Skip to main content
Log in

Effect of Spacer Length in Pyrene-Modified-Phenylboronic Acid Probe/CyD Complexes on Fluorescence-based Recognition of Monosaccharides in Aqueous Solution

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, Cn-APB (n = 1 – 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These Cn-APB/CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn-APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD (3-PB-γ-CyD), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. D. James, K. R. A. S. Sandanayake, and S. Shinkai, Angew. Chem., Int. Ed. Engl., 1996, 35, 1910.

    Article  Google Scholar 

  2. J. P. Lorand and J. O. Edwards, J. Org. Chem., 1959, 24, 769.

    Article  CAS  Google Scholar 

  3. Z. Bian, A. Liu, Y. Li, G. Fang, Q. Yao, G. Zhang, and Z. Wu, Analyst, 2020, 145, 719.

    Article  CAS  PubMed  Google Scholar 

  4. T. Kubo, K. Kanemori, R. Kusumoto, T. Kawai, K. Sueyoshi, T. Naito, and K. Otsuka, Anal. Chem., 2015, 87, 5068.

    Article  CAS  PubMed  Google Scholar 

  5. K. Sato, M. Takahashi, M. Ito, E. Abe, and J. Anzai, J. Mater. Chem. B, 2015, 3, 7796.

    Article  CAS  PubMed  Google Scholar 

  6. K. Sugita, Y. Tsuchido, C. Kasahara, M. A. Casulli, S. Fujiwara, T. Hashimoto, and T. Hayashita, Front. Chem., 2019, 7, 806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Y. Tsuchido, R. Sato, N. Nodomi, T. Hashimoto, K. Akiyoshi, and T. Hayashita, Langmuir, 2016, 32, 10761.

    Article  CAS  PubMed  Google Scholar 

  8. Y. Tsuchido, S. Fujiwara, T. Hashimoto, and T. Hayashita, Chem. Pharm. Bull., 2017, 65, 318.

    Article  CAS  Google Scholar 

  9. Y. Suzuki, A. Ikeda, K. Ohno, T. Fujihara, T. Sugaya, and K. Ishihara, J. Org. Chem., 2020, 85, 9680.

    Article  CAS  PubMed  Google Scholar 

  10. M. Mammen, S. K. Choi, and G. M. Whitesides, Angew. Chem. Int. Ed., 1998, 37, 2754.

    Article  Google Scholar 

  11. G. M. Pavan, A. Danani, S. Pricl, and D. K. Smith, J. Am. Chem. Soc., 2009, 131, 9686.

    Article  CAS  PubMed  Google Scholar 

  12. H. Wang, Z. Bie, C. Lü, and Z. Liu, Chem. Sci., 2013, 4, 4298.

    Article  CAS  Google Scholar 

  13. X. Wu, Z. Li, X. X. Chen, J. S. Fossey, T. D. James, and Y. B. Jiang, Chem. Soc. Rev., 2013, 42, 8032.

    Article  CAS  PubMed  Google Scholar 

  14. X. Wu, X.-X. Chen, and Y.-B. Jiang, Analyst, 2017, 142, 1403.

    Article  CAS  PubMed  Google Scholar 

  15. X. Sun and T. D. James, Chem. Rev., 2015, 115, 8001.

    Article  CAS  PubMed  Google Scholar 

  16. A.-J. Tong, A. Yamauchi, T. Hayashita, Z.-Y. Zhang, B. D. Smith, and N. Teramae, Anal. Chem., 2001, 73, 1530.

    Article  CAS  PubMed  Google Scholar 

  17. H. Kano, D. Tanoue, H. Shimaoka, K. Katano, T. Hashimoto, H. Kunugita, S. Nanbu, T. Hayashita, and K. Ema, Anal. Sci., 2014, 30, 643.

    Article  CAS  PubMed  Google Scholar 

  18. C. Shimpuku, R. Ozawa, A. Sasaki, F. Sato, T. Hashimoto, A. Yamauchi, I. Suzuki, and T. Hayashita, Chem. Commun., 2009, 1709.

  19. T. Hashimoto, M. Kumai, M. Maeda, K. Miyoshi, Y. Tsuchido, S. Fujiwara, and T. Hayashita, Front. Chem. Sci. Eng., 2020, 14, 53.

    Article  CAS  Google Scholar 

  20. M. Kumai, S. Kozuka, M. Samizo, T. Hashimoto, I. Suzuki, and T. Hayashita, Anal. Sci., 2012, 28, 121.

    Article  CAS  PubMed  Google Scholar 

  21. R. Ozawa, T. Hashimoto, A. Yamauchi, I. Suzuki, B. D. Smith, and T. Hayashita, Anal. Sci., 2008, 24, 207.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takeshi Hashimoto or Takashi Hayashita.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchido, Y., Kojima, S., Sugita, K. et al. Effect of Spacer Length in Pyrene-Modified-Phenylboronic Acid Probe/CyD Complexes on Fluorescence-based Recognition of Monosaccharides in Aqueous Solution. ANAL. SCI. 37, 721–726 (2021). https://doi.org/10.2116/analsci.20SCP08

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20SCP08

Keywords

Navigation