Skip to main content
Log in

Immunoglobulin Heavy- And Light-chain Repertoire in Splenic Marginal Zone Lymphoma

  • Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

The considerable heterogeneity in morphology, immunophenotype, genotype, and clinical behavior of splenic marginal zone lymphoma (SMZL) hinders firm conclusions on the origin and differentiation stage of the neoplastic cells. Immunoglobulin (IG) gene usage and somatic mutation patterns were studied in a series of 43 SMZL cases. Clonal IGHV-D-J rearrangements were amplified in 42/43 cases (4 cases carried double rearrangements). Among IGHV-D-J rearrangements, IGHV3 and IGHV4 subgroup genes were used with the highest frequency. Nineteen IGHV genes were unmutated (>98% homology to the closest germline IGHV gene), whereas 27/46 were mutated. Clonal IGKV-J and IGLV-J gene rearrangements were amplified in 36/43 cases, including 31 IGKV-J (8/31 in lambda light-chain expressing cases) and 12 IGLV-J rearrangements; 9/31 IGKV and 6/12 IGLV sequences were mutated. IGKV-J and IGLV-J rearrangements used 14 IGKV and 9 IGLV different germline genes. Significant evidence for positive selection by classical T-dependent antigen was found in only 5/27 IGHV and 6/15 IGKV+IGLV mutated genes. These results provide evidence for the diverse B-cell subpopulations residing in the SMZ, which could represent physiologic equivalents of distinct SMZL subtypes. Furthermore, they indicate that in SMZL, as in other B cell malignancies, a complementarity imprint of antigen selection might be witnessed either by IGHV, IGKV, or IGLV rearranged sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zandvoort A, Timens W. (2002) The dual function of the splenic marginal zone: essential for initiation of anti-TI-2 responses but also vital in the general 1st-line defense against blood-borne antigens. Clin. Exp. Immunol. 130:4–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lopes-Carvalho T, Kearney JF. (2004) Development and selection of marginal zone B cells. Immunol. Rev. 197:192–205.

    Article  PubMed  Google Scholar 

  3. Martin F, Kearney JF. (2002) Marginal-zone B cells. Nat. Rev. Immunol. 2: 323–35.

    Article  CAS  PubMed  Google Scholar 

  4. Dunn-Walters DK, Isaacson PG, Spencer J. (1996) Sequence analysis of rearranged IgVH genes from microdissected human Peyer’s patch marginal zone B cells. Immunology 88:618–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tierens A, Delabie J, Michiels L, Vandenberghe P, De Wolf-Peeters C. (1999) Marginal-zone B cells in the human lymph node and spleen show somatic hypermutations and display clonal expansion. Blood 93:226–34.

    CAS  PubMed  Google Scholar 

  6. Dono M et al. (2000) Heterogeneity of tonsillar subepithelial B lymphocytes, the splenic marginal zone equivalents. J. Immunol. 164:5596–604.

    Article  CAS  PubMed  Google Scholar 

  7. Thieblemont C et al. (2003) Splenic marginal-zone lymphoma: a distinct clinical and pathological entity. Lancet Oncol. 4:95–103.

    Article  CAS  PubMed  Google Scholar 

  8. Harris NL et al. (1999) World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee Meeting-Airlie House, Virginia, November 1997. J. Clin. Oncol. 17: 3835–49.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu D, Oscier DG, Stevenson FK. (1995) Splenic lymphoma with villous lymphocytes involves B cells with extensively mutated Ig heavy chain variable region genes. Blood 85:1603–7.

    CAS  PubMed  Google Scholar 

  10. Dunn-Walters DK, Boursier L, Spencer J, Isaacson PG. (1998) Analysis of immunoglobulin genes in splenic marginal zone lymphoma suggests ongoing mutation. Hum. Pathol. 29:585–93.

    Article  CAS  PubMed  Google Scholar 

  11. Algara P et al. (2002) Analysis of the IgV(H) somatic mutations in splenic marginal zone lymphoma defines a group of unmutated cases with frequent 7q deletion and adverse clinical course. Blood 99:1299–304.

    Article  CAS  PubMed  Google Scholar 

  12. Bahler DW, Pindzola JA, Swerdlow SH. (2002) Splenic marginal zone lymphomas appear to originate from different B cell types. Am. J. Pathol. 161:81–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhu D, Orchard J, Oscier DG, Wright DH, Stevenson FK. (2002) V(H) gene analysis of splenic marginal zone lymphomas reveals diversity in mutational status and initiation of somatic mutation in vivo. Blood 100:2659–61.

    Article  CAS  PubMed  Google Scholar 

  14. Tierens A et al. (2003) Splenic marginal zone lymphoma with villous lymphocytes shows on-going immunoglobulin gene mutations. Am. J. Pathol. 162:681–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mateo MS et al. (2001) Molecular heterogeneity of splenic marginal zone lymphomas: analysis of mutations in the 5’ non-coding region of the bcl-6 gene. Leukemia 15:628–34.

