Skip to main content
Log in

Evaluation of the Stability of Iron(II) Solutions by Precise Coulometric Titration with Electrogenerated Cerium(IV)

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An iron(II) solution is often used as a reducing agent in titrimetry and standardized with cerium(IV) or potassium dichromate. Such an iron(II) standard solution is needed for not only titrimetric analyses, but also instrumental ones. Iron(II) is unstable even in a highly acidic solution, mainly due to air-oxidation; therefore, its standardization is required before use. In the present study, the concentration of an iron(II) solution was accurately determined by coulometric titration with electrogenerated cerium(IV), and also by gravimetric titration with a standard potassium dichromate; new useful information concerning the stability of iron(II) solutions in aqueous sulfuric acid was obtained. The current efficiency of the coulometric titration with electrogenerated cerium(IV) was not very high; however, it was found that the titration efficiency was sufficient to assay an iron(II) solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Kolthoff and R. Belcher, “Volumetric Analysis, Volume III Titration Methods: Oxidation-Reduction Reactions”, 1957, Interscience Publications, Inc., New York.

  2. American Chemical Society, “American Chemical Society Specifications—Reagent Chemicals”, 9th ed., 2000, Oxford University Press, New York.

  3. JIS K 8001, “General Rule for Test Methods of Reagents”, 2009, Japanese Industrial Standards Committee, Tokyo.

  4. J. W. McBain, J. Phys. Chem., 1901, 5, 623.

    Article  CAS  Google Scholar 

  5. K. A. Kobe and W. Dickey, Ind. Eng. Chem., 1945, 37, 429.

    Article  CAS  Google Scholar 

  6. J. Weiss, Cell. Mol. Life Sci., 1953, 9, 61.

    Article  CAS  Google Scholar 

  7. R. E. Huffman and N. Davidson, J. Am. Chem. Soc., 1956, 78, 4836.

    Article  Google Scholar 

  8. T. Chmielewski and A. Charewicz, Hydrometallurgy, 1984, 12, 21.

    Article  CAS  Google Scholar 

  9. M. R. Rönnholm, J. Wärnå, T. Salmi, I. Turunen, and M. Luoma, Chem. Eng. Sci., 1999, 54, 4223.

    Article  Google Scholar 

  10. B. Morgen and O. Lahav, Chemosphere, 2007, 68, 2080.

    Article  Google Scholar 

  11. J. R. Pound, J. Phys. Colloid. Chem., 1948, 52, 1103.

    Article  CAS  PubMed  Google Scholar 

  12. J. King and N. Davidson, J. Am. Chem. Soc., 1958, 80, 1542.

    Article  CAS  Google Scholar 

  13. W. Stumm and G. F. Lee, Ind. Eng. Chem., 1961, 53, 143.

    Article  CAS  Google Scholar 

  14. W. Sung and J. J. Morgan, Environ. Sci. Technol., 1980, 14, 561.

    Article  CAS  Google Scholar 

  15. E. R. Brown and J. D. Mazzarella, J. Electroanal. Chem., 1987, 222, 173.

    Article  CAS  Google Scholar 

  16. G. S. Hammond and C. S. Wu, “Oxidation of Organic Compounds”, 1968, Chap. 75, American Chemical Society, Washington, D.C.

  17. F. J. Millero, S. Sotolongo, and M. Izaguirre, Geochim. Cosmochim. Acta, 1987, 51, 793.

    Article  CAS  Google Scholar 

  18. G. Bouboukas, A. Gaunand, and H. Renon, Hydrometallurgy, 1987, 19, 25.

    Article  CAS  Google Scholar 

  19. D. W. King, Environ. Sci. Technol., 1998, 32, 2997.

    Article  CAS  Google Scholar 

  20. L. Emmenegger, D. W. King, L. Sigg, and B. Sulzberger, Environ. Sci. Technol., 1998, 32, 2990.

    Article  CAS  Google Scholar 

  21. A. L. Rose and T. D. Wate, Environ. Sci. Technol., 2002, 36, 433.

    Article  CAS  PubMed  Google Scholar 

  22. B. Park and B. A. Dempsey, Environ. Sci. Technol., 2005, 39, 6494.

    Article  CAS  PubMed  Google Scholar 

  23. A. Barnes, D. J. Sapsford, M. Dey, and K. P. Williams, J. Geochem. Explor., 2009, 100, 192.

    Article  CAS  Google Scholar 

  24. A. G. González, J. M. Santana-Casiano, N. Pérez, and M. González-Dávila, Environ. Sci. Technol., 2010, 44, 8095.

    Article  PubMed  Google Scholar 

  25. N. H. Furman, W. D. Cooke, and C. N. Reilley, Anal. Chem., 1951, 23, 945.

    Article  CAS  Google Scholar 

  26. E. Bishop and P. Cofré, Analyst, 1981, 106, 316.

    Article  CAS  Google Scholar 

  27. P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys., 2008, 80, 633.

    Article  CAS  Google Scholar 

  28. T. Asakai and A. Hioki, Accred. Qual. Assur., 2012, 17, 45.

    Article  CAS  Google Scholar 

  29. NMIJ Certified Reference Materials Catalog 2010 – 2011, prepared by National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), http://www.nmij.jp/.

  30. D. R. Lide, “CRC Handbook of Chemistry and Physics”, 86th ed., 2005, CRC Press, Boca Raton.

  31. T. Asakai and A. Hioki, Accred. Qual. Assur., 2010, 15, 391.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Asakai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asakai, T., Hioki, A. Evaluation of the Stability of Iron(II) Solutions by Precise Coulometric Titration with Electrogenerated Cerium(IV). ANAL. SCI. 28, 601–605 (2012). https://doi.org/10.2116/analsci.28.601

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.28.601

Navigation