Skip to main content
Log in

Recognition of Chemical Identity of Organic Adsorbates on Solid Surfaces at the Nanoscale by Molecular STM Tips

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This paper reviews chemically selective imaging at the single-atom/molecule level by molecular STM tips. The molecular tips enable the recognition of a particular chemical species on the basis of chemical interactions with a sample molecule, including hydrogen-bond, metal-coordination, and charge-transfer interactions. The chemical selectivity can be tailored by designing functional groups of the tip molecules. Moreover, the rational design of the molecular tip allows sophisticated chemical recognition. The discrimination of DNA bases and chiral recognition on a single molecule basis are thereby achieved. The molecular tips also revealed rectified electron transmission within an electron donor-acceptor molecular pair. Self-assembled monolayers, carboxylated carbon nanotube, and conducting polymers can be utilized for the preparation of molecular tips. This technique may be coined “intermolecular tunneling microscopy” as its principle goes, and is of general significance for novel molecular imaging of chemical identities at the membrane and solid surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ito, P. Bühlmann, and Y. Umezawa, Anal. Chem., 1998, 70, 255.

    Article  CAS  Google Scholar 

  2. T. Ito, P. Bühlmann, and Y. Umezawa, Anal. Chem., 1999, 71, 1699.

    Article  CAS  PubMed  Google Scholar 

  3. T. Nishino, P. Bühlmann, T. Ito, and Y. Umezawa, Phys. Chem. Chem. Phys., 2001, 3, 1867.

    Article  CAS  Google Scholar 

  4. T. Nishino, P. Bühlmann, T. Ito, and Y Umezawa, Surf. Sci., 2001, 490, L579.

    Article  Google Scholar 

  5. T. Nishino, T. Ito, and Y Umezawa, Anal. Chem., 2002, 74, 4275.

    Article  CAS  PubMed  Google Scholar 

  6. T. Ohshiro, T. Ito, P. Bühlmann, and Y. Umezawa, Anal. Chem., 2001, 73, 878.

    Article  CAS  PubMed  Google Scholar 

  7. T. Nishino, T. Ito, and Y Umezawa, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 5659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. T. Nishino, T. Ohshiro, and Y Umezawa, Jpn. J. Appl. Phys., 2007, 46, 5519.

    Article  CAS  Google Scholar 

  9. H. Imahori and Y Sakata, Eur. J. Org. Chem., 1999, 2445.

  10. P. D. W. Boyd, M. C. Hodgson, C. E. F. Rickard, A. G. Oliver, L. Chaker, P. J. Brothers, R. D. Bolskar, F. S. Tham, and C. A. Reed, J. Am. Chem. Soc, 1999, 121, 10487.

    Article  CAS  Google Scholar 

  11. D. M. Guldi, C. Luo, M. Prato, E. Dietel, and A. Hirsch, Chem. Commun., 2000, 373.

  12. D. M. Guldi, C. Luo, M. Prato, A. Troisi, F Zerbetto, M. Scheloske, E. Dietel, W. Bauer, and A. Hirsch, J. Am. Chem. Soc, 2001, 123, 9166.

    Article  CAS  PubMed  Google Scholar 

  13. L. Scudiero, D. E. Barlow, U. Mazur, and K. W. Hipps, J. Am. Chem. Soc, 2001, 123, 4073.

    Article  CAS  PubMed  Google Scholar 

  14. L. Scudiero, D. E. Barlow, and K. W. Hipps, J. Phys. Chem. B, 2000, 104, 11899.

    Article  CAS  Google Scholar 

  15. D. Barlow and K. W. Hipps, J. Phys. Chem. B, 2000, 104, 2444.

    Article  Google Scholar 

  16. Y.-B. Wang and Z. Lin, J. Am. Chem. Soc, 2003, 125, 6072.

    Article  CAS  PubMed  Google Scholar 

  17. A. M. Kuznetsov and J. Ulstrup, “Electron Transfer in Chemistry and Biology”, 1999, Wiley, New York.

    Google Scholar 

  18. H. B. Gray and J. R. Winkler, Proc. Natl. Acad. Sci, U. S. A., 2005, 102, 3534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. W Buchler, “Porphyrins and Metalloporphyrins”, 1976, Elsevier, Amsterdam.

