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INTRODUCTION
The spinal column sustains continuous

movements in different directions to pro-
vide the vital flexibility of the human
body. Motion is achieved through the
elastic intervertebral discs, which lie be-
tween the rigid vertebrae. Flexion, exten-
sion, lateral bending and rotation exert
mechanical forces over the intervertebral
discs, which are well tolerated if they are
within specific limits. If mechanical load-
ing exceeds a certain magnitude or dura-
tion, then structural changes occur, lead-
ing to disc degeneration (1). Apart from
the mechanical theory, disc degeneration
may occur as a consequence of genetic

disorders and environmental factors.
These affect a number of matrix compo-
nents, which may be deficient or mal-
functioning and thereby altering the me-
chanical properties of the intervertebral
disc (2).

Despite the fact that our knowledge re-
garding disc degeneration has increased
over the past years, the exact cause(s)
that triggers the degradation cascade re-
mains elusive. Disc degeneration is the
result of an imbalance between matrix
synthesis and degradation (3). Failures at
the molecular level result in changes at
the microscopic level and, eventually,
disorganization of microstructure of the

intervertebral disc at the macroscopic
level, which is clinically evident for the
patient. Disc degeneration is the most
common cause of back pain in adults,
leading to enormous socioeconomic im-
plications. Treatment options include ad-
ministration of pharmaceutical agents
that are clinically indicated (steroids,
nonsteroidal antiinflammatory drugs
[NSAIDs], analgesics), physiotherapy
and a variety of surgical interventions
for a selected group of patients. Al-
though conservative measures at some
level represent one of the effective meth-
ods to treat intervertebral disc degenera-
tion, they are aiming at the symptoms
and not the cause of the disease. By con-
trast, surgical treatment lacks sustainable
long-term effects in most cases (4). Bio-
logic therapies approach the condition at
a molecular level, in an attempt to alter
the process cascade rather than treat the
patient symptomatically; therefore, they
could be considered an etiologic method
of treatment. In this manner, these novel
techniques are gaining popularity in re-
cent years.
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The understanding of the different
mechanisms that cause disc degeneration
at the molecular level is crucial when de-
signing biologic treatment strategies. The
identification of possible targets for bio-
logic therapies is the first step of this
procedure.

There are three different anatomical
zones of the intervertebral disc; the inner
nucleus pulposus, the outer annulus fi-
brosus and the cartilaginous end plate
(5). Nucleous pulposus lies in the central
part of the disc and is composed of
 chondrocyte-like cells, water and a
highly gelatinous extracellular matrix
that contains mainly collagen type II and
aggrecan. Aggrecan is a large aggregat-
ing proteoglycan consisting of a protein
core and up to 100 glycosaminoglycans
(GAGs) chains (mostly chondroitin and
keratan sulfate, which provide the os-
motic pressure for attracting water mole-
cules and maintaining disc hydration).
Highly hydrated discs absorb compres-
sion forces and distribute hydraulic pres-
sure in all directions when loaded. The
water content of the disc depends mainly
on aggrecan content. In disc degenera-
tion, the amount of water and GAGs de-
crease, and thus the nucleus pulposous
loses its hydrostatical properties, and the
annulus fibrosus and the end plate are
sustaining cracks and fissures because of
the high stresses applied on them (6).
The cartilaginous end plates are progres-
sively ossified and eventually prevent
nutrient supply to the intervertebral disc,
resulting in cell death (7). Treatments
that could potentially regenerate the end
plates or restore aggrecan content in nu-
cleous pulposus could be ideal concepts
for the treatment of intervertebral disc
degeneration.

Disc degeneration is characterized by a
reduction in the number of disc cells, be-
cause of cell necrosis and/or apoptosis
(8). Survival of disc cells is vital for syn-
thesizing matrix components and there-
fore constitute the key target in designing
biologic therapies for disc degeneration.
Biologic therapies can be protein-based
when they refer to biomolecules with an-
abolic properties and cell-based when

they involve administration of cells. The
aim of such therapies is either to stimu-
late disc cells to upregulate the produc-
tion of specific proteins during the early
stages or to administer active cells to re-
place the necrotic cells in more advanced
stages of disc degeneration.

Here we review the currently available
biologic treatment options in mild and
moderate disc degeneration, where a po-
tential for regeneration still exists. Ad-
vanced degeneration requires different
biologic treatment options, with tissue
engineering being the most promising
strategy.

