Skip to main content
Log in

Strategic Approaches for Highly Selective and Sensitive Detection of Hg2+ Ion Using Mass Sensitive Sensors

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Here we present a quartz crystal microbalance (QCM) sensor for the highly selective and sensitive detection of Hg2+ ion, a toxic chemical species and a hazardous environmental contaminant. Hg2+ ion can be quantitatively measured based on changes in the resonance frequency of QCM following mass changes on the QCM sensor surface. The high selectivity for Hg2+ ion in this study can be obtained using a thymine-Hg2+-thymine pair, which is more stable than the adenine-thymine base pair in DNA. On the other hand, gold nanoparticles (AuNPs) and their size-enhancement techniques were used to amplify the QCM signals to increase the sensitivity for Hg2+ ion. With this strategic approach, the proposed QCM sensor can be used to quantitatively analyze Hg2+ ion with high selectivity and sensitivity. The detection limit was as low as 98.7 pM. The sensor failed to work with other metal ions at concentrations 1000-times higher than that of the Hg2+ ion. Finally, the recovery does not exceed 10% of the original value for the detection of Hg2+ ion in tap and bottled water. The results indicate acceptable accuracy and precision for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, and K. N. Beeregowda, Interdiscip. Toxicol., 2014, 7, 60.

    Article  Google Scholar 

  2. Y. Fan, Y. F. Long, and Y. F. Li, Anal. Chim. Acta, 2009, 653, 207.

    Article  CAS  Google Scholar 

  3. M. V. Yigit, A. Mishra, R. Tong, J. Cheng, G. C. L. Wong, and Y. Lu, Chem. Biol., 2009, 16, 937.

    Article  CAS  Google Scholar 

  4. J. R. Bhamore, B. Deshmukh, V. Haran, S. Jha, R. K. Singhal, N. Lenka, S. K. Kailasa, and Z. V. P. Murthy, New J. Chem., 2018, 42, 1510.

    Article  CAS  Google Scholar 

  5. Q. Wei, R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, R. Caire, D. Tseng, and A. Ozcan, ACS Nano, 2014, 8, 1121.

    Article  CAS  Google Scholar 

  6. D.-M. Wang, Q.-Q. Gai, R.-F. Huang, and X. Zheng, Biosens. Bioelectron., 2017, 98, 134.

    Article  CAS  Google Scholar 

  7. Z.-M. Dong and G.-C. Zhao, Sensors, 2012, 12, 7080.

    Article  CAS  Google Scholar 

  8. Z. Sheng, J. Han, J. Zhang, H. Zhao, and L. Jiang, Colloids Surf. B, 2011, 87, 289.

    Article  CAS  Google Scholar 

  9. J. Chu, C. Park, K. Jang, J. H. Shim, and S. Na, J. Mech. Sci. Technol., 2018, 32, 799.

    Article  Google Scholar 

  10. H. Yoshimine, T. Kojima, H. Furusawa, and Y. Okahata, Anal. Chem., 2011, 83, 8741.

    Article  CAS  Google Scholar 

  11. J. S. Lee, A. P. Ulmann, S. M. Han, and A. C. Mirkan, Nano Lett., 2008, 8, 529.

    Article  CAS  Google Scholar 

  12. H. Sota, H. Yoshimine, R. F. Whittier, M. Gotoh, Y. Shinohara, Y. Hasegawa, and Y. Okahata, Anal. Chem., 2002, 74, 3592.

    Article  CAS  Google Scholar 

  13. S. K. Vashist and P. Vashist, J. Sens., 2011, 571405.

    Google Scholar 

  14. C. Yao, T. Zhu, Y. Qi, Y. Zhao, H. Xia, and W. Fu, Sensors, 2010, 10, 5859.

    Article  CAS  Google Scholar 

  15. I. Mannelli, M. Minunni, S. Tombelli, and M. Mascini, Biosens. Bioelectron., 2003, 18, 1290.

    Article  Google Scholar 

  16. C. K. O’Sullivan and G. G. Guilbault, Biosens. Bioelectron., 1999, 14, 663.

    Article  Google Scholar 

  17. S. Heydari and G. H. Haghayegh, J. Sens. Technol., 2014, 4, 81.

    Article  Google Scholar 

  18. S. K. Vashist and J. H. T. Luong, “Quartz Crystal Microbalance-based Sensors”, in “Handbook of Immunoassay Technologies”, 1st ed., 2018, Academic Press, London, 333–357.

