Skip to main content
Log in

Highly Sensitive Determination of Cadmium and Lead in Leached Solutions from Ceramic Ware by Graphite Furnace Atomic Absorption Spectrometry Coupled with Sequential Injection-based Solid Phase Extraction Method

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A fully automated pretreatment system based on sequential injection solid-phase extraction (SPE) coupled to a graphite furnace atomic absorption spectrometer (Auto-Pret-GFAAS system) was developed to determine trace amounts of cadmium and lead. A handmade minicolumn packed with a chelating resin was used for the preconcentration of both metals. All protocol for the on-line SPE method was controlled by home-made software. A trigger switch that was placed next to the graphite furnace was used to synchronize the home-made software with built-in software in the GFAAS. One milliliter of sample solution was flowed through into the minicolumn, the analytes were collected and concentrated on the solid phase, and the analytes were eluted with nitric acid (3 M), and detected by GFAAS. The limits of detection (3σ) for cadmium and lead were 0.20 and 2.6 ng L−1, respectively. The sample throughput was 47 h−1 for 1 mL sample loading. The proposed sensitive method with the original Auto-Pret-GFAAS system was applied to the determination of cadmium and lead in tap water and in leached solutions from ceramic ware using 4% acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Olsen, L. R. Pessenda, J. Ruzicka, and E. H. Hansen, Analyst, 1983, 108, 905.

    Article  CAS  Google Scholar 

  2. M. Trojanowics, “Flow injection analysis—Instrumentation and applications”, 2000, World Scientific.

  3. S. D. Kolev and I. D. McKelvie, “Advances inflow injection analysis and related techniques”, 2008, Elsevier.

  4. T. Yamane, M. Izawa, and S. Osada, Bull. Soc. Sea Water Sci. Jpn., 2006, 60, 352.

    CAS  Google Scholar 

  5. T. Yamane, Y. Kouzuka, and M. Hirokawa, Talanta, 2001, 55, 387.

    Article  CAS  PubMed  Google Scholar 

  6. Y. Narusawa, Anal. Chim. Acta, 1988, 204, 53.

    Article  CAS  Google Scholar 

  7. K. Grudpan, N. Warakijcharoenchai, O. Tue-Ngeun, P. Sooksamiti, and J. Jakmunee, ScienceAsia, 1999, 25, 99.

    Article  CAS  Google Scholar 

  8. T. Yamane and Y. Yamaguchi, Anal. Chim. Acta, 1997, 345, 139.

    Article  CAS  Google Scholar 

  9. T. Seki, H. Takigawa, Y. Hirano, Y. Ishibashi, and K. Oguma, Anal. Sci., 2000, 16, 513.

    Article  CAS  Google Scholar 

  10. Y. Bakircioglu, S. R. Segade, E. R. Yourd, and J. F. Tyson, Anal. Chim. Acta, 2003, 485, 9.

    Article  CAS  Google Scholar 

  11. G. A. Zachariadis, A. N. Anthemidis, P. G. Bettas, and J. A. Stratis, Talanta, 2002, 57, 919.

    Article  CAS  PubMed  Google Scholar 

  12. S. Dadfarnia, I. Green, and C. W. McLeod, Anal. Proc. Incl. Anal. Commun., 1994, 31, 61.

    Article  CAS  Google Scholar 

  13. Z. Sperling, X. Yin, and B. Welz, J. Anal. At. Spectrom., 1991, 6, 295.

    Article  CAS  Google Scholar 

  14. Y. Hirano, J. Nakajima, K. Oguma, and Y. Terui, Anal. Sci., 2001, 17, 1073.

    Article  CAS  PubMed  Google Scholar 

  15. J. Nakajima, Y. Hirano, and K. Oguma, Anal. Sci., 2003, 19, 585.

    Article  CAS  PubMed  Google Scholar 

  16. J. Ruzicka and G. D. Marshall, Anal. Chim. Acta, 1990, 237, 239.

    Article  Google Scholar 

  17. J. Wang and E. H. Hansen, TrAC, Trends Anal. Chem., 2003, 22, 836.

    Article  CAS  Google Scholar 

  18. A. Economou, TrAC, Trends Anal. Chem., 2005, 24, 416.

    Article  CAS  Google Scholar 

  19. P. Ampan, J. Ruzicka, R. Atallah, G. D. Christian, J. Jakmunee, and K. Grudpan, Anal. Chim. Acta, 2003, 499, 167.

    Article  CAS  Google Scholar 

  20. X. Long, M. Miró, and E. H. Hansen, Anal. Chem., 2005, 77, 6032.

    Article  CAS  PubMed  Google Scholar 

  21. S. C. Hight, J. AOAC Int., 2000, 83, 1174.

    Article  CAS  PubMed  Google Scholar 

  22. S. C. Hight, J. AOAC Int., 2001, 84, 861.

    Article  CAS  PubMed  Google Scholar 

  23. M. Kuramochi, K. Tomioka, M. Fujinami, and K. Oguma, Talanta, 2005, 68, 287.

    Article  CAS  PubMed  Google Scholar 

  24. A. Sabarudin, N. Lenghor, Y. Liping, Y. Furusho, and S. Motomizu, Spectrosc. Lett., 2006, 39, 669.

    Article  CAS  Google Scholar 

  25. R. K. Katarina, N. Lenghor, and S. Motomizu, Anal. Sci., 2007, 23, 343.

    Article  PubMed  Google Scholar 

  26. H. Sakamoto, K. Yamamoto, T. Shirasaki, and Y. Inoue, Bunseki Kagaku, 2006, 55, 133.

    Article  CAS  Google Scholar 

  27. Commentary on JIS S 2400, “Heat resistant ceramic tablewares”, 2000, Japanese Industrial Standards Committee, Tokyo.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadao Sakai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, M., Teshima, N., Sakai, T. et al. Highly Sensitive Determination of Cadmium and Lead in Leached Solutions from Ceramic Ware by Graphite Furnace Atomic Absorption Spectrometry Coupled with Sequential Injection-based Solid Phase Extraction Method. ANAL. SCI. 26, 597–602 (2010). https://doi.org/10.2116/analsci.26.597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.26.597

Navigation