PROTEIN-BASED THERAPIES
Protein-based therapies include all

treatment strategies that involve admin-
istration of biologic factors into the inter-
vertebral disc to enhance matrix synthe-
sis, delay degeneration or stop
inflammation. These factors can be deliv-
ered by an intradiscal injection, alone or
in combination with cells or tissue scaf-
folds as well as by gene therapy.

A direct injection into the interverte-
bral disc requires repeated doses because
disc degeneration is a chronic condition
and these factors have short biologic
half-lives; therefore, their clinical use
might be limited (9). To overcome this
problem, gene therapy has been intro-
duced as a method for ensuring pro-
longed anabolic effect by delivering ge-
netic material expressing growth factors
into disc cells (10). Delivery of genetic
material is achieved using vectors, either
by direct injection (in vivo) or after re-
moval of disc cells, application of the
vector in vitro and return of the modified
cells to the disc (ex vivo). Ex vivo tech-
nique is more appropriate in moderate
disc disease, where the number of
healthy disc cells is insufficient. Vectors
can be viral or nonviral. Viral vectors are
genetically modified viruses that lack the
pathogenic genetic material but maintain
the genetic information for insertion into
disc cells together with the therapeutic
gene that may be transferred into the
disc cells. These vectors can be genome
incorporating, such as retroviruses (11)

and lentiviruses (12), and non-genome
incorporating, such as herpes viruses,
adenoviruses and adeno-associated
viruses (13).

The major concerns of gene therapy
are safety, efficiency and duration of
gene expression. Additional concerns in-
clude practicality of ex vivo methods, pa-
tient acceptance of viral-mediated meth-
ods and the choice of genes.

Immunogenicity of vectors and long-
term delivery of the transduced genes are
key issues that have to be resolved before
application of gene therapy for the treat-
ment of degenerative disc disease in hu-
mans. Retroviral vectors are ideal for ex
vivo gene transfer, but are of limited
value in treating disc degeneration be-
cause retroviruses transfer genes that are
replicating. Numerous studies investi-
gated the use of adenoviral vectors in
gene therapy of disc degeneration
(11,14–16). Because adenoviruses are non-
genome incorporating, the risk of oncoge-
nesis is reduced and low cell turnover of
the intervertebral disc compensates for
the fact that their therapeutic genes are
not transferred to daughter cells when
the disc cells replicate (15). Adenoviruses
can infect nondividing cells, but they
cause severe immune reaction. An alter-
native is adeno-associated viruses, with
minimal immune response, but with
lower efficiency of transduction (17).

Factors Enhancing Matrix Synthesis
Specific biomolecules can induce ma-

trix biosynthesis at the protein or at the
gene level. These biomolecules include
growth and anabolic factors and require
the presence of viable disc cells to be ef-
fective. Therefore, treatment of disc de-
generation with factors that enhance ma-
trix synthesis is appropriate for patients
with early stages of disc degeneration.

Proteins of the bone morphogenetic
protein (BMP) family were found to up-
regulate proteoglycan synthesis in ani-
mal models (18,19). BMP-2 (20) and
BMP-7 or osteogenic protein-1 (OP-1)
(21) increased proteoglycan production
in disc cells. The use of recombinant
human BMP-2 (rhBMP-2) and BMP-12 in
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human disc cells increased collagen and
proteoglycan production in nucleous
pulposus cells, but not in anulous fibro-
sus (22). Injection of rhBMP-7 increased
disc height of rabbit discs (23) and can
prevent degeneration at 24 wks of allo-
genic intervertebral discs, which were in-
jected with nucleus pulposus cells ex-
pressing rhBMP-7; and then they were
transplanted into a canine spine (24).

Administration of growth and differ-
entiation factor-5 (GDF-5) into mouse
disc cells resulted in increased proteogly-
can and collagen type II synthesis (25).
rhGDF-5 increased proteoglycan and col-
lagen synthesis in bovine intervertebral
discs in vitro and restored disc height
and improved magnetic resonance imag-
ing (MRI) and histologic grading scores
in rabbit intervertebral discs in vivo (26).
GDF-5 was successfully transferred into
rabbit disc cells with ex vivo gene therapy
and increased the expression of genes for
extracellular matrix proteins (27).
RhGDF-5 restored disc height, improved
GAGs content and increased collagen
type II mRNA levels after being inserted
into a rat intervertebral disc encapsu-
lated in polylactic glycolic acid (PLGA)
microspheres (28). OP-1 and GDF-5 are
currently used in phase I clinical trials
for human disc degeneration after ap-
proval by the U.S. Food and Drug Ad-
ministration, with results pending (18).

