypes, sweat test values, seminal evaluation, cause of enroliment and final diagnosis of patients.

Average
sweat test
Genotype® value® Semen
Patient Legacy name HGVS name Gender (mEqg/L) analysis Cause of enrollment Diagnosis
1 F508dlel/[EA79X;V754M] C.[1521_1523delCTT];[1435G>T;2260G>A] M 106 +9 nd Symptoms CF-PI
p.[Phe508del];[Glud79* Val754Met]
2 F508del/K442X C.[1521_1523delCTT];[1324A>T] M 82+8 Too young Neonatal screening CF-PI
p.[Phe508del];[Lys442*]
3 F508del/D529N C.[1521_1523delCTT[;[15685G>A] F 42+5 — Symptoms CF-PI
p.[Phe508del];[Asp529Asn]
4 W1282X/T465N C.[3846G>A];[1394C>A] M 83+7 nd Symptoms CF-PI
p.[Trp1282*];[Thrd65Asn]
5 G542X/W1XTAG) C.[1624G>T];[566G>A] M 58+5 Too young Symptoms CF-PI
p.[Cly542*];[Trp19*]
6° 2789+5G>A/H1375P C.[2657+5G>Al[4124A>C] F 91+8 — Familiarity CF-PS
7° 2789+5G>A/H1375P C.[2657+5G>Al[4124A>C] M 76£9 OA Symptoms CF-PS
8 2789+5G>A/H1375P C.[2657+5G>Al[4124A>C] M 63+2 OA Symptoms CF-PS
9d [TG)11T5,VE621,A1006E]/Q779X c.[1210-14TG[11]:1210-12T[5];1684G>A;3017C>A];[2335C>T] M 70+ 15 Too young Neonatal screening CF-PS
10¢ [(TG)11T5; V5621, A1006E]/Q779X C.[1210-14TG[11]:1210-12T[5];1684G>A:3017C>A[;[2335C>T] F 6217 — Neonatal screening, familiarity ~ CF-PS
1 W1282X/G1247R(G>C) C.[3846G>A];[3739G>C] F 78 £20 — Neonatal screening CF-PS
p.[Trp1282*;[Gly1247Arg]
12° 3849+10kbC>T/G1244R C.[3717+12191C>T];[3730G>A] M 5411 Tooyoung  Symptoms CF-PS
13 Unknown/[1249-8A>G;G576A:R668C]  c.[?]:[1117-8A>G;1727G>C;2002C>T] F 72+4 — Symptoms CF-PS
14 F508del/ES6G c.[1521_1523delCTTL;[167A>G] M 48 +2 OA Symptoms CBAVD
p.[Phe508del];[Glub6Gly]
OA., Obstructive azoospermia; —, not applicable because female; nd, not determined.
In this column, the new mutations found are reported as the second allele.
PEach sweat fest value is the average of repeated sweat test measurements (from 2 to 4) upon enrolliment and during follow-up.
“Patients number 6 and 7 are siblings.
“Patients number 9 and 10 are siblings.
°This patient has already been partially described (see text for quotation) and is included here to show the follow-up to 14 years.
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Table 3. Genetic, biochemical, microbiological and clinical characterization of the patients with the 11 novel mutations found: clinical,

pulmonary and microbiological characteristics of patients, upon enrollment and at follow-up.

Upon enroliment (without therapy)

At follow-up (with therapy whenever necessary)

Respiratory Respiratory
manifestations Pulmonary manifestations Pumonary
Patient Age Clinical symptoms By FEV1 By Rx bacterial isolates  Age Clinical symptoms By FEV1 By Rx bacterial isolates
1 1.5years  Diarrhea Too young Mild Absent 37 years  Bronchopneumonias Mild Severe Paeruginosa (CC),
S.aureus (CC)
2 2months  Absent Too young Absent Absent 5years Absent Tooyoung Severe Absent
3 32 years Bronchopneumonia Severe Severe Paeruginosa, 39years  Bronchopneumonias Severe Severe Paeruginosa (CC),
atypical atypical
mycobacteria mycobacteria (CC)
3months  Meconium ileus Tooyoung Absent Absent 33years®  Liver disease, cholelithiasis Severe Severe Paeruginosa (CC)
At birth Meconium ileus Too young Absent Absent 3 years Cholelithiasis Tooyoung  Mid Paeruginosa (IC),
S.aureus (IC)
o° 33 years Bronchopneumonias, ABPA  Absent Moderate  S. aureus 48 years  Bronchopneumonias, ABPA Absent Moderate  Raeruginosa (IC),
S.aureus (CC)
7° 32 years Dehydratation, Absent Absent Absent 41 years  Absent Absent Absent Paeruginosa (IC),
bronchopneumonia, S. aureus (IC)
bronchitis, pharyngitis
8 33 years Pancreatitis, cholelithiasis Absent Mild Absent 45years  Absent (affer cholecystectomy) Absent Mild Absent
9° 2months  Absent tooyoung Absent Absent 11years  Absent Absent Mild S. aureus (IC)
10° 2months  Absent Tooyoung Mid Paeruginosa, 5years Pancredtitis, liver disease Tooyoung Moderate S aureus (IC)
S. aureus
1 6émonths  Absent Too young Absent Absent 21 years  Rhinosinusitis, nasal polyposis Mild Moderate  Paeruginosa (IC),
S. aureus (CC)
129 14 months  Bronchopneumonia Tooyoung Mid Absent 14years  Recurrent pancreatitis, nasal Absent Moderate  RPaeruginosa (CC),
polyposis S.aureus (CC)
13 7 years Dehydration Absent Mild Absent 20years  Recurrent dehydration Absent Moderate  Absent
14 33 years Absent Absent Absent Absent 35years  Absent Absent Absent Absent

CC, chronic colonization; IC, infermittent colonization; ABPA, allergic bronchopulmonary aspergillosis. Classification of pulmonary symptoms by FEV1 is as follows: absent: >90%, mild:
from 70 to 90%, moderate: from 40 to 70%, severe: <40%. Classification of pulmonary symptoms by chest X-ray is as follows: absent: no radiological signs; mild: limited air trapping or
peribronchial infilfration; moderate: dense areas or bronchiectasis restricted fo one lobe; severe: dense areas or bronchiectasis in both hemithoraxes.

