Skip to main content
Log in

Molecular Design of Tetraazamacrocyclic Derivatives Bearing a Spirobenzopyran and Three Carboxymethyl Moieties and Their Metal-Ion Complexing Behavior

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Tetraazacyclododecane and tetraazacyclotetradecane derivatives bearing a spirobenzopyran and three carboxymethyl moieties, 1 and 2, and a diethylenetriamine derivative bearing a spirobenzopyran and four carboxymethyl moieties 3 were synthesized. The isomerization behaviors based on the spirobenzopyran moiety of these ligands were studied by UV- visible spectrophotometry in aqueous solutions containing various metal ions at neutral pH. These ligands formed stable 1: 1 complexes with lanthanide ions, while the spirobenzopyran moiety was isomerized to its corresponding merocyanine form even under dark conditions. In aqueous solutions containing a lanthanide ion, the absorption spectra of 1 or 2 showed remarkable blue shifts, while absorbances at the maximum absorption wavelengths in the visible region were enhanced; such changes are attributable to the isomerization to the merocyanine form of the spirobenzopyran moiety. These results suggest that the phenolate anion of the merocyanine moiety interacts very strongly with a lanthanide ion bound by the complexing moiety because of the high charge density of lanthanide ions. In contrast, the absorbance of merocyanine form was decreased by the complexation of the macrocyclic ligand with transition metal ions, such as Cu2+ and Zn2+. This result indicates that macrocyclic ligands, 1 and 2, formed complexes with transition metal ions only by the aminocarboxylate moieties, and the phenolate ion of merocyanine moiety was not able to participate in the complexation. This conclusion was also demonstrated by density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sunamoto, K. Iwamoto, M. Akutagawa, M. Nagase, and H. Kondo, J. Am. Chem. Soc., 1982, 104, 4904.

    Article  CAS  Google Scholar 

  2. J. Sunamoto, K. Iwamoto, Y. Mohri, and T. Kominato, J. Am. Chem. Soc., 1982, 104, 5502.

    Article  CAS  Google Scholar 

  3. J. D. Winkler, K. Deshayes, and B. Shao, J. Am. Chem. Soc., 1989, 111, 769.

    Article  CAS  Google Scholar 

  4. K. Kimura, S. Kanakogi, and M. Yokoyama, Anal. Sci., 1996, 12, 399.

    Article  CAS  Google Scholar 

  5. H. Sakamoto, H. Takagaki, M. Nakamura, and K. Kimura, Anal. Chem., 2005, 77, 1999.

    Article  CAS  Google Scholar 

  6. K. Kimura, T. Yamashita, and M. Yokoyama, J. Chem. Soc., Chem. Commun., 1991, 147.

    Google Scholar 

  7. K. Kimura, T. Yamashita, and M. Yokoyama, Chem. Lett., 1991, 965.

    Google Scholar 

  8. K. Kimura, T. Yamashita, and M. Yokoyama, J. Phys. Chem., 1992, 96, 5614.

    Article  CAS  Google Scholar 

  9. M. Tanaka, K. Kamada, H. Ando, T. Kitagaki, Y. Shibutani, and K. Kimura, J. Org. Chem., 2000, 65, 4342.

    Article  CAS  Google Scholar 

  10. M. Tanaka, M. Nakamura, M. A. A. Salhin, T. Ikeda, K. Kamada, H. Ando, Y. Shibutani, and K. Kimura, J. Org. Chem., 2001, 66, 1533.

    Article  CAS  Google Scholar 

  11. K. Kimura, T. Teranishi, M. Yokoyama, S. Yajima, S. Miyake, H. Sakamoto, and M. Tanaka, J. Chem. Soc., Perkin Trans. 2, 1999, 199.

    Google Scholar 

  12. K. Kimura, H. Sakamoto, S. Kado, R. Arakawa, and M. Yokoyama, Analyst, 2000, 125, 1091.

    Article  CAS  Google Scholar 

  13. P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer, Chem. Rev., 1999, 99, 2293.

    Article  CAS  Google Scholar 

  14. M. P. Lowe, D. Parker, O. Reany, S. Aime, M. Botta, G. Castellano, E. Gianolio, and R. Pagliarin, J. Am. Chem. Soc., 2001, 123, 7601.

    Article  CAS  Google Scholar 

  15. W.-H. Li, G. Parigi, M. Fragai, C. Luchinat, and T. J. Meade, Inorg. Chem., 2002, 41, 4018.

    Article  CAS  Google Scholar 

  16. K. Hanaoka, K. Kikuchi, Y. Urano, M. Narazaki, T. Yokawa, S. Sakamoto, K. Yamaguchi, and T. Nagano, Chem. Biol., 2002, 9, 1027.

    Article  CAS  Google Scholar 

  17. R. Delgado, J. Costa, K. P. Guerra, and L. M. P. Lima, Pure Appl. Chem., 2005, 77, 569.

    Article  CAS  Google Scholar 

  18. C. A. Chang, L. C. Francesconi, M. F. Malley, K. Kumar, J. Z. Gougoutas, M. F. Tweedle, D. W. Lee, and L. J. Wilson, Inorg. Chem., 1993, 32, 3501.

    Article  CAS  Google Scholar 

  19. A. Riesen, M. Zehnder, and T. A. Kaden, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1991, 47, 531.

    Article  Google Scholar 

  20. S. K. Kim, S. H. Lee, J. Y. Lee, R. A. Bartsch, and J. S. Kim, J. Am. Chem. Soc., 2004, 126, 16499.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machitani, K., Sakamoto, H., Nakahara, Y. et al. Molecular Design of Tetraazamacrocyclic Derivatives Bearing a Spirobenzopyran and Three Carboxymethyl Moieties and Their Metal-Ion Complexing Behavior. ANAL. SCI. 24, 463–469 (2008). https://doi.org/10.2116/analsci.24.463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.24.463

Navigation