Additionally, administration of trans-
forming growth factor (TGF)-β (29) and
epidermal growth factor (EGF) (30) into
mouse disc cells upregulated the mRNA
expression of aggrecan and type I and II
collagen. TGF-β1 and rhBMP-2 treatment
increased the matrix-related mRNA ex-
pression in human cervical and lumbar
nucleous pulposus cells from degenera-
tive discs in vitro (31).

A limitation in the application of TGF
and insulinlike growth factor (IGF) for
the treatment of degenerative disc disease
is that their receptors were found in
blood vessels of the intervertebral disc
(32); therefore, their injection might stim-
ulate angiogenesis and consequently
nerve ingrowth, which are implicated in
exacerbation of symptoms in interverte-

bral disc degeneration (33). On the other
hand, BMP receptors were not identified
in intervertebral disc blood vessels; there-
fore, growth factors of the BMP family
could be more effective in the treatment
of intervertebral disc degeneration (32).

Results of several studies regarding
the positive effect of solely injected
growth factors into the degenerated in-
tervertebral discs generated the idea of
administration of platelet-rich plasma
(PRP), which contains many growth fac-
tors (34). PRP upregulated matrix gene
expression and stimulated cell prolifera-
tion of porcine nucleous pulposus and
anulous fibrosus cells and activated key
regulators of the chondrogenic pheno-
type of disc cells in vitro (35,36). More-
over, PRP induced the reparative capac-
ity (restoration of disc height) of rabbit
intervertebral disc injured by scalpel
stab (37).

Apart from direct injection of growth
factors, gene therapy has been used to
enhance matrix synthesis in interverte-
bral disc cells. Transduction of the TGF-β
gene by using an adenovirus vector sig-
nificantly increased proteoglycan synthe-
sis in nucleous pulposus cells in vivo (38).
Additionally, transduction of a combina-
tion of IGF-1, BMP-2, TGF-β and BMP-12
genes produced a significant anabolic ef-
fect in nucleous pulposus cells (39). A fu-
ture gene therapy approach could in-
volve the combination of different growth
factors that enhance matrix synthesis.

Recent studies demonstrated that in-
tradiscal injection of the pharmacological
agents simvastatin and lovastatin in rab-
bit intervertebral discs promoted chon-
drogenesis and upregulated the gene ex-
pression of aggrecan and collagen type II
(40,41). Another group of biomolecules
that potentially could enhance matrix
synthesis are transcription factors. Deliv-
ery of latent membrane protein-1 (LMP-1)
by an adenovirus vector resulted in 
upregulation of BMP-2 and BMP-7 and
consequently increased aggrecan produc-
tion by nucleous pulposus cells in vitro
(42). LMP-1 upregulates BMP-2 and
BMP-7 and, through them, it increases
aggrecan synthesis and collagen type I

and II. Adenovirus vector was used to
transfer the LMP-1 gene in anulous fibro-
sus cells and chondrocytes, where it sim-
ilarly increased proteoglycan and colla-
gen production (43). Transfection of
degenerated human intervertebral disc
cells with an adenovirus vector express-
ing SOX9 resulted in increased synthesis
of collagen type II (44), restored the
height of the degenerative rabbit inter-
vertebral disc and promoted the expres-
sion of proteoglycan and collagen type II
when administered with OP-1 as a dual
gene therapy (45).

The various factors enhancing matrix
synthesis, the way of their administration
and the effect on the intervertebral disc
metabolism are summarized in Table 1.

Factors Delaying Degeneration
Considering intervertebral disc degen-

eration as an imbalance between synthe-
sis and degradation of matrix compo-
nents, cessation of the catabolic cascade
could be a realistic therapeutic target. Al-
though most researchers have focused on
growth factors, there are a few studies
exploring the potential role of anticata-
bolic factors in the treatment of disc 
degeneration.