    Google Scholar 

  20. K. M. Kadish, K. M. Smith, and R. Guilard, “The Porphyrin Handbook: Inorganic Organometallic and Coordination Chemistry”, 2000, Academic Press, New York.

    Google Scholar 

  21. T. Nishino and Y Umezawa, Anal. Chem., 2008, 80, 6968.

    Article  CAS  PubMed  Google Scholar 

  22. A. Kühnle, T. R. Linderoth, M. Schunack, and F Besenbacher, Langmuir, 2006, 22, 2156.

    Article  PubMed  Google Scholar 

  23. S. Ahuja, “Chiral Separations by Chromatography”, 2000, American Chemical Society, Washington, D.C.

    Google Scholar 

  24. W H. Pirkle and T. C. Pochapsky, Chem. Rev., 1989, 89, 347.

    Article  CAS  Google Scholar 

  25. A. Ulman, Chem. Rev., 1996, 96, 1533.

    Article  CAS  PubMed  Google Scholar 

  26. P. E. Nielsen, M. Egholm, R. H. Berg, and O. Buchardt, Science, 1991, 254, 1497.

    Article  CAS  PubMed  Google Scholar 

  27. M. P. Anantram and F Léonard, Rep. Prog. Phys., 2006, 69, 507.

    Article  CAS  Google Scholar 

  28. S. Ciraci, S. Dag, T. Yildirim, O. Gülseren, and R. T. Senger, J. Phys.: Condens. Matter, 2004, 16, R901.

    Google Scholar 

  29. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, Nature, 2004, 430, 870.

    Article  CAS  PubMed  Google Scholar 

  30. M. Ishigami, H. J. Choi, S. Aloni, S. G. Louie, M. L. Cohen, and A. Zettl, Phys. Rev. Lett., 2004, 93, 196803.

    Article  PubMed  Google Scholar 

  31. H. Kim, J. Lee, S.-J. Kahng, Y.-W. Son, S. B. Lee, C.-K. Lee, J. Ihm, and Y Kuk, Phys. Rev. Lett., 2003, 90, 216107.

    Article  PubMed  Google Scholar 

  32. L. C. Venema, V. Meunier, P. Lambin, and C. Dekker, Phys. Rev. B, 2000, 61, 2991.

    Article  CAS  Google Scholar 

  33. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science, 2000, 287, 622.

    Article  CAS  PubMed  Google Scholar 

  34. J. Kong and H. Dai, J. Phys. Chem. B, 2001, 105, 2890.

    Article  CAS  Google Scholar 

  35. V. Skákalová, A. B. Kaiser, U. Dettlaff-Weglikowska, K. Hrncariková, and S. Roth, J. Phys. Chem. B, 2005, 109, 7174.

    Article  PubMed  Google Scholar 

  36. J. A. Robinson, E. S. Snow, S. C. Badescu, T. L. Reinecke, and F K. Perkins, Nano Lett., 2006, 6, 1747.

    Article  CAS  PubMed  Google Scholar 

  37. G. Mpourmpakis and G. Froudakis, J. Chem. Phys., 2006, 125, 204707.

    Article  PubMed  Google Scholar 

  38. A. Nitzan and M. A. Ratner, Science, 2003, 300, 1384.

    Article  CAS  PubMed  Google Scholar 

  39. C. Joachim, J. K. Gimzewski, and A. Aviram, Nature, 2000, 408, 541.

    Article  CAS  PubMed  Google Scholar 

  40. R. L. Carroll and C. B. Gorman, Angew. Chem., Int. Ed. Engl., 2002, 41, 4378.

    Article  PubMed  Google Scholar 

  41. A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V. B. Engelkes, and C. D. Frisbie, Adv. Mater., 2003, 15, 1881.

    Article  CAS  Google Scholar 

  42. A. Aviram and M. A. Ratner, Chem. Phys. Lett., 1974, 29, 2 77.

  43. X. Yu, T. Mu, H. Huang, Z. Liu, and N. Wu, Surf. Sci., 2000, 461, 199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Nishino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishino, T., Umezawa, Y. Recognition of Chemical Identity of Organic Adsorbates on Solid Surfaces at the Nanoscale by Molecular STM Tips. ANAL. SCI. 26, 1023–1032 (2010). https://doi.org/10.2116/analsci.26.1023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.26.1023

Navigation