“Age at death.
PPatients number 6 and 7 are siblings.
“Patients number 9 and 10 are siblings.

9This patient has already been partially described (see text for quotation) and is included here to show the follow-up to 14 years.

and displayed stronger pulmonary symp-
toms at the diagnosis than the brother,
with bacterial isolates. She is now 48 years
old and has worsened pulmonary symp-
toms with chronic bacterial colonization.
The unrelated male patient was diagnosed
at 33 years of age. He displayed pul-
monary symptoms, pancreatitis and
cholelithiasis with no bacterial isolates. He
is now 45 years old and exhibits the same
pulmonary conditions as those present at
enrollment. He no longer has pancreatitis
and underwent a cholecystectomy.

The Q779X (p.GIn779*) mutation was
found in a CF-PS brother and sister with
a [(TG)11T5; V5621; A1006E]/Q779X
(c.[1210-14TG[11];1210-12T[5];1684G>A;
3017C>AJ;[2335C>T]) genotype. Their
average sweat tests were, respectively,
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70 + 15 and 62 + 17 mEq/L (both very
variable). The enrollment of the male sib-
ling was on the basis of neonatal screen-
ing (26,27) at 2 months of age, with no
clinical symptoms and no pulmonary
bacterial isolates. The enrollment of the
female sibling was because of familiarity
and neonatal screening at 2 months age,
with pulmonary symptoms and bacterial
isolates already present. At follow-up,
which was respectively up to 11 and
5 years, both patients showed intermit-
tent bacterial colonization. Pulmonary
symptoms appeared in the male sibling.
The female sibling exhibited worsened
pulmonary symptoms as well as pancre-
atitis and liver disease.

The G1247R(G>C) (p.Gly1247Arg) mu-
tation was found in a CF-PS female pa-
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tient with a W1282X/G1247R(G>C)
(p.[Trp1282*];[Gly1247 Arg]) genotype. The
average sweat test was 78 = 20 mEq/L
(very variable). The diagnosis was made
at 6 months of age on the basis of neonatal
screening (26,27), with no other symp-
toms. The patient is now 21 years old and
displays pulmonary symptoms with
chronic bacterial colonization, as well as
rhinosinusitis and nasal polyposis.

The G1244R (p.Gly1244Arg) mutation
was already published by us (24) when
the patient was 7 years old; here we pro-
vide a further 7-year follow-up report
following that description. The G1244R
(p.Gly1244Arg) mutation was found in
a CF-PS male patient, diagnosed at
14 months of age on the basis of symp-
toms, with a 3849+10kbC>T/G1244R



(c.[3717+12191C>TJ;[3730G>A]) genotype.
The average sweat test was 54 + 1 mEq/L.
Respiratory manifestations were already
present at diagnosis, although with no
pulmonary bacterial isolates. The patient
is now 14 years old, his respiratory
symptoms worsened and he displays
chronic bacterial colonization. The pa-
tient has also suffered from recurrent
pancreatitis and nasal polyposis.

The 1249-8 A>G (c.1117-8 A>G) mutation
was found in a novel complex allele
[1249-8A>G;G576A;R668C] (c.[1117-
8A>G;1727G>C;2002C>T]) in a CF-PS fe-
male patient with an unknown mutation
(after all mutational search steps, includ-
ing the DEL step) on the other allele. The
average sweat test was 72 + 4 mEq/L.
Upon enrollment, the patient was 7 years
old, displayed pulmonary symptoms with
no bacterial isolates and had already had a
dehydration event. At the 20-year follow-
up, she exhibited worsened pulmonary
manifestations, although without bacterial
isolates, and recurrent dehydration events.

The E56G (p.Glu56Gly) mutation was
found in a CBAVD male subject with a
F508del/E56G (p.[Phe508del];[Glu56Gly])
genotype. The average sweat test was 48 +
2 mEq/L. At both the diagnosis (33 years)
and follow-up (35 years), no symptoms
other than CBAVD were present.

Phenotypic Description of the
10 Complex Alleles

Although the protocol used for the
mutational search was not specifically
aimed at the selection of complex alleles,
10 such alleles were found. The follow-
ing five complex alleles encompassed
mutations found only within respective
complex alleles (never found separately).

The [E479X;V754M] (p.[Glud79%;
Val754Met]) novel complex allele was
found once in a CF-PI patient with a
F508del (p.Phe508del) mutation on the
other allele and an average sweat test of
106 + 13 mEq/L. The E479X (p.Glu479*)
is a novel mutation (described above and
in Tables 1-3) found exclusively in this
novel complex allele.

The [L24F;296+2T>G] (c.[72G>C;
164+2T>G]) complex allele was found

once in a CF-PS patient with the (TG)13T5
(c.[1210-14TG[13];1210-12T[5]]) variant
tract on the other allele and an average
sweat test of 68 + 11 mEq/L.

The [M348K;5912X] (p.[Met348Lys;
Ser912*]) complex allele was found in
2 patients (1 CF-PI and 1 CBAVD).

The CF-PI patient had an F508del
(p-.Phe508del) mutation on the other al-
lele, whereas no mutation was detected
on the other allele in the CBAVD patient.
Sweat test values were 15 + 3 mEq/L for
the CBAVD patient and 107 + 12 mEq/L
for the CF-PI patient.

The [S466X(TAG);R1070Q] (p.[Ser466*;
Arg1070GIn]) complex allele was found
in 3 patients (2 CF-PI and 1 CF-PS).
These patients had the following muta-
tions on the other allele: F508del
(p-Phe508del) (1 CF-PI), G542X (p.Gly542*)
(1 CF-PI), 2789+5G>A (c.2657+5G>A)

(1 CE-PS). Sweat test values ranged from
78 +3to 79 + 11 mEq/L.

The [R74W;V201M;D1270N] (p.[Arg74Trp;
Val201Met;Asp1270Asn]) complex allele
was found in 2 patients (1 CF-PS and
1 CBAVD). These patients had the follow-
ing mutations on the other allele: S1206X
(p-Ser1206*) (1 CF-PS), D1152H
(p-Asp1152His) (1 CBAVD). Sweat test val-
ues were 46 + 2 mEq/L for the CF-PS pa-
tient and 31 + 1 mEq/L for the CBAVD
patient.