    Article  CAS  PubMed  Google Scholar 

  16. Sole F et al. (2001) Splenic marginal zone B-cell lymphomas: 2 cytogenetic subtypes, 1 with gain of 3q and the other with loss of 7q. Haematologica 86:71–7.

    CAS  PubMed  Google Scholar 

  17. Hermine O et al. (2002) Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N. Engl. J. Med. 347:89–94.

    Article  CAS  PubMed  Google Scholar 

  18. Vargas-Madrazo E, Lara-Ochoa F, Ramirez-Benites MC, Almagro JC. (1997) Evolution of the structural repertoire of the human V(H) and Vkappa germline genes. Int. Immunol. 9:1801–15.

    Article  CAS  PubMed  Google Scholar 

  19. Sahota SS, Leo R, Hamblin TJ, Stevenson FK. (1997) Myeloma VL and VH gene sequences reveal a complementary imprint of antigen selection in tumor cells. Blood. 89:219–26.

    CAS  PubMed  Google Scholar 

  20. Stamatopoulos K et al. (1997) Follicular lymphoma immunoglobulin kappa light chains are affected by the antigen selection process, but to a lesser degree than their partner heavy chains. Br. J. Haematol. 96:132–46.

    Article  CAS  PubMed  Google Scholar 

  21. Marks J et al. (1991) By-passing immunization: Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222:581–97.

    Article  CAS  PubMed  Google Scholar 

  22. Brauninger A, Goossens T, Rajewsky K, Kuppers R. (2001) Regulation of immunoglobulin light chain gene rearrangements during early B cell development in the human.Eur. J. Immunol. 31:3631–7.

    Article  CAS  PubMed  Google Scholar 

  23. Lefranc M-P, Lefranc G. (2001) The immunoglobulin FactsBook. Academic Press, London.

    Google Scholar 

  24. Lefranc M-P. (2003) IMGT databases, web resources and tools for immunoglobulin and T cell receptor sequence analysis, https://doi.org/imgt.cines.fr. Leukemia 17:260–6.

    Article  CAS  PubMed  Google Scholar 

  25. Lefranc MP. (2001) Nomenclature of the human immunoglobulin heavy (IGH) genes. Exp. Clin. Immunogenet. 18:100–16.

    Article  CAS  PubMed  Google Scholar 

  26. Lefranc MP. (2001) Nomenclature of the human immunoglobulin kappa (IGK) genes. Exp. Clin. Immunogenet. 18:161–74.

    Article  CAS  PubMed  Google Scholar 

  27. Lefranc MP. (2001) Nomenclature of the human immunoglobulin lambda (IGL) genes. Exp. Clin. Immunogenet. 18:242–54.

    Article  CAS  PubMed  Google Scholar 

  28. Lossos IS, Tibshirani R, Narasimhan B, Levy R. (2000) The inference of antigen selection on Ig genes. J. Immunol. 165:5122–6.

    Article  CAS  PubMed  Google Scholar 

  29. Rosner K et al. (2001) Third complementarity-determining region of mutated VH immunoglobulin genes contains shorter V, D, J, P, and N components than nonmutated genes. Immunology 103:179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brezinschek HP, Foster SJ, Brezinschek RI, Dorner T, Domiati-Saad R, Lipsky PE. (1997) Analysis of the human VH gene repertoire. Differential effects of selection and somatic hypermutation on human peripheral CD5(+)/IgM+ and CD5(−)/ IgM+B cells. J. Clin. Invest. 99:2488–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruiz M, Pallares N, Contet V, Barbi V, Lefranc MP. (1999) The human immunoglobulin heavy diversity (IGHD) and joining (IGHJ) segments. Exp. Clin. Immunogenet. 16:173–84.

    Article  CAS  PubMed  Google Scholar 

  32. Corbett SJ, Tomlinson IM, Sonnhammer EL, Buck D, Winter G. (1997) Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, “minor” D segments or D-D recombination. J. Mol. Biol. 270:587–97.

    Article  CAS  PubMed  Google Scholar 

  33. Foster SJ, Brezinschek HP, Brezinschek RI, Lipsky PE. (1997) Molecular mechanisms and selective influences that shape the kappa gene repertoire of IgM + B cells. J. Clin. Invest. 99:1614–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ignatovich O, Tomlinson IM, Jones PT, Winter G. (1997) The creation of diversity in the human immunoglobulin V(lambda) repertoire. J. Mol. Biol. 268:69–77.

    Article  CAS  PubMed  Google Scholar 

  35. Ignatovich O, Tomlinson IM, Popov AV, Bruggemann M, Winter G. (1999) Dominance of intrinsic genetic factors in shaping the human immunoglobulin Vlambda repertoire. J. Mol. Biol. 294:457–65.

    Article  CAS  PubMed  Google Scholar 

  36. Vasicek TJ, Leder P. (1990) Structure and expression of the human immunoglobulin lambda genes. J. Exp. Med. 172:609–20.

