Skip to main content
Log in

Separation of Parabens on a Zirconia-Based Stationary Phase in Superheated Water Chromatography

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A superheated water chromatography (SWC) method for the separation of alkyl esters of 4-hydroxybenzoic acid (parabens) using a zirconia-based stationary phase was developed and applied to real sample analysis. First, the SWC system was optimized in terms of the proper length of the preheating coil for establishing thermal equilibration of the mobile phase entering the column at the oven temperature. Next, the effect of the column temperature on the retention was investigated at 100 - 180°C. The elution time for all parabens decreased with increasing column temperature, and linear relationships between ln k and 1/T were obtained. At higher column temperatures, the elution time was further shortened because of the increased mobile-phase flow rate. Nevertheless, the loss of column efficiency at the higher flow rates was not significant. The application of the present method to the analysis of commercial lotions was then demonstrated. The quantification results obtained from SWC showed good agreement with those from a conventional HPLC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Soni, K. G. Carabin, and G. A. Burdock, Food Chem. Toxicol., 2005, 43, 985.

    Article  CAS  PubMed  Google Scholar 

  2. Ministry of Health and Welfare Notification No.331 of 2000, “Standards for Cosmetics”, 2000, Ministry of Health and Welfare, Tokyo.

  3. E. J. Routledge, J. Parker, J. Odum, J. Ashby, and J. P. Sumpter, Toxicol. Appl. Pharmacol., 1998, 153, 12.

    Article  CAS  PubMed  Google Scholar 

  4. S. Oishi, Food Chem. Toxicol., 2002, 40, 1807.

    Article  CAS  PubMed  Google Scholar 

  5. P. D. Darbre and P. W. Harvey, J. Appl. Toxicol., 2008, 28, 561.

    Article  CAS  PubMed  Google Scholar 

  6. P. D. Darbre, A. Aljarrah, W. R. Millar, N. G. Coldham, M. J. Sauer, and G. S. Pope, J. Appl. Toxicol., 2004, 24, 5.

    Article  CAS  PubMed  Google Scholar 

  7. Methods of Analysis in Health Science 2005”, ed. The Pharmaceutical Society of Japan, 2005, Kanehara Shuppan, Tokyo, 668.

  8. H. Tokunaga, O. Takeuchi, R. Ko, T. Uchino, and M. Ando, Bull. Natl. Inst. Health Sci., 2003, 121, 25.

    CAS  Google Scholar 

  9. N. Jones, A. A. Clifford, K. D. Bartle, and P. J. Myers, J. Sep. Sci., 2010, 33, 3107.

    Article  CAS  PubMed  Google Scholar 

  10. A. G. Carr, R. Mammucari, and N. R. Foster, Chem. Eng. J., 2011, 172, 1.

    Article  CAS  Google Scholar 

  11. R. M. Smith and R. J. Burgess, Anal. Commun., 1996, 33, 327.

    Article  CAS  Google Scholar 

  12. R. M. Smith and R. J. Burgess, J. Chromatogr., A, 1997, 785, 49.

    Article  CAS  Google Scholar 

  13. R. M. Smith, J. Chromatogr., A, 2008, 1184, 441.

    Article  CAS  PubMed  Google Scholar 

  14. K. Hartonen and M.-L. Riekkola, Trends Anal. Chem., 2008, 27, 1.

    Article  CAS  Google Scholar 

  15. C. J. Welch, N. Wu, M. Biba, R. Hartman, T. Brkovic, X. Gong, R. Helmy, W. Schafer, J. Cuff, Z. Pirzada, and L. Zhou, Trends Anal. Chem., 2010, 29, 667.

    Article  CAS  Google Scholar 

  16. R. Nakajima, T. Yarita, and M. Shibukawa, Bunseki Kagaku, 2003, 52, 305.

    Article  CAS  Google Scholar 

  17. E. Young, R. M. Smith, B. L. Sharp, and J. Bone, J. Chromatogr., A, 2012, 1236, 21.

    Article  CAS  PubMed  Google Scholar 

  18. T. Yarita, R. Nakajima, K. Shimada, S. Kinugasa, and M. Shibukawa, Anal. Sci., 2005, 21, 1001.

    Article  CAS  PubMed  Google Scholar 

  19. T. Teutenberg, Anal. Chem. Acta, 2009, 643, 1.

    Article  CAS  Google Scholar 

  20. B. Yan, J. Zhao, J. S. Brown, J. Blackwell, and P. W. Carr, Anal. Chem., 2000, 72, 1253.

    Article  CAS  PubMed  Google Scholar 

  21. T. S. Kephart and P. K. Dasgupta, Talanta, 2002, 56, 977.

    Article  Google Scholar 

  22. D. Guillarme, S. Heinisch, J. Y. Gauvrit, P. Lanteri, and J. L. Rocca, J. Chromatogr., A, 2005, 1078, 22.

    Article  CAS  PubMed  Google Scholar 

  23. T. Teutenberg, H.-J. Goetze, J. Tuerk, J. Ploeger, T. K. Kiffmeyer, K. G. Schmidt, W. gr. Kohorst, T. Rohe, H.-D. Jansen, and H. Weber, J. Chromatogr., A, 2006, 1114, 89.

    Article  CAS  PubMed  Google Scholar 

  24. T. Yarita, R. Nakajima, and M. Shibukawa, Anal. Sci., 2003, 19, 269.

    Article  CAS  PubMed  Google Scholar 

  25. R. M. Smith, R. J. Burgess, O. Chienthavorn, and J. R. Bone, LC-GC Int., 1999, 17, 30.

    Google Scholar 

  26. R. Tajuddin and R. M. Smith, Analyst, 2000, 127, 883.

    Article  Google Scholar 

  27. P. Dugo, K. Buonasera, M. L. Crupi, F. Cacciola, G. Dugo, and L. Mondello, J. Sep. Sci., 2007, 30, 1125.

    Article  CAS  PubMed  Google Scholar 

  28. HPLC Column Product Guide 2009-2010, ZirChrom Separations, Inc., http://www.zirchrom.com/pdf/2009catalog.pdf.

  29. J. D. Thompson, J. S. Brown, and P. W. Carr, Anal. Chem., 2001, 73, 3340.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yarita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yarita, T., Aoyagi, Y., Sasai, H. et al. Separation of Parabens on a Zirconia-Based Stationary Phase in Superheated Water Chromatography. ANAL. SCI. 29, 213–219 (2013). https://doi.org/10.2116/analsci.29.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.29.213

Navigation