As the mutations described above
were only found in cis in the five com-
plex alleles, it was impossible to evaluate
the specific clinical effects due to the
presence of more than one mutation on
the same allele. By contrast, at least one
of the mutations found in cis for the
other five complex alleles was also found
separately from the complex allele,
thereby allowing the following specula-
tion about their cis-acting effect.

The [(TG)11T5;V5621;A1006E] (c.[1210-
14TG[11];1210-12T[5];1684G>A;3017C>Al)
complex allele was found in 11 patients
(9 CF-PS, 1 CFTR-RD and 1 CBAVD). These
patients had the following mutations on
the other allele: F508del (p.Phe508del)

(3 CF-PS and 1 CFTR-RD), W1282X
(p.Trp1282*) (2 CE-PS), Q779X (p.GIn779%)
(2 CE-PS siblings), D110H (p.Asp110His)
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(1 CE-PS), D614G (p.Asp614Gly) (1 CE-PS),
unknown (1 CBAVD). Sweat test values
ranged from 17 + 3 to 76 + 11 mEq/L, with
an average value of 61 + 20 mEq/L. The
V5621 (p.Val562Ile) and the A1006E
(p-Alal006Glu) were only found within the
complex allele. By contrast, the (TG)11T5
(c.[1210-14TG[11];1210-12T[5]]), with no
other mutations in cis, was found in

1 CFTR-RD patient and 1 CBAVD patient
with, respectively, the 3849+10kbC>T
(c.3717+12191C>T) and the D110H
(p-Asp110His) mutations on the other al-
lele. The sweat tests were 60 + 7 mEq/L for
the CFTR-RD patient and 23 + 3 mEq/L for
the CBAVD patient, with an average value
of 42 + 26 mEq/L. The CF-PS was only
found in the group of patients with the
complex allele, who also exhibited higher
average sweat test values than patients
without the complex allele, although with
no statistical significance due to variability
(Student ¢ test, p = 0.26). This highlights the
effect of the three mutations in cis.

The [R117L;L997F] (p.[Arg117Leu;
Leu997Phe]) complex allele (28) was
found in 6 patients (1 CF-PI and 5 CE-PS).
These patients had the following muta-
tions on the other allele: F508del
(p-Phe508del) (1 CF-PI), G85E (p.Gly85Glu)
(1 CF-PS), R334W (p.Arg334Trp) (2 CF-PS
siblings) and W1282X (p.Trp1282%)

(2 CE-PS). Sweat test values ranged from
70 + 2 to 102 + 4 mEq/L, with an average
value of 84 = 13 mEq/L. The R117L
(p-Argl17Leu) was only found in the com-
plex allele. The L997F (p.Leu997Phe), with
no R117L (p.Argll7Leu) in cis, was found
in 13 patients (2 CF-PS, 8 CFTR-RD and

3 CBAVD). These patients had the follow-
ing mutations on the other allele: F508del
(p.Phe508del) (1 CF-PS, 4 CFTR-RD and

1 CBAVD, including 2 siblings), G85E
(p.Gly85Glu) (1 CF-PS), W1282X
(p.Trp1282*) (2 CFTR-RD siblings), L320V
(p.Leu320Val) (1 CFTR-RD), S549R(A>C)
(p-Ser549Arg) (1 CFTR-RD), 711+5G>A
(c.579+5G>A) (1 CBAVD) and unknown
(1 CBAVD). Sweat test values ranged
from 15 + 2 to 77 = 5 mEq/L, with an
average value of 32 = 18 mEq/L. Part of
this case series has been described previ-
ously (28). Here we confirm that patients
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with the complex allele had more severe
diagnoses and significantly (Student ¢ test,
p < 0.0001) higher average sweat test val-
ues than the patients without the com-
plex allele.

The [1249-8A>G;G576A;R668C] (c.[1117-
8A>G;1727G>C;2002C>T]) complex allele
was found once in a CF-PS patient with an
unknown mutation on the other allele and
an average sweat test of 72 + 4 mEq/L. The
1249-8A>G (c.1117-8A>G) is a novel muta-
tion (described above and in Tables 1-3)
found exclusively in this novel complex
allele. The complex allele [G576A;R668C]
(p.[Gly576Ala;Arg668Cys]) (without the
first mutation in cis) was found in two
CFTR-RD patients with F508del
(p.Phe508del) and S1235R (p.Ser1235Arg)
on the other allele, with sweat tests, re-
spectively, of 19 = 2 and 17 + 1 mEq/L
(average 18 + 1 mEq/L). These three mu-
tations were never found alone. The com-
plex allele with the three mutations in cis
in the CF-PS patient was found in a more
severe form of CF than the complex allele
with only two mutations in cis. Accord-
ingly, the average sweat test value was
significantly (Student ¢ test, p < 0.05)
higher in the complex allele with three
mutations than in the other allele.

The [359insT:(TG)12T5] (c.[227_228insT;
1210-14TG[12];1210-12T[5]]) complex allele
was found once in a CFTR-RD patient with
a (TG)12T5 (c.[1210-14TG[12];1210-12T[5]])
variant tract on the other allele and an av-
erage sweat test of 46 + 5 mEq/L. The
359insT (p.Trp79LeufsX32) mutation was
found only within the complex allele,
whereas the (TG)12T5 (c.[1210-14TG[12];
1210-12T[5]]) mutation was also found
alone, with no other mutations in cis, in
41 patients (9 CF-PS, 16 CFTR-RD and
16 CBAVD). These patients had the follow-
ing mutations on the other allele: F508del
(p-Phe508del) (3 CF-PS, 5 CFTR-RD and
10 CBAVD), N1303K (p.Asn1303Lys)

(1 CF-PS, 3 CFTR-RD and 1 CBAVD),
1717-1G>A (c.1585-1G>A) (3 CF-PS and

1 CFTR-RD), W1282X (p.Trp1282*)

(3 CFTR-RD), G542X (p.Gly542*) (1 CF-PS,
1 CFTR-RD and 1 CBAVD), Y849X
(p-Tyr849*) (1 CFTR-RD), 3849+10kbC>T
(c.3717+12191C>T) (1 CFTR-RD), R1162X

(p-Argl1162*) (1 CBAVD), S549R(A>C)
(p-Ser549Arg) (1 CFTR-RD) and unknown
(1 CF-PS and 3 CBAVD). Sweat test values
ranged from 11 + 2 to 104 = 43 mEq/L,
with an average value of 47 + 22 mEq/L
(highly variable). In this case, the overlap-
ping clinical presentations and average
sweat test values between the patient with
the complex allele and the other patients
may depend on the varying effect of the
(TG)12T5 (c.[1210-14TG[12];1210-12T[5]])
tract, which is also on the other allele in
the patient with the complex allele and
lowers the overall phenotypic effect.