    Article  CAS  PubMed  Google Scholar 

  37. Dorner T, Foster SJ, Brezinschek HP, Lipsky PE. (1998) Analysis of the targeting of the hypermutational machinery and the impact of subsequent selection on the distribution of nucleotide changes in human VHDJH rearrangements. Immunol. Rev. 162:161–71.

    Article  CAS  PubMed  Google Scholar 

  38. Belessi C, Stamatopoulos K, Stavroyianni N, Zoi K, Papadaki T, Kosmas C. (2001) Somatic hypermutation targeting to intrinsic hotspots of immunoglobulin genes in follicular lymphoma and multiple myeloma. Leukemia 15:1772–8.

    Article  CAS  PubMed  Google Scholar 

  39. Pommie C, Levadoux S, Sabatier R, Lefranc G, Lefranc MP. (2004) IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties. J. Mol. Recognit. 17:17–32.

    Article  CAS  PubMed  Google Scholar 

  40. Brezinschek HP, Foster SJ, Dorner T, Brezinschek RI, Lipsky PE. (1998) Pairing of variable heavy and variable kappa chains in individual naive and memory B cells. J. Immunol. 160:4762–7.

    CAS  PubMed  Google Scholar 

  41. de Wildt RM, Hoet RM, van Venrooij WJ, Tomlinson IM, Winter G. (1999) Analysis of heavy and light chain pairings indicates that receptor editing shapes the human antibody repertoire. J. Mol. Biol. 285:895–901.

    Article  PubMed  Google Scholar 

  42. Stewart AK, Huang C, Long AA, Stollar BD, Schwartz RS. (1992) VH-gene representation in autoantibodies reflects the normal human B-cell repertoire. Immunol. Rev. 128:101–22.

    Article  CAS  PubMed  Google Scholar 

  43. Rao SP, Riggs JM, Friedman DF, Scully MS, LeBien TW, Silberstein LE. (1999) Biased VH gene usage in early lineage human B cells: evidence for preferential Ig gene rearrangement in the absence of selection. J. Immunol. 163:2732–40.

    CAS  PubMed  Google Scholar 

  44. Yu K, Taghva A, Lieber MR. (2002) The cleavage efficiency of the human immunoglobulin heavy chain VH elements by the RAG complex: implications for the immune repertoire. J. Biol. Chem. 277:5040–6.

    Article  CAS  PubMed  Google Scholar 

  45. Chiorazzi N, Ferrarini M. (2003) B-cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu. Rev. Immunol. 21: 841–94.

    Article  CAS  PubMed  Google Scholar 

  46. Tobin G et al. (2003) Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood 101:4952–7.

    Article  CAS  PubMed  Google Scholar 

  47. Ghia P et al. (2004) Geographical patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood First Edition Paper, prepublished online October 5, 2004; DOI 10.1182/blood-2004-07-2606.

  48. Damle RN et al. (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94:1840–7.

    CAS  PubMed  Google Scholar 

  49. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94:1848–54.

    CAS  PubMed  Google Scholar 

  50. Forconi F, Sahota SS, Lauria F, Stevenson FK. (2004) Revisiting the definition of somatic mutational status in B-cell tumors: does 98% homology mean that a V(H)-gene is unmutated? Leukemia 18:882–3.

    Article  CAS  PubMed  Google Scholar 

  51. Barbas SM et al. (1995) Human autoantibody recognition of DNA. Proc. Natl. Acad. Sci. U.S.A. 92:2529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dono M et al. (2003) The human marginal zone B cell. Ann. N.Y. Acad. Sci. 987:117–24.

    Article  CAS  PubMed  Google Scholar 

  53. Pillai S, Cariappa A, Moran ST. (2004) Positive selection and lineage commitment during peripheral B-lymphocyte development. Immunol. Rev. 97: 206–18.

    Article  Google Scholar 

  54. William J, Euler C, Christensen S, Shlomchik MJ. (2002) Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297:2066–70.

    Article  CAS  PubMed  Google Scholar 

  55. Song H, Cerny J. (2003) Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen. J. Exp. Med. 198:1923–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are indebted to Prof. Marie-Paule Lefranc and Dr. Veronique Giudicelli (Laboratoire d’Immunogenetique Moleculaire, LIGM, Universite Montpellier II, UPR CNRS) for sharing with us a wealth of insight on immunoglobulin genes and offering valuable help in data analysis. We also wish to thank Prof. Manlio Ferrarini (Istituto Nazionale per la Ricerca sul Cancro and Dipartmento di Oncologia Clinica e Sperimentale, Universita di Genova) and Prof. Nicholas Chiorrazzi (North Shore-Long Island Jewish Research Institute, Manhasset, New York) for helpful discussions and their support and interest in our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Stamatopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamatopoulos, K., Belessi, C., Papadaki, T. et al. Immunoglobulin Heavy- And Light-chain Repertoire in Splenic Marginal Zone Lymphoma. Mol Med 10, 89–95 (2004). https://doi.org/10.2119/2005-00001.Stamatopoulos

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2119/2005-00001.Stamatopoulos

Keywords

Navigation