Skip to main content
Log in

DNA-Conjugated Polymers for Self-Assembled DNA Chip Fabrication

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We developed two DNA-conjugated polymers, one based on polyallylamine and the other on polyacrylic acid, for use in DNA chips. A 30-mer single-stranded DNA probe and thioctic acid were covalently attached to polyallylamine as sidechains. The same single-stranded DNA and 3-(pyridyldithio)propionyl hydrazide were covalently attached to polyacrylic acid as sidechains. Both DNA-conjugated polymers could be specifically immobilized onto a gold sensor substrate by a self-assembly technique. The interactions between fully matched DNA and each DNA-conjugated polymer were investigated by surface plasmon resonance. A gold surface modified with either DNA-conjugated polymer recognized fully matched DNA much better than unmatched DNA. The hybridization selectivity and efficiency of DNA-conjugated polyallylamine was optimized by adjusting the pH so as to reduce the effects of cationic polymer sidechains. The hybridization selectivity and efficiency of DNA-conjugated polymers were higher than those of a conventional immobilized thiol-based DNA. The coating of DNA-conjugated polymers reduced nonspecific adsorption of DNA by the gold substrate. DNA-conjugated polyacrylic acid was more selective toward fully matched DNA than was DNA-conjugated polyallylamine. Therefore, DNA-conjugated polymers show promise for application in novel DNA chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Taira, E. Tamiya, and K. Yokoyama, Electrochemistry, 2001, 69, 940.

    Article  CAS  Google Scholar 

  2. A. A. Karyakin, G. V. Presnova, M. Y. Rubtsova, and A. M. Egorov, Anal. Chem., 2000, 72, 703.

    Article  Google Scholar 

  3. A. B. Steel, T. M. Herne, and M. J. Tarlov, Anal. Chem., 1998, 70, 4670.

    Article  CAS  Google Scholar 

  4. H. Miyahara, K. Yamashita, M. Kanai, K. Uchida, M. Takagi, H. Kondo, and S. Takenaka, Talanta, 2002, 56, 829.

    Article  CAS  Google Scholar 

  5. B. L. Frey and R. M. Corn, Anal. Chem., 1996, 68, 3187.

    Article  CAS  Google Scholar 

  6. T. Wink, J. de Beer, W. E. Hennink, A. Bult, and W. P. van Bennekom, Anal. Chem., 1999, 71, 801.

    Article  CAS  Google Scholar 

  7. P. Cygnik, A. Budkowski, J. Raczkowska, and Z. Postawa, Surf. Sci., 2002, 700.

    Google Scholar 

  8. P. van de Wetering, J. Cherng, H. Talsma, and W. E. Hennink, J. Controlled Release, 1997, 49, 59.

    Article  Google Scholar 

  9. J. C. O’Brien, V. W. Jones, and M. D. Porter, Anal. Chem., 2000, 72, 703.

    Article  Google Scholar 

  10. Y. Dong and C. Shannon, Anal. Chem., 2000, 72, 2371.

    Article  CAS  Google Scholar 

  11. F. Causo, E. Rodda, D. N. Furong, K. Niikura, and Y. Okahata, Anal. Chem., 1997, 69, 2043.

    Article  Google Scholar 

  12. S. O. Kelly, J. K. Barton, N. M. Jackson, L. D. McPherson, A. B. Potter, E. M. Spain, M. J. Allen, and M. G. Hill, Langmuir, 1998, 14, 6781.

    Article  Google Scholar 

  13. E. M. Boon, J. E. Salas, and J. K. Barton, Nature Biotech., 2002, 20, 282.

    Article  CAS  Google Scholar 

  14. J. M. Brockman, A. G. Frutos, and R. M. Corn, J. Am. Chem. Soc., 1999, 121, 8044.

    Article  CAS  Google Scholar 

  15. T. Baas, L. Gamble, K. D. Hauch, D. G. Castner, and T. Sasaki, Langmuir, 2002, 18, 4898.

    Article  CAS  Google Scholar 

  16. E. Huang, M. Satjapipat, S. Han, and F. Zhou, Langmuir, 2001, 17, 1215.

    Article  CAS  Google Scholar 

  17. M. Satjapipat, R. Sanedrin, and F. Zhou, Langmuir, 2001, 17, 7637.

    Article  CAS  Google Scholar 

  18. T. M. Herne and M. J. Tarlov, J. Am. Chem. Soc., 1997, 119, 8916.

    Article  CAS  Google Scholar 

  19. P. Gwynne, Science, 1999, 23, 917 (advertisting supplement).

    Google Scholar 

  20. Z. Grabarek and J. Gergely, Anal. Biochem., 1990, 185, 131.

    Article  CAS  Google Scholar 

  21. T. Tsushima, H. Murakam, K. Wakai, O. Isozaki, Y. Sato, and K. Shizume, FEBS Lett., 1982, 147, 49.

    Article  CAS  Google Scholar 

  22. D. Y. Petrovykh, H. Kimura-Suda, L. J. Whitman, and M. J. Tarlov, J. Am. Chem. Soc., 2003, 125, 5219.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taira, S., Yokoyama, K. DNA-Conjugated Polymers for Self-Assembled DNA Chip Fabrication. ANAL. SCI. 20, 267–271 (2004). https://doi.org/10.2116/analsci.20.267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20.267

Navigation