Clinical Classification of Mutated
Alleles and Genotypes

The three rules described in Materials
and Methods led to the classification of
109 alleles (Table 4); 16 alleles could not,
despite being identified as disease-
causing, be univocally assigned to one (or
more) macrocategories on the basis of our
experimental data. It was also possible to
assign 87 of the 109 classified alleles to a
single macrocategory (56 to CF-PI, 15 to
CE-PS, 14 to CFTR-RD and 2 to CBAVD).
The remaining 22 alleles were classified
as causing variable phenotypes (11 CF-PI
and CF-PS; 4 CF-PS and CFTR-RD;
2 CFTR-RD and CBAVD; 2 CE-PI, CF-PS
and CFTR-RD; 3 CF-PS, CFTR-RD and
CBAVD). No allele was classified as caus-
ing all four phenotypes, nor was any al-
lele found to cause very different pheno-
types (for example, CF-PI and CBAVD).
According to the principle that the preva-
lent clinical effect depends on the allele
with the highest residual functionality,
the adherence of our model regarding the
clinical effect of the combination of classi-
fied alleles was not only verified on ex-
perimentally available allele combina-
tions but also inferred from allele
combinations that are not experimentally
available (Supplementary Table S5).

Relationship between Genotype,
Residual Functionality and Clinical
Presentation

The sweat test is an in vivo measure-
ment of CFTR residual functionality. A
general significant correlation between
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the sweat test and clinical manifestations
emerged (ANOVA, p < 0.001; Figure 3A).
The average values of the sweat test were
87 + 19 mEq/L for CF-PI, 73 + 22 mEq/L
for CF-PS, 47 + 24 mEq/L for CFTR-RD
and 27 + 13 mEq/L for CBAVD. How-
ever, a considerable degree of biological
variability within each population and a
wide overlap of values between different
populations were observed. Conse-
quently, a genotype-specific analysis of
sweat test values in the 59 nonindividual
genotypes (found in at least two unre-
lated individuals) was performed (Fig-
ures 3B, C). The 19 genotypes found in at
least two different populations yielded
significantly different overall sweat test
values (Figure 3B; ANOVA, p < 0.0001).
However, Bonferroni multiple compari-
son test revealed that this overall signifi-
cant difference is due to only 13 pairs of
genotypes out of a total of 171 possible
comparisons. In addition, a marked inter-
individual biological variability emerged
for the four genotypes found in three dif-
ferent populations (Figure 3B, the four
leftmost genotypes) as well as for the 15
genotypes found in two different popula-
tions (Figure 3B, the 15 rightmost geno-
types). The general effect observed is that
the same genotype can give rise to a wide
range of sweat test values. Furthermore,
no evident correlation was detected be-
tween the different sweat test values (ob-
tained from the same genotype in these
19 nonindividual genotypes from differ-
ent populations) and the severity of the
clinical presentation. Moreover, even the
40 nonindividual genotypes found only
in one population yielded significantly
different overall sweat test values (Fig-
ure 3C; ANOVA, p < 0.0002). However,
Bonferroni multiple comparison test did
not detect any statistically significant dif-
ference when the 780 possible compar-
isons between each genotype pair were
performed. To sum up, it is clear that
highly similar sweat test values may be
observed in different populations.

DISCUSSION
A high degree of heterogeneity was ob-
served between the mutational patterns of
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Figure 3. Relationship between clinical presentation and sweat test. The empty squares represent the individual average sweat test val-
ues (average of at least two measurements); the filled rectangles represent the average sweat test value of each population: red for
CF-PI, yellow for CF-PS, blue for CFTR-RD and gray for CBAVD. The bars represent the standard deviation (SD). (A) All genotypes (black
empty squares and black filled rectangle for CF (Pl + PS). (B) Nonindividual genotypes found in at least two different populations (black
filled rectangles for average of each genotype). (C) Nonindividual genotypes found only in one population. See Supplementary Table S4
for genotype HGVS name. See fext for further explanations.

the clinical macrocategories analyzed. The
mutational patterns appeared to be spe-
cific to each population, with only 34.4%
of mutated alleles shared by at least two
populations and 65.6% of population-
specific mutated alleles (Figure 1, Supple-
mentary Table S3). This specificity may be
quantified as 56.5% of mutated alleles that
were exclusive to CF-PI, 35.0% to CF-PS,
43.2% to CFTR-RD and 25.0% to CBAVD.
This heterogeneity and mutational pattern
specificity was enhanced at the genotypic

level, with only 8.4% of genotypes shared
by at least two populations and 91.6% of
population-specific mutated genotypes
(Figure 2, Supplementary Table S4). This
genotype specificity may be quantified as
91.3% of genotypes that were exclusive to
CF-PJ, 75.3% to CF-PS, 79.5% to CFTR-RD
and 66.7% to CBAVD. In addition, alleles
and genotypes found in different popula-
tions also displayed well-differentiated
frequencies that were specific to each pop-
ulation. Most of the 125 different mutated

MOL MED 21:257-275, 2015 |

alleles identified were individual, found
in only one patient or in siblings from a
single family (48.0%), or were rare
(38.4%), with a prevalence <0.008. Among
the 225 genotypes, 73.8% were individual
genotypes found in single patients or in
siblings from a single family, and 19.1%
were rare (frequency <0.008). It is note-
worthy that 8.8% of the mutated alleles
identified were novel (with an overall
prevalence of 0.011), giving rise to 4.9% of
the genotypes (with an overall prevalence
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Table 4. Clinical classification of mutated alleles.