In disc degeneration, there is an over-
expression of proteases such as matrix
metalloproteinases (MMPs) and a disin-
tegrin and metalloproteinase with throm-
bospondin motifs (ADAMTS), which de-
grade various matrix components. These
degrading activities are mediated by cy-
tokines, such as interleukin (IL)-1 and
tumor necrosis factor (TNF)-α (46).
ADAMTS-5 siRNA inhibited matrix 
degradation after injection in a rabbit 
degenerated disc and improved histo-
logic grades of nucleous pulposus tissue
(47). OP-1 has an additional anticatabolic
effect, since it was found to block 
TNF-α–induced upregulation of
ADAMTS-4 and ADAMTS-5, leading to
reversion of TNF-α–mediated degrada-
tion of aggrecan and collagen type II in
human intervertebral discs in vitro (48).
Etanercept, a TNF-α antagonist, improved
the symptoms of patients with persistent
discogenic pain (49), and TNF-α receptors
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neutralized the effects of TNF-α on
human intervertebral cells in vitro (50).

IGF-1 and platelet-derived growth fac-
tor (PDGF) when applied to serum-
 depleted anulous fibrosus cells signifi-
cantly reduced the percentage of
apoptotic cells (51). Transfection of nu-
cleus pulposus cells with adenoviral vec-
tors expressing rhIGF-1 reversed the
apoptotic rate of disc cells in vitro (52). In

a recent study, rhPDGF treatment signifi-
cantly inhibited cell apoptosis, increased
cell proliferation and matrix production
and maintained mRNA expression of ex-
tracellular matrix genes of human disc
cells in vitro (53). Furthermore, PDGF,
IGF-1 and basic fibroblast growth factor
(bFGF) were found to induce prolifera-
tion of bovine nucleous pulposus cells
(54,55). Human annulous fibrosus cells

stimulated with TGF-β3 and FGF-2 in
vitro increased the expression of matrix
molecules and of MMP-13 in an enriched
cartilaginous matrix (56).

Injection of the synthetic peptide Link-
N (which has growth factor properties) in
the degenerated discs of rabbits after an
annular puncture downregulated the ex-
pression of MMP-3 and ADAMTS-4 genes
in both the anulous fibrosus and nucleous

Table 1. Studies with factors enhancing matrix synthesis, the way of administration, and the effect of their application on the intervertebral
disc cells.

Factor Administration Effect References

BMP-2 In vitro culture of rat NP cells Increase of collagen type II and proteoglycans 20

BMP-2, BMP-12, and In vitro incubation of human NP and Increase of collagen and proteoglycans only in NP cells 22
adenoviral BMP-12 AF cells with BMP-2 and BMP-12, in both NP and AF cells with 

adenoviral BMP-12

BMP-7 (OP-1) Direct injection into rabbit IVD Increased disc height, proteoglycan synthesis and 21,23
decreased degeneration grades

GDF-5 In vitro cultured bovine IVD cells Increase of collagen and proteoglycan synthesis 26

GDF-5 Direct injection into rabbit IVD Restore IVD height, MRI, and histologic grading scores 26

GDF-5 In vitro treatment of mouse IVD cells; Increased expression of genes for matrix synthesis 27
gene therapy

GDF-5 Direct injection into rat IVD after Restored disc height, improved GAGs content and  28
encapsulated in PLGA microspheres collagen type II content

TGF-β and EGF In vitro cultured rabbit NP cells Upregulated mRNA expression of aggrecan and type I 29
and II collagen

TGF-β and BMP-12 In vitro cultured human NP cells Increased matrix-related mRNA expression 31

PRP In vitro cultured human NP cells Upregulation of Sox9, collagen type II and aggrecan genes 35

PRP In vitro cultured porcine NP and AF Upregulated proteoglycan and collagen synthesis and cell 36
cells proliferation

PRP Direct injection into rabbit IVD Restoration of disc height, increase of chondrocyte-like cells 37

TGF-β Gene therapy, in vivo rabbit IVD Increased proteoglycan synthesis 38

IGF-1 and BMP-2, and Gene therapy, in vitro cultured human Increased proteoglycan synthesis 39
TGF-β and BMP-12 IVD cells

Simvastatin Direct injection into rat IVD Increased gene expression of aggrecan and collagen 40
type II, improved degeneration grade

Lovastatin Direct injection into rat IVD Upregulated gene expression of aggrecan, collagen type II, 41
BMP-2, and Sox-9 genes

LMP-1 Gene therapy, in vivo in rabbits Increased proteoglycan, BMP-2 and BMP-7 synthesis 42

