Skip to main content
Log in

Carbon Nanofiber-based Luminol-biotin Probe for Sensitive Chemiluminescence Detection of Protein

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A carbon nanofiber-based luminol-biotin probe was synthesized for the sensitive chemiluminescence (CL) detection of a target protein by grafting luminol and biotin onto an oxidized carbon nanofiber. This carbon nanofiber was prepared by chemical vapor-deposition with methane in the presence of the Ni–Cu–MgO catalyst, which was followed by oxidization with HNO3–H2SO4 to produce a carboxyl group on the surface of the nanofiber. The material was grafted with luminol and biotin by means of a standard carbodiimide activation of COOH groups to produce corresponding amides. The substance was water-soluble and thus could be utilized as a sensitive CL probe for a protein assay. The probe showed highly specific affinity towards the biotin-labeled antibody via a streptavidin–biotin interaction. The detection limit for this model assay was approximately 0.2 pmol of the biotinized IgG spotted on a polyvinylidene fluoride (PVDF) membrane. Nonspecific binding to other proteins was not observed. Therefore, the synthesized carbon nanofiber-based CL probe may be useful for a sensitive and specific analysis of the target protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang and Y. Lin, TrAC, Trends Anal. Chem., 2008, 27, 619.

    Article  Google Scholar 

  2. J. Huang, Y. Liu, and T. You, Anal. Methods, 2010, 2, 202.

    Article  Google Scholar 

  3. L. Wu, F. Yan, and H. Ju, J. Immunol. Methods, 2007, 322, 12.

    Article  CAS  PubMed  Google Scholar 

  4. L. Ding, C. Hao, X. Zhang, and H. Ju, Electrochem. Commun., 2009, 11, 760.

    Article  CAS  Google Scholar 

  5. P. Scrimin and L. J. Prins, Chem. Soc. Rev., 2011, 40, 4488.

    Article  CAS  PubMed  Google Scholar 

  6. S. K. Sia, V. Linder, B. A. Parviz, A. Siegel, and G. M. Whitesides, Angew. Chem., Int. Ed. Engl., 2004, 43, 498.

    Article  CAS  PubMed  Google Scholar 

  7. M. Zhou, J. Roovers, G. P. Robertson, and C. P. Grover, Anal. Chem., 2003, 75, 6708.

    Article  CAS  PubMed  Google Scholar 

  8. Q. Zhang and L.-H. Guo, Bioconjugate Chem., 2007, 18, 1668.

    Article  CAS  Google Scholar 

  9. J. Lei and H. Ju, Chem. Soc. Rev., 2012, 41, 2122.

    Article  CAS  PubMed  Google Scholar 

  10. R. J. Amir, E. Danieli, and D. Shabat, Chem. Eur. J., 2007, 13, 812.

    Article  CAS  PubMed  Google Scholar 

  11. H. Zhang, C. Smanmoo, T. Kabashima, J. Lu, and M. Kai, Angew. Chem., Int. Ed. Engl., 2007, 46, 8226.

    Article  CAS  PubMed  Google Scholar 

  12. G. Lai, F. Yan, and H. Ju, Anal. Chem., 2009, 81, 9730.

    Article  CAS  PubMed  Google Scholar 

  13. C. M. Soto, A. S. Blum, G. J. Vora, N. Lebedev, C. E. Meador, A. P. Won, A. Chatterji, J. E. Johnson, and B. R. Ratna, J. Am. Chem. Soc., 2006, 128, 5184.

    Article  CAS  PubMed  Google Scholar 

  14. S. Bi, H. Zhou, and S. Zhang, Biosens. Bioelectron., 2009, 24, 2961.

    Article  CAS  PubMed  Google Scholar 

  15. C. P. Chan, Y. Bruemmel, M. Seydack, K. Sin, L. Wong, E. Merisko-Liversidge, D. Trau, and R. Renneberg, Anal. Chem., 2004, 76, 3638.

    Article  CAS  PubMed  Google Scholar 

  16. R. Genç, D. Murphy, A. Fragoso, M. Ortiz, and C. K. O’Sullivan, Anal. Chem., 2011, 83, 563.

    Article  PubMed  Google Scholar 

  17. Y. Song, W. Wei, and X. Qu, Adv. Mater., 2011, 23, 4215.

    Article  CAS  PubMed  Google Scholar 

  18. T. Krawczyk, M. Kondo, M. G. Azam, H. Zhang, T. Shibata, and M. Kai, Analyst, 2010, 135, 2894.

    Article  CAS  PubMed  Google Scholar 

  19. G. Azam, T. Shibata, T. Kabashima, and M. Kai, Anal. Sci., 2011, 27, 715.

    Article  CAS  PubMed  Google Scholar 

  20. M. G. Azam, T. Shibata, T. Kabashima, and M. Kai, Anal. Bioanal. Chem., 2011, 401, 1211.

    Article  CAS  PubMed  Google Scholar 

  21. H. Zhang, T. Shibata, T. Krawczyk, T. Kabashima, J. Lu, M. K. Lee, and M. Kai, Talanta, 2009, 79, 700.

    Article  CAS  PubMed  Google Scholar 

  22. C. A. Marquette, P. Hezard, A. Degiuli, and L. J. Blum, Sens. Actuators, B, 2006, 113, 664.

    Article  CAS  Google Scholar 

  23. C. L. Cooper, P. L. Dubin, A. B. Kayitmazer, and S. Turksen, Curr. Opin. Colloid Interface Sci., 2005, 10, 52.

    Article  CAS  Google Scholar 

  24. A. Roda, M. Guarigli, E. Michelini, M. Mirasoli, and P. Pasini, Anal. Chem., 2003, 75, 463A.

  25. H. Wang and R. T. K. Baker, J. Phys. Chem. B, 2004, 108, 20273.

    Article  CAS  Google Scholar 

  26. S. Chen, X. Zhao, J. Chen, J. Chen, L. Kuznetsova, S. S. Wong, and I. Ojima, Bioconjugate Chem., 2010, 21, 979.

    Article  Google Scholar 

  27. N. M. Green, Methods Enzymol., 1970, 18, 418.

    Article  Google Scholar 

  28. E. P. Diamandis and T. K. Christopoulos, Clin. Chem., 1991, 37, 625.

    Article  CAS  PubMed  Google Scholar 

  29. H. Karatani, Bull. Chem. Soc. Jpn., 1987, 60, 2023.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baj, S., Krawczyk, T., Pradel, N. et al. Carbon Nanofiber-based Luminol-biotin Probe for Sensitive Chemiluminescence Detection of Protein. ANAL. SCI. 30, 1051–1056 (2014). https://doi.org/10.2116/analsci.30.1051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.1051

Keywords

Navigation