Allele legacy name

Allele HGVS name

Clinical classification

CFIR2

M1V

P5L

ex2,3del
ex2del
WIOX(TAG)

[L24F;296+2T>G]
R31C

S42F

E56G

[R74W;V201M;D1270N]

[359InsT;(TG)12T5]

c.1ASG
p.Met1val

c.14C>T

p.ProSLeu
€.54-5940_273+10250del21080
C.54-1161_164+1603del2875
C.56G>A

p.Trp19*
C.[72G>C;164+2T>G]
c.91C>T

p.Arg31Cys

c.125C>T

p.Serd2Phe

C.167G>A
p.Glub6Lys

C.[220C>T;601G>A;3808G>A]
p.[Arg74Trp;Val201Met; Asp1270Asn]

€.[227_228insT;1210-14TG[12];1210-12T[5]]

CF-PI
CF-PS, CFTR-RD
CF-PI
CF-PI

CF-pI

uncertain: CF-Pl and/or CF-PS
CFTR-RD

uncertain: found only with an unknown allele in frans

CBAVD

uncertain: CF-PS and/or CFTR-RD and/or CBAVD

uncertain: CF-PI and/or CF-PS and/or CFTR-RD

CF-causing

nd

CF-causing
nd
nd

L24F nd; 296+2T>G nd

non CF-causing

nd

nd

R74W varying clinical consequence; V201M nd;

D1270N varying clinical consequence

359insT nd; T5 varying clinical consequence

G85E C.254G>A CF-PI, CF-PS CF-causing
p.Gly85Glu

D110H €.328G>C CF-PS CF-causing
p.Asp110His

R117C €.349C>T CF-PS CF-causing
p.Arg117Cys

RT17H C.350G>A CFTR-RD varying clinical consequence
p.Arg117His

[R117L,L997F] C.[350G>T;2991G>C] CF-PI, CF-PS R117L nd; L997F non CF-causing
p.[Arg117Leu;Leu997Phe]

G126D c.377G>A uncertain: CF-PI and/or CF-PS nd
p.Gly126Asp

H139R CA16A>G CF-PI, CF-PS nd
p.His139Arg

574delA c.442delA CF-PI CF-causing
p.lle148LeufsX5

621+1G>T C.489+1G>T CF-PI CF-causing

621+3A>G C.489+3A>G CFTR-RD nd

G178R c.532G>A CF-PI CF-causing
p.Gly178Arg

D192G Cc.575A>G CF-PS nd
pP.Asp192Gly

E193K c.577G>A CBAVD nd
p.Glu193Lys

71+1G>T C.579+1G>T CF-PI CF-causing

71143A>G C.579+3A>G CF-PS CF-causing

711+5G>A C.579+5G>A uncertain: CF-PI and/or CF-PS and/or CFTR-RD CF-causing

and/or CBAVD

HI199R C.596A>G CF-PI nd
p.His199Arg

L206W c.617T>G CFTR-RD CF-causing
p.Leu206Trp

Q220X C.658C>T CF-PI CF-causing
p.GIn220*

852del22 C.720_741delAGGGAGAATGATGATGAAGTAC CF-PI CF-causing
p.Gly241GIufsX13

907delCins29 C.775delCinsSTCTTCCTCAGATTICATIGTGATTACCTCA  uncertain: CF-PI and/or CF-PS nd

C276X Cc.828C>A CF-PI CF-causing
p.Cys276*

Continued on next page
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991deld

L320V

R334W

R334L

T338I

R347P

R347H

[M348K:S912X]

[1249-8A>G;G576AR668C]

1259insA

E379X

M394R

[USINE]

TG)1215

IG)1315

[(TG)11T5;V5621:A1006E]

K442x

T465N

[S466X(TGA);R1070Q)]

[E479X:V754M]

F508del

1717-8G>A
1717-1G>A
D529N

G542X

S549R(A>C)

S549N

S549R(T>G)

G551D

Q552X

R563X

L5585

Y569D

C.859_863delAACTT
p.Asn287LysfsX19

C.958T>G
p.Leu320Val

c.1000C>T
p.Arg334Trp

c.1001G>T
p.Arg334Leu

c.1013C>T
p.Thr338lle

€.1040G>C
p.Arg347Pro

C.1040G>A
p.Arg347His

C.[1043T>A;2735C>A]
p.[Met348Lys;Ser912*]

c.[1117-8A>G;1727G>C;2002C>T]

c.1127_1128insA
p.GIn378AlafsX4

c.1135G>T
p.Glu379*

c.1181T>G
p.Met394Arg

c.[1210-14TG[11]:1210-12T[5]]
c.[1210-14TG[12];1210-12T[5]]
c.[1210-14TG[13]:1210-12T[5]]

c.[1210-14TG[11]:1210-12T[5]; 1684G>A;301 7C>A]

C.1324A>T

p.Lys442*

C.1394C>A
p.Thrd65Asn
C.[1397C>G;3209G>A]
p.[Serd66*;Arg1070GIn]

C.[1435G>T;2260G>A]
p.[Clud79*Val764Met]

c.1521_1523delCTT
p.Pheb08del
C.1685-8G>A
C.1685-1G>A
C.1585G>A
P.AspP529Asn
c.1624G>T
p.Gly542*
C.1645A>C
p.Serb49Arg
C.1646G>A
p.Ser549Asn
c.1647T>G
p.Ser549Arg
C.1652G>A
p.Gly551Asp
C.1654C>T
p.GING52*
C.1657C>T
p.Argb53*
c.16731>C
p.Leub58Ser
c.1705T>G
p.Tyr569Asp

CF-PI

uncertain: CF-PI and/or CF-PS and/or CFTR-RD

CF-P|, CF-PS

CF-PS

CF-PS, CFTR-RD, CBAVD

CF-P|, CF-PS

CF-PS

CF-PI

uncertain: found only with an unknown allele in frans

CF-PI

CF-PI

CF-PI

CFTR-RD, CBAVD

CF-PS, CFTR-RD, CBAVD

CF-PS, CFTR-RD

CF-PS, CFTR-RD
CF-P

CF-PI

CF-PI

CF-P

CF-PI

CF-PI

CF-PI

CF-PI

CF-PI

CF-P

CF-PI

CF-PI

CF-P

CF-PI

CF-PI

CF-PI

CFTR-RD, CBAVD

nd

nd

CF-causing

nd

CF-causing

CF-causing

CF-causing

M348K nd; §912X CF-causing

1249-8A>G nd; G576A non CF-causing;