LMP-1 In vitro cultured AF cells and Increased proteoglycan production, upregulation of mRNA 43
chondrocytes expression of aggrecan, collagen type I and type II, BMP-2 

and BMP-7

Sox-9 Gene therapy, in vitro cultured human Increased collagen type II synthesis 44
IVD cells

Sox-9 Gene therapy, in vivo in rabbit IVD Chondrocytic phenotype of IVD, restored architecture of NP 44

Sox-9 and OP-1 Dual gene therapy, in vivo rabbit IVD Restoration of disc height, upregulation of collagen type II 45
and proteoglycan genes

IVD, intervertebral disc.
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pulposus and the ADAMTS-5 gene in an-
ulous fibrosus tissues (57). Link-N in-
creased the expression of transcription
factor SOX9 and of aggrecan and collagen
type II, while it enhanced the expression
of BMP-4 and BMP-7 in ex vivo cultured
rabbit disc cells (58). In adult human
discs, Link-N can promote aggrecan syn-
thesis and reduce MMP-3, MMP-13,
ADAMTS-4 and ADAMTS-5 expression
in a dose-dependent manner (59).

Administration of adeno-associated
vector serotype-2 (AAV2), bearing the

tissue inhibitor of metalloproteinase-1
(TIMP-1) gene into punctured rabbit in-
tervertebral discs, delayed degenerative
changes (60). Experimental studies with
factors that delay intervertebral disc de-
generation are summarized in Table 2.

Factors Inhibiting Inflammation
TNF-α and IL-1 are two proinflamma-

tory cytokines that are upregulated in in-
tervertebral disc degeneration. Increased
TNF-α and IL-1β upregulate nerve
growth factor (NGF) expression, which

causes proliferation and penetration of
nerve fibers in degenerated discs (61).
Blockage of IL-1 could be a possible tar-
get to prevent the inhibition of matrix
synthesis. Stimulation of human interver-
tebral discs in vitro with TNF-α and IL-1
upregulated MMP-3 and MMP-9 gene ex-
pression, a finding that supports the hy-
pothesis that TNF-α is implicated in the
initiation of matrix degradation (62). Ap-
plication of TNF-α and IL-1β to normal
porcine annulus fibrosus cells leads to a
significant increase in tissue levels of

Table 2. Studies with factors delaying disc degeneration and factors that inhibit inflammation, the way of administration and the effect of
their application on the intervertebral disc cells.

Factor Administration Effect References

Anti–ADAMTS-5 Gene therapy, in vivo in rabbit IVD Improved MRI and histologic grade scores 47

OP-1 In vitro cultured human IVD cells Reversed TNF-α–mediated degradation of matrix 48
macromolecules

Etanercept Subcutaneous injection in patients with Improved symptoms of discogenic pain 49
symptomatic disc degeneration

TNF-α antagonist In vitro cultured human IVD cells Attenuated the secretion of NO and PGE in a dose-dependent 50
manner

IGF and PDGF In vitro human AF cells Reduction of the percentage of apoptotic cells 51

IGF-1 Gene therapy, in vitro cultured human Reversed the apoptotic rate of NP cells 52
NP cells

PDGF In vitro incubated human IVD cells Inhibited cell apoptosis, increased cell proliferation and matrix 53
production, and maintained mRNA expression of critical 
extracellular matrix genes

PDGF and IGF-1 In vitro cultured bovine IVD cells Stimulated proteoglycan synthesis in NP cells and proliferation 54,55
and bFGF of IVD cells

TGF-β and FGF-2 In vitro cultured human AF cells Cartilaginous matrix was formed, enhanced expression of 56

matrix molecules and of MMP-13

Link-N Direct injection into rabbit IVD Increased aggrecan gene expression and decreased 57
proteinase gene expression in both the NP and AF

Link-N In vitro human IVD cells Promoted proteoglycan synthesis, decreased levels of 58
ADAMTS-4, ADAMTS-5, MMP-3, MMP-13

TIMP-1 Gene therapy, in vivo rabbit IVD Less MRI and histologic evidence of degeneration 60

TIMP-1 Gene therapy, in vitro cultured human Increased proteoglycan synthesis 69
IVD cells

IL-1Ra Gene therapy, ex vivo in human IVD Increased IL-1Ra protein expression, elimination of matrix 15,16
degradation

