Skip to main content

Advertisement

Log in

Precise Size Determination of Amphotericin B and Nystatin Channels Formed in Erythrocyte and Liposomal Membranes Based on Osmotic Protection Experiments

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The colloid osmotic nature of the cell lysis can be prevented by adding osmotic protectants of appropriate sizes to the outer medium. We introduced inorganic and organic electrolytes as protectants to determine the precise channel sizes of the polyene antibiotics, amphotericin B and nystatin, in addition to the sugars so far widely used for this purpose. Because colloid osmotic cell lysis is evidenced by the loss of membrane permeability barriers for small sizes of ions, such as K+, preceding hemolysis, we firstly simultaneously monitored the time response of the K+ efflux and hemolysis induced by amphotericin B by combining a fiber-optic spectrometer with a K+-selective electrode. Based on this experiment, we evaluated the sizes of channels of the polyene antibiotics formed in the erythrocyte membrane using the radii of hydrated ions calculated from a modified Stokes’ law, as well as the radii of sugars. The radii of channels formed by amphotericin B and nystatin were found to be in a very narrow range of 0.36 - 0.37 nm. Similar experiments were performed using calcein-loaded liposomes containing cholesterol or ergosterol, and the radii of channels formed in these liposomal membranes were also found to be the same as when formed in an erythrocyte membrane. The present results demonstrated that introducing the sizes of hydrated ions can afford a more precise channel size than the use of sugars alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Katsu, C. Ninomiya, M. Kuroko, H. Kobayashi, T. Hirota, and Y. Fujita, Biochim. Biophys. Acta, 1988, 939, 57.

    Article  CAS  PubMed  Google Scholar 

  2. L.-M. Chi and W.-G. Wu, Biochim. Biophys. Acta, 1991, 1062, 46.

    Article  CAS  PubMed  Google Scholar 

  3. M. Moayeri and R. A. Welch, Infect. Immun., 1994, 62, 4124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. Brajtburg, G. Medoff, G. S. Kobayashi, S. Elberg, and C. Finegold, Antimicrob. Agents Chemother., 1980, 18, 586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. T. Katsu, Biol. Pharm. Bull, 1999, 22, 978.

    Article  CAS  PubMed  Google Scholar 

  6. T. Houdai, S. Matsuoka, N. Matsumori, and M. Murata, Biochim. Biophys. Acta, 2004, 1667, 91.

    Article  CAS  PubMed  Google Scholar 

  7. R. A. Robinson and R. H. Stokes, “Electrolyte Solutions,” 1959, Butterworths. London, 118.

    Google Scholar 

  8. T. Katsu, T. Imamura, K. Komagoe, K. Masuda, and T. Mizushima, Anal. Sci., 2007, 23, 517.

    Article  CAS  PubMed  Google Scholar 

  9. S. G. Schultz and A. K. Solomon, J. Gen. Physiol, 1961, 44, 1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. R. Scherrer and P. Gerhardt, J. Bacterial., 1971, 107, 718.

    Article  CAS  Google Scholar 

  11. T. Katsu, H. Kobayashi, and Y. Fujita, Biochim. Biophys. Acta, 1986, 860, 608.

    Article  CAS  PubMed  Google Scholar 

  12. T. Katsu and K. Nakashima, Analyst, 1999, 124, 883.

    Article  CAS  Google Scholar 

  13. R. B. Gennis, “Biomembranes,” 1989, Springer-Verlag, New York.

    Book  Google Scholar 

  14. B. A. Wallace, BioEssays, 2000, 22, 227.

    Article  CAS  PubMed  Google Scholar 

  15. T. Katsu, M. Kuroko, T. Morikawa, K. Sanchika, Y. Fujita, H. Yamamura, and M. Uda, Biochim. Biophys. Acta, 1989, 983, 135.

    Article  CAS  PubMed  Google Scholar 

  16. E. F. Gale, in “Macrolide Antibiotics. Chemistry, Biology and Practice” ed. S. Omura, 1984, Academic Press, New York, 425.

  17. J. Bolard, Biochim. Biophys. Acta, 1986, 864, 257.

    Article  CAS  PubMed  Google Scholar 

  18. A. Tossi, L. Sandri, and A. Giangaspero, Biopolymers, 2000, 55, 4.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Shai, Biopolymers, 2002, 66, 236.

    Article  CAS  PubMed  Google Scholar 

  20. A. Knopik-Skrocka, J. Bielawski, M. Glab, A. Klafaczynska, and M. Wulkiewicz, Cell. Mol. Biol. Lett., 2003, 8, 439.

    CAS  PubMed  Google Scholar 

  21. R. R. C. New, in “Liposomes: a Practical Approach,” ed. R. R. C. New, 1990, IR. Press, Oxford, 105.

  22. W. Tomisato, K. Tanaka, T. Katsu, H. Kakuta, K. Sasaki, S. Tsutsumi, T. Hoshino, M. Aburaya, D. Li, T. Tsuchiya, K. Suzuki, K. Yokomizo, and T. Mizushima, Biochem. Biophys. Res. Commun., 2004, 323, 1032.

    Article  CAS  PubMed  Google Scholar 

  23. D. J. Woodbury and C. Miller, Biophys. J., 1990, 58, 833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Katsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsu, T., Okada, S., Imamura, T. et al. Precise Size Determination of Amphotericin B and Nystatin Channels Formed in Erythrocyte and Liposomal Membranes Based on Osmotic Protection Experiments. ANAL. SCI. 24, 1551–1556 (2008). https://doi.org/10.2116/analsci.24.1551

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.24.1551

Navigation