R668C non CF-causing

CF-causing

nd

nd

T5 varying clinical consequence

T5 varying clinical consequence

T5 varying clinical consequence

T5 varying clinical consequence; V562| nd; A1006E nd
nd

nd

S466XTGA) CF-causing; R1070Q varying clinical
consequence

E479X nd; V754M non CF-causing

CF-causing

CF-causing

CF-causing

nd

CF-causing

CF-causing

CF-causing

CF-causing

CF-causing

CF-causing

CF-causing

unknown significance

unknown significance

Continued on next page
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Table 4. Continued.

L5718

[G576A:R668C]

D579G

E585X

H609L

A613T

D614G

2143dell

2183AA>G

2184insA

R709X

L732X

R764X

Q779X

E831X

Y849X

ex14b-17bdel
2789+5G>A
2790-2A>G
SQ12L

SQ45L

SQ77F

LO97F

ex17a-18del
P1013L

Y1032C

3272-26A>G
L1065P

L1065R

R1066C

R1066H

G1069R

c.17121>C

p.Leub71Ser
c.[1727G>C;2002C>T]
p.[Cly576Ala; Arg668Cys]
C.1736A>G

p.Asp579Gly

c.1753G>T

p.Glub85*

C.1826A>T
p.His609Leu

c.1837G>A
p.Alaé13Thr

C.1841A>G
pP.Asp614Gly

c.2012dell
p.Leu671*

€.2051_2052delAAINsG
p.Lys684SerfsX38

€.2052_2053insA
p.GIN685ThrfsX4
C.2125C>T
p.Arg709*
c.2195T>G
p.Leu732*
C.2290C>T
p.Arg764*
C.2335C>T
p.GIn779*

C.2491G>T
p.Glus31*

C.2547C>A

p.Tyr849*
C.2620-674_3367+198del9858
C.2657+5G>A

C.2658-2A>G

C.2735C>T
p.Ser912Leu

C.2834C>T
p.Ser945Leu

€.2930C>T
p.Ser977Phe

Cc.2991G>C
p.Leu997Phe

€.2988+1173_3468+2111del8600

c.3038C>T
p.Pro1013Leu
C.3095A>G
p.Tyr1032Cys
C.3140-26A>G
c.31941>C
p.Leu1065Pro
c.31941>G
p.Leu1065Arg
c.3196C>T
p.Arg1066Cys
c.3197G>A
p.Arg1066His
C.3205G>A
p.Gly1069Arg

CF-PI

CFTIR-RD

CF-PS

CF-PI

CFTIR-RD

CF-PS

CF-PS

CF-PS

CF-P|, CF-PS

CF-PI

CF-PI

CF-PI

CF-PI

uncertain: CF-PI and/or CF-PS

CF-PS

CF-PI

CF-PI

CF-PI,CF-PS

CF-PS

uncertain: found only with an unknown allele in frans

CF-PS

CFTIR-RD

CF-PS, CFTR-RD, CBAVD

CF-PI
CFTR-RD

CFTIR-RD

CF-PS
CF-PI,CF-PS

uncertain: CF-PI and/or CF-PS

CF-PI

CF-PI

uncertain: found only with an unknown allele in frans

nd

G576A non CF-causing; R668C non-CF causing

varying clinical consequence

CF-causing

nd

nd

unknown significance

CF-causing

CF-causing

CF-causing

CF-causing

CF-causing

CF-causing

nd

CF-causing

CF-causing

nd

CF-causing

nd

nd

CF-causing

varying clinical consequence

non CF-causing

nd
nd

nd

CF-causing

CF-causing

nd

CF-causing

CF-causing

varying clinical consequence
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L1077pP €.3230T>C
p.Leu1077Pro
Y1092X(C>A) C.3276C>A
p.Tyr1092*
M1137V C.3409A>G
p.Met1137Val
D11562H €.3454G>C
p.Asp1152His
R1162X C.3484C>T
p.Arg1162*
D1168G c.3503A>G
p.Asp1168Gly
3667ins4 €.3535_3536INSTCAA
p.Thr1179llefsX17
S1206X c.3617C>A
p.Ser1206*
11234V c.3700A>G
p.lle1234val
S1235R c.3705T>G

3849+10kbC>T

p.Ser1235Arg
c.3717+12191C>T

V1240G c.3719T>G
p.Val1240Gly
G1244R c.3730G>A
p.Gly1244Arg
G1244E c.3731G>A
p.Gly1244Glu
G1247R(G>C) c.3739G>C
p.Gly1247Arg
W1282X C.3846G>A
p.Trp1282*
QI291R C.3872A>G
p.GIN1291Arg
4016insT €.3884_3885insT
p.Ser1297PhefsX5
4040delA c.3908delA
p.Asn1303ThrfsX25
N1303K €.3909C>G
p.Asn1303Lys
ex22-24del €.3964-3890_4443+3143del9454ins5
ex22,23del C.3964-78_4242+577del1532
4168delCTAAGCC c.4036_4042del
p.Leu1346MetfsXé
G1349D C.4046G>A
p.Gly1349Asp
H1375P Cc.4124A5C
p.His1375Pro
S1455X C.4364C>G
p.Ser1455*
Q1476X C.4426C>T
p.GIn1476*