IL-1Ra and TNF In vitro cultured human IVD Decreased levels of MMP-1 and MMP-3 66
inhibitors

Resveratol In vitro cultured human IVD cells Antiinflammatory and anticatabolic effect on the mRNA and 70
protein level for IL-6, IL-8, MMP-1, MMP-3 and MMP-13

Resveratol In vivo in rodent IVD Reduced pain behavior triggered by application of NP tissue 70
on the dorsal root ganglion for up to 14 d

IVD, intervertebral disc.
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MMP-1 (63). Inhibition of IL-1 displayed
superior results when compared with in-
hibition of TNF-α in reducing matrix
degradation in both normal and degener-
ated discs (64). There is adequate knowl-
edge of administration of interleukin-1
receptor antagonists (IL-1Ra) in rheuma-
toid arthritis, where it is injected subcuta-
neously (65). However, in degenerated
intervertebral disc disease, injection of IL-
1Ra should be performed directly into the
disc, because IL-1Ra cannot be delivered
through systemic circulation because of
the avascular nature of the intervertebral
disc (15). The short half-life of IL-1Ra re-
quires repeated injections to achieve the
desired clinical outcome. Therefore, gene
therapy for the transduction of the IL-1Ra
gene into degenerated disc cells to inhibit
the stimulation of degradative enzymes
might be a solution for long-lasting posi-
tive clinical outcomes. Ex vivo gene ther-
apy of IL-1Ra in human intervertebral
disc explants using adenovirus-mediated
vectors showed significant inhibition of
the activity of degradative enzymes in
degenerated discs (15,16). Incubation of
human disc cells with IL-1Ra or TNF in-
hibitors significantly decreased levels of
all forms of MMP-3 and less of MMP-1 in
vitro (66). Mice intervertebral discs exhib-
ited loss of proteoglycan and normal col-
lagen structure and increased expression
of matrix-degrading enzymes MMP-3,
MMP-7 and ADAMTS-4 after removal of
IL-1Ra (67).

Administration of PRP in combination
with TNF-α and IL-1 into human nucle-
ous pulposus cells in vitro suppressed the
cytokine-induced proinflammatory de-
grading enzymes MMP-3 and cyclooxy-
genase-2 (COX-2) and restored the
downregulated expression of collagen
type II and aggrecan (68).

Inhibition of MMPs could be another
target for treatment of intervertebral disc
degeneration. Gene therapy of TIMP-1,
although promising, did not address the
upregulation of ADAMTS, which are
also important biomolecules in the
pathogenesis of disc degeneration (69).

Finally, resveratrol had antiinflamma-
tory and anticatabolic effects on the

mRNA and protein level for IL-6, IL-8,
MMP-1, MMP-3 and MMP-13 in vitro.
When administered in vivo in a rodent
model of radiculopathy, resveratrol sig-
nificantly reduced pain behavior trig-
gered by application of NP tissue on the
dorsal root ganglion for up to 14 d (70).
Studies with factors that inhibit inflam-
mation are summarized in Table 2.

CELL-BASED THERAPIES
In intervertebral disc degeneration, a

reduction of metabolically active disc
cells has been noticed. Cell population
should be adequate to maintain disc ho-
meostasis. Therefore, cell-based tissue re-
placements or genetic modifications of
resident cells could be a therapeutic alter-
native. Cell-based therapies include treat-
ment strategies aiming at either replacing
necrotic or apoptotic cells, or minimizing
cell death. Cell-based therapies are more
appropriate in later stages of degenerated
disc disease, when cell population is di-
minished; therefore, the effect of adminis-
tration of anabolic or anticatabolic factors
would be insufficient, provided that min-
imum nutritional requirements are met
for the cells to survive.

CELL REPLACEMENT
Potential sources of cells suitable for

cell replacement in degenerative disc dis-
ease include autologous condrocytes ob-
tained from articular cartilage, disc cells
harvested from intervertebral discs and
mesenchymal stem cells (MSCs). Articu-
lar chondrocytes injection into degener-
ated discs was used in vivo in rabbit (71)
and in porcine models (72) and in vitro
(73) with promising results. Articular
chondrocytes obtained from non–weight-
bearing areas of the knee produce aggre-
can and collagen type II, but the ratio of
proteoglycan to collagen is lower com-
pared with NP cells; thus, they might not
be a superior source for cell replacement
therapy (74).

