Skip to main content

Advertisement

Log in

Application of Microchip Electrophoresis Sodium Dodecyl Sulfate for the Evaluation of Change of Degradation Species of Therapeutic Antibodies in Stability Testing

  • Published:
Analytical Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We evaluated the performance of a commercial microchip electrophoresis instrument (LabChip® GXII) for the evaluation of change of degradation species of therapeutic antibodies in stability testing. This system requires a sample volume of only 5 μg, and indicates fine resolution of size variant species such as light chain, heavy chain, non-glycosylated heavy chain and various degradation species. Precision and accuracy were high; the intermediate precision of 18 determinations was only 2.1% or less as RSD and recoveries ranged from 97.8 to 103.0% for major species as heavy chain, light chain and intact molecule of a therapeutic antibody. The applicability of this method was demonstrated by applying the method for the analysis of heat-degraded products of three pharmaceutical antibodies. Though some fragment peaks commonly appeared and increased according to temperature regardless of the source of preparations, one of them indicated specific peaks implying the cleavage of the peptide chain of the heavy chain. We also compared the performance of the method with those using conventional capillary-based SDS electrophoresis. Although the absolute purity values expressed as peak area % were different for the two methods, probably due to the difference in the detection methods, similar quality profiles were obtained within 40 s by microchip-based SDS electrophoresis. In addition, the degradation manner of three marketed antibodies depending on temperature was almost the same for the two methods. At the first stage in the development of manufacturing antibody pharmaceuticals, various factors including cell selection, cell cultivation, and formulation development should be evaluated using limited sample amounts. The stability testing using microchip-based electrophoresis seems suitable for these purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Elvin, R. G. Couston, and C. F. van der Walle, Int. J. Pharm., 2013, 440, 83.

    Article  CAS  PubMed  Google Scholar 

  2. A. Eon-Duval, H. Broly, and R. Gleixner, Biotechnol. Prog., 2012, 28, 608.

    Article  CAS  PubMed  Google Scholar 

  3. S. Barandun, P. Kistler, F. Jeunet, and H. Isliker, Vox Sang., 1962, 7, 157.

    Article  CAS  PubMed  Google Scholar 

  4. E. F. Ellis and C. S. Henney, J. Allergy, 1969, 43, 45.

    Article  CAS  PubMed  Google Scholar 

  5. A. J. Cordoba, B. J. Shyong, D. Breen, and R. J. Harris, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2005, 818, 115.

    Article  CAS  Google Scholar 

  6. M. Page, C. Ling, P. Dilger, M. Bentley, T. Forsey, C. Longstaff, and R. Thorpe, Vox Sang., 1995, 69, 183.

    Article  CAS  PubMed  Google Scholar 

  7. Y. D. Liu, A. M. Goetze, R. B. Bass, and G. C. Flynn, J. Biol. Chem., 2011, 286, 11211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. R. J. Harris, Dev. Biol. (Basel, Switz.), 2005, 122, 117.

    CAS  Google Scholar 

  9. H. S. Gadgil, P. V. Bondarenko, G. D. Pipes, T. M. Dillon, D. Banks, J. Abel, G. R. Kleemann, and M. J. Treuheit, Anal. Biochem., 2006, 355, 165.

    Article  CAS  PubMed  Google Scholar 

  10. L. W. Dick, D. Qiu, R. B. Wong, and K. C. Cheng, Biotechnol. Bioeng., 2010, 105, 515.

    Article  CAS  PubMed  Google Scholar 

  11. L. W. Dick, D. Qiu, and K. C. Cheng, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2009, 877, 3841.

    Article  CAS  Google Scholar 

  12. A. Beck, E. Wagner-Rousset, D. Ayoub, A. Van Dorsselaer, and S. Sanglier-Cianférani, Anal. Chem., 2013, 85, 715.

    Article  CAS  PubMed  Google Scholar 

  13. S. Fekete, A. L. Gassner, S. Rudaz, J. Schappler, and D. Guillarme, TrAC, Trends Anal. Chem., 2013, 42, 74.

    Article  CAS  Google Scholar 

  14. S. Hjerten, J. Chromatogr., 1983, 270, 1.

    Article  CAS  Google Scholar 

  15. A. S. Cohen and B. J. Karger, J. Chromatogr., 1987, 397, 409.

    Article  CAS  PubMed  Google Scholar 

  16. J. Liu, S. Abid, and M. S. Lee, Anal. Biochem., 1995, 229, 221.

    Article  CAS  PubMed  Google Scholar 

  17. G. Hunt, K. G. Moorhouse, and A. B. Chen, J. Chromatogr. A, 1996, 744, 295.

    Article  CAS  PubMed  Google Scholar 

  18. G. Hunt and W. Nashabeh, Anal. Chem., 1999, 71, 2390.

    Article  CAS  PubMed  Google Scholar 

  19. O. Salas-Solano, B. Tomlinson, S. Du, M. Parker, A. Strahan, and S. Ma, Anal. Chem., 2006, 78, 6583.

    Article  CAS  PubMed  Google Scholar 

  20. D. A. Michels, M. Parker, and O. Salas-Solano, Electrophoresis, 2012, 33, 815.

    Article  CAS  PubMed  Google Scholar 

  21. M. E. Le, A. Vizel, and K. M. Hutterer, Electrophoresis, 2013, 34, 1369.

    Article  CAS  PubMed  Google Scholar 

  22. M. Eggers and D. Ehrlich, Hematol. Pathol., 1995, 9, 1.

    CAS  PubMed  Google Scholar 

  23. S. Yao, D. S. Anex, W. B. Caldwell, D. W. Arnold, K. B. Smith, and P. G. Schultz, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 5372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. L. Bousse, S. Mouradian, A. Minalla, H. Yee, K. Williams, and R. Dubrow, Anal. Chem., 2001, 73, 1207.

    Article  CAS  PubMed  Google Scholar 

  25. J. Han and A. K. Singh, J. Chromatogr. A, 2004, 1049, 205.

    Article  CAS  PubMed  Google Scholar 

  26. H. Nagata, M. Tabuchi, K. Hirano, and Y. Baba, Electrophoresis, 2005, 26, 2687.

    Article  CAS  PubMed  Google Scholar 

  27. X. Chen, K. Tang, M. Lee, and G. C. Flynn, Electrophoresis, 2008, 29, 4993.

    Article  CAS  PubMed  Google Scholar 

  28. X. Chen and G. C. Flynn, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2009, 877, 3012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Yagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagi, Y., Kakehi, K., Hayakawa, T. et al. Application of Microchip Electrophoresis Sodium Dodecyl Sulfate for the Evaluation of Change of Degradation Species of Therapeutic Antibodies in Stability Testing. ANAL. SCI. 30, 483–488 (2014). https://doi.org/10.2116/analsci.30.483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.483

Keywords

Navigation