Skip to main content
Log in

A Bioelectrocatalysis Method for the Kinetic Measurement of Thermal Inactivation of a Redox Enzyme, Bilirubin Oxidase

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The thermal stability of a redox enzyme, bilirubin oxidase (BOD), has been quantitatively evaluated by measuring the inactivation kinetics of BOD at several temperatures. The enzyme activity is directly related to the mediated bioelectrocatalytic current for the BOD-catalyzed reduction of O2. Thus, the inactivation process is measured by the time-dependent decrease in the bioelectrocatalytic current. The results reveal that the inactivation obeys first-order kinetics, whose rate constants (k) are determined at pH 7.0 and at 50–70°C. The half life of BOD activity, calculated from the k value at 50°C is 114 min, which is in harmony with the thermal-stability data given in a catalog by Amano Enzyme Inc. The bioelectrocatalysis method allows in situ measurements of the inactivation kinetics in the period of a few minutes at relatively high temperatures. The rate constants show a large temperature dependence, leading to a large Arrhenius activation energy (EA) of 221 kJ mol-1. The activation Gibbs energy (ΔG), activation enthalpy (ΔH), and activation entropy (ΔS) are also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kouso Kougaku (Enzyme Technology, in Japanese)”, ed. S. Fukui, I. Chibata, and S. Suzuki, 1982, Tokyo-kagaku-dojin, Tokyo.

    Google Scholar 

  2. K. Kano and T. Ikeda, Bunseki (in Japanese), 2003, 576.

    Google Scholar 

  3. K. Kano and T. Ikeda, Electrochemistry, 2003, 71, 86.

    Article  CAS  Google Scholar 

  4. Baiodenkikagaku no Jissai—Baiosensa—Baiodenchi no Jitsuyou Tenkai (Practical Bioelectrochemistry—Recent Developments in Biosensors & Biofuel Cells, in Japanese), ed. T. Ikeda, 1982, CMC Publishing, Tokyo.

    Google Scholar 

  5. S. C. Barton, J. Gallaway, and P. Atanasov, Chem. Rev., 2004, 104, 4867.

    Article  CAS  Google Scholar 

  6. T. Hibi and Y. Nishiya, p.101 in Ref. 4.

  7. Thermal stability of enzymes is expressed as such in catalogs of enzyme companies. For example, the thermal stability of BOD appears in Amano Enzyme Catalog, 18 (http://www.amano-enzyme.co.jp/jp/productinfo/medical 03.html).

  8. T. Ikeda, Chem. Rec., 2004, 4, 192.

    Article  CAS  Google Scholar 

  9. S. Tsujimura, H. Tatsumi, J. Ogawa, S. Shimizu, K. Kano, and T. Ikeda, J. Electroanal. Chem., 2001, 496, 69.

    Article  CAS  Google Scholar 

  10. S. Tsujimura, M. Fujita, H. Tatsumi, K. Kano, and T. Ikeda, Phys. Chem. Chem. Phys., 2001, 3, 1331.

    Article  CAS  Google Scholar 

  11. S. Tsujimura, K. Kano, and T. Ikeda, Electrochemistry, 2002, 70, 940.

    Article  CAS  Google Scholar 

  12. A. Shimizu, J. H. Kwon, T. Satoh, N. Sakurai, T. Sakurai, S. Yamaguchi, and T. Samejima, Biochemistry, 1999, 38, 3034.

    Article  CAS  Google Scholar 

  13. T. Nakagawa, S. Tsujimura, K. Kano, and T. Ikeda, Chem. Lett., 2003, 32, 54.

    Article  CAS  Google Scholar 

  14. A. Shimizu, J. H. Kwon, T. Satoh, N. Sakurai, T. Sakurai, S. Yamaguchi, and T. Samejima, J. Biochem., 1999, 125, 662.

    Article  CAS  Google Scholar 

  15. S. Tsujimura, M. Kawahara, T. Nakagawa, K. Kano, and T. Ikeda, Electrochem. Commun., 2003, 5, 138.

    Article  CAS  Google Scholar 

  16. R. Matsumoto, K. Kano, and T. Ikeda, J. Electroanal. Chem., 2002, 535, 37.

    Article  CAS  Google Scholar 

  17. T. Ikeda, H. Tatsumi, H. Katano, and K. Kano, p. 38 in Ref. 4.

  18. A. J. Bard and L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, 1982, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 457.

    Google Scholar 

  19. T. Ikeda, H. Tatsumi, H. Katano, and K. Kano, p. 43 in Ref. 4.

  20. K. Hiromi, “Kouso Hannou Kaiseki no Jissai (Practice in Kinetic Analysis of Enzyme Reactions, in Japanese)”, 1982, Koudansya, Tokyo, 54.

    Google Scholar 

  21. T. K. Harris and V. L. Davidson, Biochem. J., 1994, 303, 141.

    Article  CAS  Google Scholar 

  22. A. N. Eremin, D. I. Metelitsa, Zh. F. Shishko, R. V. Mikhailova, M. I. Iasenko, and A. G. Lobanok, Prikl. Biokhim. Mikrobiol., 2001, 37, 678.

    CAS  PubMed  Google Scholar 

  23. M. D. Gouda, S. A. Singh, A. G. Rao, M. S. Thakur, and N. G. Karanth, J. Biol. Chem., 2003, 278, 24324.

    Article  CAS  Google Scholar 

  24. D. N. Rani and T. E. Abraham, Appl. Biochem. Biotechnol., 2006, 128, 215.

    Article  CAS  Google Scholar 

  25. S. Koikeda, K. Ando, H. Kaji, T. Inoue, S. Murao, K. Takeuchi, and T. Samejima, J. Biol. Chem., 1993, 268, 18801.

    Article  CAS  Google Scholar 

  26. A. Shimizu, J. H. Kwon, T. Sasaki, T. Satoh, N. Sakurai, T. Sakurai, S. Yamaguchi, and T. Samejima, Biochemistry, 1999, 38, 3034.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, T., Tatsumi, H., Katano, H. et al. A Bioelectrocatalysis Method for the Kinetic Measurement of Thermal Inactivation of a Redox Enzyme, Bilirubin Oxidase. ANAL. SCI. 24, 237–241 (2008). https://doi.org/10.2116/analsci.24.237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.24.237

Navigation