CF-PI

CF-PI

CFTR-RD

CF-PI, CF-PS, CFTR-RD

CF-PI

CFTIR-RD

CF-PI

uncertain: CF-PI and/or CF-PS

CF-P|, CF-PS

CFTR-RD

CF-PI,CF-PS
CFTR-RD

uncertain: CF-PI and/or CF-PS

CF-P|, CF-PS

CF-PS

CF-PI

CF-PI, CF-PS, CFTR-RD

CF-PI

CF-PI

CF-PI

CF-PI

CF-PI

CF-PI

CF-PI

uncertain: CF-PI and/or CF-PS

CF-PS, CFTR-RD

CFIR-RD

CF-causing

CF-causing

nd

varying clinical consequence

CF-causing

nd

CF-causing

nd

CF-causing

non CF-causing

CF-causing
nd

nd

CF-causing

nd

CF-causing

nd

CF-causing

nd

CF-causing

nd

CF-causing

nd

CF-causing

nd

nd

nd

nd, Not determined. According to the three rules described (see Materials and Methods), each mutated allele was classified according to its clinical outcome. It was impossible to univocally
assign 16 of the 125 different mutated alleles to one or more macrocategories. A comparison with the CFTR2 project (11) (hffp://www.cftr2.org) is shown. The alleles are ordered according to

their nucleotidic position.

of 0.021). When taken together, these re-
sults revealed a peculiarity of the muta-
tional pattern within each clinical macro-
category that appeared to be largely
dependent on rare and individual muta-

tions and genotypes, as well as on the
varying prevalence of common alleles and
genotypes.

After the extended search in the CF-PI,
CF-PS and CFTR-RD macrocategories, a

low frequency of unknown alleles (0.007,
0.033 and 0.035, respectively) and of pa-
tients with at least one unknown allele
(0.014, 0.064 and 0.042, respectively) was
left. This highlights the fact that CFTR
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molecular lesions underlie the vast ma-
jority of these clinical forms. By contrast,
after the extended search in CBAVD,
0.436 of the alleles and 0.551 of the pa-
tients remained uncharacterized. The
role of CFTR in the reproductive appara-
tus (29-36) and the involvement of CFTR
mutations in reduced male (37—41) and
female (42—-44) fertility are strongly de-
bated issues. It is noteworthy that 31.9%
of CBAVD patients had a genotype with
two unknown alleles. We may conclude
that the strictly mono-symptomatic form
of CBAVD, which has no other CF mani-
festations, is frequently caused by molec-
ular lesions other than those in the CFTR.
Although systematic studies have not
yet been performed, over 40 complex al-
leles (with two or more mutations in cis
on the same allele) of CFTR have so far
been described. By using our approach,
which was only partially aimed at the se-
lection of complex alleles, we were able
to identify 10 such alleles, two of which
are novel. The fact that widely used pro-
tocols designed for mutational searches
are usually interrupted after the first two
mutations on different alleles have been
found may greatly limit the interpretation
of genetic data. The true functional signif-
icance of a sequence variation in cis with
another variation (undetected and with
some functional consequence) may be bi-
ased, as may the relationship between
genotype and phenotype. For 4 out of 10
complex alleles found in our case series,
an evaluation of the cis-acting effect was
possible by comparing alleles with muta-
tions in cis with those with the same mu-
tations disjointed. The ability of complex
alleles to give rise to more severe forms
of CF and higher sweat test values was
highlighted for three of these complex al-
leles. These data, together with those in
the literature (see Lucarelli et al. [1]) for a
review) indicate that complex alleles may
account for a greater degree of variability
than is usually acknowledged. To be
meaningful, mutational search protocols
should be designed to search for complex
alleles, at least in cases in which the clini-
cal presentation varies even when the
genotype is apparently identical. At the

very least, they should be planned in
such a way as to complete the characteri-
zation of known complex alleles when
one of the mutations already known to be
in cis is found.

Some unusual results on the clinical
outcome of (TG)mTn tracts and of some
stop mutations are described in the Sup-
plementary Materials.

A crucial issue in CF is the assignment
of a possible pathological role to se-
quence variations. The algorithm we ap-
plied in this work (described in Materials
and Methods and in Supplementary Fig-
ure S1 with examples) allowed 87.2% of
the mutated alleles identified (109 of 125)
to be assigned to clinical macrocate-
gories. These mutated alleles comprised
79.8% (87 of 109) that could be consid-
ered to cause restricted clinical manifes-
tations (only one specific clinical macro-
category) and the remaining 20.2% (22 of
109) that could be considered to have a
varying effect (more than one clinical
macrocategory) (Table 4). Our approach
left some uncertainty with regard to
which clinical form(s) causes the remain-
ing 12.8% of alleles (16 of 125), although
their ability to induce disease is unequiv-
ocal. For a comment on the clinical clas-
sification of these 16 alleles, see the Sup-
plementary Materials.

The best approach recently made to
characterize CFTR mutations is the
CFTR2 study (11) (http://www.cftr2.org).
This and our approach have both com-
mon and distinctive features. The main
common characteristic is that both use a
phenotypic-driven approach. The main
distinctive characteristics are that the
CFTR2 is focused on the most common
CFTR mutations worldwide and on clas-
sic forms of CF (with a positive sweat
test), whereas our study also includes
nonclassic CF forms (with also borderline
sweat test) and rare mutations. Conse-
quently, a greater mutational heterogene-
ity in the CFTR gene was observed in our
study. A direct consequence is that the
43.2% of the alleles we identified (54 of
125, also taking into account complex al-
leles) were not included in the CFTR2
study. Another three alleles we classified
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had been recognized in the CFTR2 study
as being of unknown significance. If the
two alleles with an uncertain significance
in our study were also excluded, 66 alle-
les classified in both studies, and which
could consequently be compared, were
left. For these alleles, the level of agree-
ment between the two characterization
approaches was excellent, with 95.5% of
them (63 of 66) being classified similarly.
In particular, 54 alleles were classified as
causing CF-PI and/or CE-PS in our study
in perfect agreement with a classification
as CF-causing in the CFTR2 study. An-
other four alleles were classified as be-
longing to two or more different macro-
categories (including at least one of the
nonclassic, namely CFTR-RD and/or
CBAVD) in our study and with varying
clinical consequences in the CFTR2 study,
also in this case with an excellent match.
A good level of agreement may also be
recognized for mutations R117H
(p-Argl17His) and S977F (p.Ser977Phe),
classified in our study as CFTR-RD—caus-
ing, and the mutation D579G
(p-Asp579Gly), classified in our study as
CF-PS—causing, and both recognized in
the CFTR2 study with varying clinical
consequences, therefore also including
our phenotypic findings. A similar good
match may also be assumed for two mu-
tations classified as non—CF-causing in
CFTR2 [S1235R (p.Ser1235Arg) and R31C
(p-Arg31Cys)] but as CFTR-RD—causing
in our study, owing to the fact that
CFTR2 is mainly aimed at classic CF and
is more prone to a classification as non-
causing for those mutations originating
nonclassic clinical and biochemical phe-
notypes. The three actually discrepant al-
leles were L997F (p.Leu997Phe), without
the R117L (p.Argl17Leu) in cis, L206W
(p.Leu206Trp) and T338I (p.Thr338lle).
The L997F (p.Leu997Phe) allele can, ac-
cording to the findings that emerge both
from this work and previous studies (28),
also give rise to CF-PS, whereas in the
CFTR2 study, it was classified as non-CF-
causing. The L206W (p.Leu206Trp),
which in our study was classified as a
CFTR-RD-causing mutation, was classi-
fied as CF-causing in the CFTR2 study.