In autologous disc cell transplantation,
chondrocyte-like disc cells harvested
from herniated discs are cultured in vitro
and return to the intervertebral disc
through an injection at a second stage.

Unfortunately, harvesting of autologous
cells and culture in vitro is restricted only
to herniated discs, where the number of
available cells is diminished. Further-
more, injection of autologous disc cells
could injure the already damaged inter-
vertebral disc and eventually accelerate
its degeneration (75).

Autologous disc cells from sand rats,
which were expanded in vitro, demon-
strated spindle-shape morphology in the
anulous fibrosus and chondrocyte phe-
notype in nucleous pulposus after trans-
plantation (8). Autologous disc cells,
when implanted in degenerative discs of
dogs, remained viable, produced matrix
components similar to normal discs and
retained disc height (76). Following these
findings, the investigators injected autol-
ogous disc cells in humans after mi-
crodiscectomy. The patients demon-
strated an increase in fluid content and
in pain relief at 2 years compared with
the control group (76). In another clinical
trial, patients who received injection of
autologous disc cell transplantation
showed less reduction in fluid content
compared with the control group and
better pain relief at 24 months (77). Au-
tologous disc cell transplantation is cur-
rently the only therapeutic technique
that has been clinically tested in interver-
tebral disc degeneration and shows long-
term clinical outcomes (77).

The regenerative capacity of autolo-
gous disc cells harvested from herniated
discs was questioned in an in vitro study,
where they lost their differentiation and
their ability to synthesize aggrecan and
collagen type II (78). Different studies ev-
idenced that degenerated disc cells dem-
onstrate senescence (16,79–82) and that
the potential of harvested autologous
disc cells that can be explanted for cul-
ture is limited (83).

MSCs are undifferentiated somatic
cells, which, during embryonic develop-
ment, can be differentiated into all cell
lineages, but adult MSCs can only differ-
entiate into cells of a particular germ
layer. Because of ethical issues in har-
vesting embryonic MSCs, adult MSCs
are used in clinical practice. They can be
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obtained from bone marrow, adipose tis-
sue, skeletal muscles, synovial mem-
branes or umbilical cord blood or can be
expanded in large numbers in vitro.
MSCs can be used either as undifferenti-
ated progenitors or cells with a differen-
tiated disc cell phenotype (72) and are
able to differentiate into bone, cartilage,
fat and fibrous tissues (84). Additionally,
recent studies revealed that disc cells
themselves contain progenitor cells,
which could be optimal candidates for

transplantation into degenerated inter-
vertebral discs (85,86).

MSCs are differentiated into nucleous
pulposus chondrocyte-like cells by sev-
eral methods (83,87,89). In vitro exoge-
nous application of growth factors, such
as TGF-β and BMPs, to MSCs can stimu-
late their differentiation into nucleous
pulposus cells (88,90). An alternative is
co-cultivation of MSCs with interverte-
bral disc cells in vitro, a method that can
provide a rapid production of nucleous

pulposus cells without tissue removal
(87). In theory, coexistence of nucleus
pulposus cells with MSCs after direct ad-
ministration of MSCs into the disc could
induce differentiation of the latter, but
further in vivo studies are required (75).
For this approach to be effective, the
stage of degeneration should be moder-
ate (91) and possibly the cessation of disc
cells should be addressed simultaneously
(84). A limitation of the above methods is
that differentiation of MSCs might be in-

Table 3. Studies for cell-based treatment of intervertebral disc degeneration, the source of transplanted cells, the way of administration
and the effect on the intervertebral disc.

Source of cells Administration Effect References

Articular chondrocytes In vivo, in rabbit IVD Increased production of hyaline-like cartilage 71

Articular chondrocytes In vivo, in porcine IVD Increased proteoglycan and collagen type II synthesis 72

Articular chondrocytes In vitro, coculture with bovine NP Increased aggrecan and collagen gene expression 73
cells and reduced expression of MMP-3, MMP-13 and 

ADAMTS-5

Autologous chondrocyte-like In vivo, intradiscal injection after Spindle-shape morphology of cells in AF and 8
cells harvested from expansion in monolayer tissue chondrocyte phenotype in NP
herniated discs culture

Autologous chondrocyte-like In vivo, intradiscal injection in dog Cells remained viable, produced matrix components, 76
cells harvested from IVD disc height retained
herniated discs

