Skip to main content
Log in

Triethylene Glycol Ether End-grafted Carbosilane Dendrimer: A Potential Ionophore for Potassium Ion Recognition

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The performance of a newly synthesized carbosilane dendrimer bearing four triethylene glycol ether (TEG) units, Si(CH2CH2CH2Si(Me)2CH2CH2CH2(OCH2CH2)3Me)4 (1), as ionophores in ion-selective electrodes has been investigated. Optimization of the plasticized polyvinyl chloride membrane composition has produced electrodes that exhibit a Nernstian response for potassium ions. The best general characteristics exhibited by the electrodes were found when the membrane composition ratio of DPE:1:NaTPB:PVC 60:3:2:35 (wt%) was used. The response of the electrode was linear with a Nernstian slope of 58.3 mV/decade over the K+ ion concentration range of 1.9 × 10–7 to 1.0 × 10–1 M with a detection limit of 3.1 × 10–7 M. The response time to achieve a 95% steady potential for the K+ concentration ranging from 1.0 × 10–1 to 1.0 × 10–8 M was less than 10 s, and it was found that the electrode is suitable for use within a pH range of 5.5–8.5. The selectivity coefficients (log KKP o+,tMn+), which were determined by the fixed interference method, showed good selectivity for K+ against most of the interfering cations. The influence of this selective ion-binding behavior using electrospray ionization time-of-flight (ESI-TOF) mass spectrometric studies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ammann, W. E. Morf, P. Anker, P. C. Meier, E. Pretsch, and W. Simon, Ion-Selective Electrode Revs., 1983, 5, 3.

    Article  CAS  Google Scholar 

  2. D. Lee and J. D. R. Thomas, Talanta, 1994, 41, 901.

    Article  CAS  Google Scholar 

  3. G. J. Moody, B. B. Saad, and J. D. R. Thomas, Analyst, 1989, 114, 15.

    Article  CAS  Google Scholar 

  4. M. Yamauchi, A. Jyo, and N. Ishibashi, Anal. Chim. Acta, 1982, 136, 399.

    Article  CAS  Google Scholar 

  5. S. M. Tuladhar, G. Williams, and C. D’Silva, Anal. Chem., 1991, 63, 2282.

    Article  CAS  Google Scholar 

  6. G. J. Moody, B. B. Saad, J. D. R. Thomas, F. H. Kohnke, and J. F. Stoddart, Analyst, 1988, 113, 1295.

    Article  CAS  Google Scholar 

  7. M. B. Saleh, F. Taha, and G. S. Aof, Electroanalysis, 1995, 7, 770.

    Article  CAS  Google Scholar 

  8. P. C. Pandey and R. Prakash, Sens. Actuators, 1998, 46, 61.

    Article  CAS  Google Scholar 

  9. S. Flink, B. A. Boukamp, A. Berg, F. C. J. M. van Veggel, and D. N. Reinhoudt, J. Am. Chem. Soc., 1998, 120, 4652.

    Article  CAS  Google Scholar 

  10. A. J. Moore, L. M. Goldenberg, M. R. Bryce, M. C. Petty, A. P. Monkman, C. Marenco, J. Yarwood, M. J. Joyce, and S. N. Port, Adv. Mater., 1998, 10, 395.

    Article  CAS  Google Scholar 

  11. R. Buschbeck, S. Mecklenburg, B. Lühmann, V. K. Gupta, and H. Lang, Synthesis, 2004, 16, 2727.

    Google Scholar 

  12. S. M. Blair, E. C. Kempen, and J. S. Brodbelt, J. Am. Soc. Mass Spectrom., 1998, 9, 1049.

    Article  CAS  Google Scholar 

  13. S. M. Blair, G. M. Reddy, A. P. Marchand, and J. S. Brodbelt, J. Mass Spectrom., 1998, 33, 721.

    Article  CAS  Google Scholar 

  14. V. K. Gupta, S. Chandra, and R. Mangla, Electrochim. Acta, 2002, 47, 1579.

    Article  CAS  Google Scholar 

  15. F. J. Saez deViteri and D. Diamond, Analyst, 1994, 119, 749.

    Article  Google Scholar 

  16. Y. Umezawa, K. Umezawa, and H. Sato, Pure Appl. Chem., 1995, 67, 507.

    Article  Google Scholar 

  17. Y. Umezawa, P. Bühlmann, K. Umezawa, K. Tohdal, and S. Amemiya, Pure Appl. Chem., 2000, 72, 1851.

    Article  CAS  Google Scholar 

  18. J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle, and J.-M. Lehn, “Comprehensive Supramolecular Chemistry”, 1996, Vol. 1, Elsevier Science Ltd., Oxford, New York, Tokyo.

  19. M. Lee and Y.-S. Yoo, J. Mater. Chem., 2002, 12, 2161.

    Article  CAS  Google Scholar 

  20. P. G. Bruce, Dalton Trans., 2006, 1365.

    Google Scholar 

  21. M. R. Ganjali, A. Moghimi, G. W. Buchanan, and M. Shamsipur, J. Incl. Phenom. Mol. Recog., 1998, 30, 29.

    Article  CAS  Google Scholar 

  22. P. M. Gehrig, W. E. Morf, M. Welti, E. Pretsch, and W. Simon, Helv. Chim. Acta, 1990, 73, 203.

    Article  CAS  Google Scholar 

  23. S. Kim, H. Kim, K. H. Noh, S. H. Lee, S. K. Kim, and J. S. Kim, Talanta, 2003, 61, 709.

    Article  CAS  Google Scholar 

  24. C. A. B. Garcia, L. R. Junior, and G. deOliveira, J. Pharm. Biomed. Anal., 2003, 31, 11.

    Article  CAS  Google Scholar 

  25. S. Oosaki, Y. Kawai, S. Yajima, and K. Kimura, Anal. Sci., 2004, 20, 1165.

    Article  CAS  Google Scholar 

  26. C. Diaz, J. C. Vidal, J. Galban, M. L. Urarta, and J. Laneja, Microchem. J., 1989, 39, 289.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, S., Buschbeck, R. & Lang, H. Triethylene Glycol Ether End-grafted Carbosilane Dendrimer: A Potential Ionophore for Potassium Ion Recognition. ANAL. SCI. 22, 1327–1332 (2006). https://doi.org/10.2116/analsci.22.1327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.22.1327

Navigation