The T338I (p.Thr338lle) is classified in the
CFTR2 study as CF-causing. From our
study resulted the origination not only of
CF-PS (in agreement with the CFTR2
study) but also of CFTR-RD and CBAVD.
This result extends the phenotypic conse-
quences of this mutation also in accord
with previous findings (45,46). These dis-
crepancies may be linked to the degree of
variability that is independent of CFTR
and that accounts for about 4.5% (3 of 66)
of the mutations considered in both stud-
ies. We found 52 individual mutated alle-
les that, in combination with nonindivid-
ual alleles, originated 146 (64.9%)
genotypes found only once in a single pa-
tient. The assignment of a pathological
role to these individual alleles was quite
easy. On the other hand, there were no
other patients in our case series to con-
firm the assignment. However, for 19 (of
52) individual alleles, a comparison with
the CFTR2 study was possible. In this
case, for these individual alleles, we
found a perfect adherence between our
classification and that of the CFTR2
study. Overall, the excellent agreement on
common, rare and individual alleles in-
cluded in both studies lends further sup-
port to our conclusions regarding the
other mutations not included in the
CFTR?2 study. Our classification method
represents a good example of how it is
possible to deduce the phenotypic conse-
quence of a mutated allele on the basis
of a well-defined clinical classification
and a reasonable extended mutational
analysis, even in the absence of experi-
mental functional studies. Obviously, the
limitations of every attempt of patho-
genicity inference by a phenotypic-driven
approach considering a limited number
of cases should be taken into account.
The final goal should be to achieve a
large case series as a starting point for
CFTR sequence variations experimental
functional analysis. This approach would
be more powerful but also more complex
and time-consuming,.

The approaches designed to assign a
phenotypic outcome to CFTR sequence
variations are generally based on an al-
lele-oriented view. However, it is widely

accepted that overall residual functional-
ity depends on both alleles and, ulti-
mately, on the allele with the higher
residual functionality. To address this
issue, we elaborated a two-allele combi-
natorial view of the clinical outcome that
is to be expected, starting from previ-
ously classified alleles (Supplementary
Table S5). This approach may be consid-
ered as a genotypic-oriented prediction
tool of clinical outcome, in part experi-
mentally validated in this work and in
part inferred (to be experimentally veri-
fied when the specific genotypes are
identified).

The molecular mechanisms underlying
the variability between genotype and
phenotype are as yet unclear. At least
two steps may be involved. The first step
may be defined as the transition from the
CFTR-mutated genotype to CFIR protein
residual function (genotype — residual
functionality step). It is reasonable to as-
sume that this transition is more likely to
be influenced by intragenic (CFTR-
dependent) variability. It may originate
from the large number of sequence varia-
tions and be markedly enhanced by their
combination in trans and in cis as com-
plex alleles (1,28), as well as by a regula-
tory posttranscriptional and posttransla-
tional impairment that often escapes
recognition. The second step may be de-
fined as the transition from the CFTR
protein residual function to clinical phe-
notype (residual functionality — clinical
step). This transition is more likely to be
influenced by extragenic variability due
to genes other than CFTR, such as the so-
called modifier genes (9,47) and the
CFTR interactome (48,49). Significant dif-
ferences emerged in the average sweat
test values, which may be considered an
in vivo measurement of the CFTR protein
residual function between the popula-
tions analyzed. This result highlights that
at least a general correlation between
residual functionality and clinical macro-
categories exists. However, the marked
variability within each population results
in a considerable overlap between the
sweat tests. This intra-population vari-
ability seems to arise from the presence
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of several different genotypes, each giv-
ing rise to its own range of residual func-
tionality, although narrower than that
observed in the overall populations. It
may be argued that at least some of the
variability arises in the genotype —
residual functionality step. On the other
hand, it is to be expected that the differ-
ent functionalities that arise from the
same genotype are correlated with differ-
ent clinical manifestations (the higher the
sweat test, the more severe the clinical
manifestations). However, no such corre-
lation was detected between different
sweat test values obtained from the same
genotype and the clinical presentation.
Furthermore, similar sweat test values
associated to different genotypes may

be observed in different populations.

It may also be argued that another part
of the variability arises in the residual
functionality — clinical step. The relative
contribution of the two steps to the
overall variability is still largely un-
known and deserves further quantitative
studies.

CONCLUSION

The full clinical and mutational char-
acterization of CF patients reveals a ge-
netic heterogeneity that underlies a
strong correlation between genotypic
patterns and phenotypic macrocate-
gories. This specificity appears to
largely depend on rare and individual
mutations, as well as on the varying
prevalence of common alleles in the
populations analyzed. A pathogenic
classification of sequence variations on
the basis of rigorous clinical studies and
an extended mutational search may be a
rapid and meaningful way to initially
characterize sequence variations for
which an experimental functional char-
acterization is still lacking, as well as a
starting point for subsequent experimen-
tal quantitative functional characteriza-
tions. The experimental dissection of the
overall biological CFTR pathway ap-
pears to be a powerful approach for a
better comprehension of the sources of
variability in the genotype—phenotype
relationship. Overall, our findings call
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for a revision of the approaches used to
collect and interpret CFTR genetic data.
In particular, a change from an allele-
oriented to a genotypic-oriented view of
CFTR genetics appears to be mandatory
for both applicative and basic science
aims.
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