Autologous chondrocyte-like In vivo, intradiscal injection in Increase in fluid content, better pain relief at 2-years 77
cells harvested from human IVD postinjection
herniated discs

Autologous chondrocyte-like Intradiscal injection Cells lost differentiation and their ability to synthesize 78
cells harvested from aggrecan and collagen type II
herniated discs

MSCs Intradiscal injection in canine, MSCs differentiated into NP cells phenotype, preserved 92
porcine and rabbit water, restored disc height

MSCs Direct injection into rabbit IVD Deceleration of disc height loss, increase in T2 weighted 93
signal intensity, GAGs increased, no differences 
between MSCs and NP cells

MSCs In vivo, in rabbit IVD cells Induce NP cells to suppress MMPs and inflammatory 94
cytokines, increased collagen type II synthesis, 
increased disc height, improved MRI

MSCs and Link-N Intradiscal injection in bovine IVD Restored GAGs content, increased expression of 95
collagen type II

MSCs In vivo, in human IVD Increased proteoglycan synthesis 97

MSCs In vivo, in human IVD No clinical improvement 98

MSCs and gene therapy with Intradiscal injection in dog IVD Significant resistance to disc degeneration 99
human telomerase reverse 
transcriptase

MSCs and gene therapy with Intradiscal injection in rabbit IVD Increased TIMP-1 mRNA and protein expression, 100
human TIMP-1 gene reduced degenerative changes

IVD, intervertebral disc.
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conclusive, and, furthermore, it is un-
clear whether differentiated cells remain
intact or capable for replication.

Autologous bone marrow–derived
MSCs are proliferating, differentiating
into nucleous pulposus cell phenotype,
and preserve water content and disc
height into canine, porcine and rabbit
models (92). Transplantation of MSCs in a
rabbit degenerated intervertebral disc re-
sulted in deceleration of disc height loss
and increase in T2-weighted signal inten-
sity. GAGs increased at 16 wks compared
with controls, and disc regeneration was
evidenced by real-time polymerase chain
reaction (RT-PCR). No differences be-
tween MSCs and nucleous pulposus cells
were observed, a finding supporting the
hypothesis that MSCs are ideal substi-
tutes for nucleous pulposus cells (93).
Moreover, MSCs induce nucleous pulpo-
sus cells to suppress MMPs and inflam-
matory cytokine production in vitro (94).
MSCs when administered together with
Link-N can restore GAGs content and in-
crease the expression of collagen type II
in bovine mild degenerated discs (95). In
clinical studies, injection of autologous
bone marrow MSCs into nucleous pulpo-
sus improved pain and disability and
water content was increased; albeit, disc
height was not restored at 12-months
postinjection (96). Similar outcomes were
found in a different study where two pa-
tients with disc degeneration experienced
pain relief and increase in water content
of the disc at 2 years after injection of au-
tologous MSCs (97). In another study, 10
patients who underwent intradiscal injec-
tion of hematopoietic precursor stem cells
obtained from their pelvic bone marrow
experienced no clinical improvement of
their discogenic low back pain after
1 year (98).

Recently, an alternative treatment op-
tion to cell-based therapy was introduced
for severe disc degeneration. This result
includes cell-based gene delivery, where
promoters are genetically incorporated
into stem cells and upregulate chondro-
genic and suppress osteogenic genes.
Transfection of canine nucleous pulposus
cells with a viral vector carrying the gene

for human telomerase reverse transcrip-
tase (AAV-hTERT) and then transplanta-
tion into dog’s disc showed significant re-
sistant to disc degeneration (99).
Transfected bone marrow MSCs with a
recombinant adenovirus vector carrying
the hTIMP-1 gene increased TIMP-1
mRNA and protein expression and signif-
icantly reduced degenerated changes in
punctured rabbit intervertebral discs
(100). Table 3 summarizes the studies re-
garding cell-based therapies for interver-
tebral disc degeneration.

CONCLUSION: OUTLOOK
Clinical application of biologic treat-

ment of intervertebral disc degeneration
is far from being an everyday practice.
There are promising studies investigat-
ing the role of numerous biomolecules
and stem cells in vitro and in vivo in ani-
mal models. Further knowledge concern-
ing the molecular mechanisms underpin-
ning disc degeneration is necessary, and
a comprehensive understanding of inter-
actions between these biomolecules will
allow the design of more sophisticated
methods for biologic treatment of inter-
vertebral disc degeneration.
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