    Chapter  Google Scholar 

  19. T. Kojima, Anal. Sci., 2018, 34, 363.

    Article  CAS  Google Scholar 

  20. A. Ono and H. Togashi, Angew. Chem. Int. Ed., 2004, 43, 4300.

    Article  CAS  Google Scholar 

  21. G. H. Clever, C. Kaul, and T. Carell, Angew. Chem. Int. Ed., 2007, 46, 6226.

    Article  CAS  Google Scholar 

  22. T. Chen, S. Tan, W. Li, and Y. Zhu, Anal. Sci., 2017, 33, 1333.

    Article  Google Scholar 

  23. J. Du, L. Jiang, Q. Shao, X. Liu, R. S. Marks, J. Ma, and X. Chen, Small, 2013, 9, 1467.

    Article  CAS  Google Scholar 

  24. L. Li, B. Li, Y. Qi, and Y. Jin, Anal. Bioanal. Chem., 2009, 393, 2051.

    Article  CAS  Google Scholar 

  25. Y. Wang, F. Yang, and X. Yang, Biosens. Bioelectron., 2010, 25, 1994.

    Article  CAS  Google Scholar 

  26. T. Hu, X. Yan, W. Na, and X. Su, Microchim. Acta, 2016, 16, 1831.

    Google Scholar 

  27. B. Ding, C. Liu, Q. Wu, Y. Wang, and H. Yang, Anal. Sci., 2018, 34, 259.

    Article  CAS  Google Scholar 

  28. H. Zhang, Y. Guan, X. Li, L. Lian, X. Wang, W. Gao, B. Zhu, X. Liu, and D. Lou, Anal. Sci., 2018, 34, 1155.

    Article  CAS  Google Scholar 

  29. H. J. Park and S. S. Lee, Sens. Actuators, B, 2018, 258, 836.

    Article  CAS  Google Scholar 

  30. J. Kwak, H. J. Park, and S. S. Lee, Bull. Korean Chem. Soc., 2018, 39, 156.

    Article  CAS  Google Scholar 

  31. F. Hakimian, H. Ghourchian, A. Hashemi, M. R. Arastoo, and M. B. Rad, Sci. Rep., 2018, 8, 2943.

    Article  Google Scholar 

  32. G. Sauerbrey, Z. Phys., 1959, 155, 206.

    Article  CAS  Google Scholar 

  33. Y. Li, Z.-Y. Zhang, H.-H. Yang, G. Shao, and F. Gan, RCS Adv., 2018, 8, 3982.

    CAS  Google Scholar 

  34. Y. Zhang, G.-M. Zeng, L. Tang, Y.-P. Li, Z.-M. Chen, and G.-H. Huang, RSC Adv., 2014, 4, 18485.

    Article  CAS  Google Scholar 

  35. T. Li, G. Ling, and X. Li, Analyst, 2013, 138, 1898.

    Article  CAS  Google Scholar 

  36. S. Tang, P. Tong, W. Lu, J. Chen, Z. Yan, and L. Zhang, Biosens. Bioelectron., 2014, 59, 1.

    Article  CAS  Google Scholar 

  37. D. Xiang, K. Zhai, Q. Sang, B. Shi, and X. Yang, Anal. Sci., 2017, 33, 275.

    Article  CAS  Google Scholar 

  38. L. Wang, Y. Zhang, and Y. Dong, Sensors, 2018, 18, 3280.

    Article  Google Scholar 

  39. H. Yang, S.-B. Ye, Y. Fu, W. Zhang, F. Xie, L. Gong, P.-P. Fang, J. Chen, and Y. Tong, Nanomaterials, 2017, 7, 192.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Soonchunhyang University and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2016R1D1A3B 03934762).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Suk Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H.J., Lee, S.S. Strategic Approaches for Highly Selective and Sensitive Detection of Hg2+ Ion Using Mass Sensitive Sensors. ANAL. SCI. 35, 883–888 (2019). https://doi.org/10.2116/analsci.19P070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P070

Keywords

Navigation