Skip to main content
Log in

Nondestructive Speciation of Solid Mixtures by Multivariate Calibration of X-Ray Absorption Near-Edge Structure Using Artificial Neural Networks and Partial Least-Squares

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Two multivariate calibration methods, artificial neural networks (ANN) and partial least-squares (PLS), have been applied to the quantitative determination of iron species in solid mixtures by X-ray absorption near-edge structure (XANES). XANES spectra were successfully resolved by both methods, and the iron compounds in solid mixtures were quantified, even though the spectra of different compounds showed serious overlap. When iron compounds that were not contained in the model mixtures were subjected to the calibration model, ANN recognized the patterns of their XANES spectra as the nearest spectra of model compounds in shape, and gave more robust results than PLS. The self-absorption effect on the calculated values from XANES measured in the fluorescence mode was examined by comparing with transmission mode; it turned out that a spectral distortion by a self-absorption effect is irrelevant to the prediction performance of these multivariate calibration methods. The present study demonstrated that ANN and PLS are applicable to the chemical speciation of elements by XANES measured in the fluorescence mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Bertsch, D. B. Hunter, P. R. Nuessle, and S. B. Clark, J. Phys. IV, 1997, 7, 817.

    CAS  Google Scholar 

  2. D. G. Schulze and P. M. Bertsch, Advan. Agron., 1995, 55, 1.

    Article  CAS  Google Scholar 

  3. S. E. Fendorf, D. L. Sparks, G. M. Lamble, and M. J. Kelly, Soil Sci. Soc. Am. J., 1994, 58, 1583.

    Article  CAS  Google Scholar 

  4. A. Kuno, M. Matsuo, and C. Numako, J. Synchrotron Radiat., 1999, 6, 667.

    Article  CAS  Google Scholar 

  5. P. J. Gemperline, J. R. Long, and V. G. Gregoriou, Anal. Chem., 1991, 63, 2313.

    Article  CAS  Google Scholar 

  6. Y. Miyashita, H. Yoshida, O. Yaegashi, T. Kimura, H. Nishiyama, and S. Sasaki, J. Mol. Struct., 1994, 311, 241.

    Google Scholar 

  7. M. Otto and W. Wegscheider, Anal. Chem., 1985, 57, 63.

    Article  CAS  Google Scholar 

  8. J. J. Kelly, C. H. Barlow, T. M. Jinguji, and J. B. Callis, Anal. Chem., 1989, 61, 313.

    Article  CAS  Google Scholar 

  9. B. K. Lavine, Anal. Chem., 1998, 70, 209R.

  10. W. Lindberg, J.-A. Persson, and S. Wold, Anal. Chem., 1983, 55, 643.

    Article  CAS  Google Scholar 

  11. J. Zupan and J. Gasteiger, Anal. Chim. Acta, 1991, 248, 1.

    Article  CAS  Google Scholar 

  12. M. Tusar, J. Zupan, and J. Gasteiger, J. Chim. Phys. Phys. Chim. Biol., 1992, 89, 1517.

    Article  CAS  Google Scholar 

  13. D. E. Rumelhart and J. L. McClelland, “Parallel Distributed Processing”, 1986, MIT Press, Cambridge.

    Book  Google Scholar 

  14. J. L. McClelland and D. E. Rumelhart, “Explorations in Parallel Distributed Processing”, 1988, MIT Press, Cambridge.

    Google Scholar 

  15. J. R. Long, V. G. Gregoriou, and P. J. Gemperline, Anal. Chem., 1990, 62, 1791.

    Article  CAS  Google Scholar 

  16. H. Chan, A. Butler, D. M. Falck, and M. S. Freund, Anal. Chem., 1997, 69, 2373.

    Article  CAS  Google Scholar 

  17. B. J. Wythoff, S. P. Levine, and S. A. Tomellini, Anal. Chem., 1990, 62, 2702.

    Article  CAS  Google Scholar 

  18. K. Tanabe, T. Tamura, and H. Uesaka, Appl. Spectrosc., 1992, 46, 807.

    Article  CAS  Google Scholar 

  19. T. E. Westre, P. Kennepohl, J. G. DeWitt, B. Hedman, K. O. Hodgson, and E. I. Solomon, J. Am. Chem. Soc., 1997, 119, 6297.

    Article  CAS  Google Scholar 

  20. B. Walczak and W. Wegscheider, Anal. Chim. Acta, 1993, 283, 508.

    Article  CAS  Google Scholar 

  21. A. Iida and T. Noma, Jpn. J. Appl. Phys., 1993, 32, 2899.

    Article  CAS  Google Scholar 

  22. G. S. Waldo, R. M. K. Carlson, J. M. Moldowan, K. E. Peters, and J. E. Penner-Hahn, Geochim. Cosmochim. Acta, 1991, 55, 801.

    Article  CAS  Google Scholar 

  23. A. Kuno, M. Matsuo, and B. Takano, Hyperfine Interact., 1998, C3, 328.

    Google Scholar 

  24. S. Bajt, S. R. Sutton, and J. S. Delaney, Geochim. Cosmochim. Acta, 1994, 58, 5209.

    Article  CAS  Google Scholar 

  25. C. Gagnon, A. Mucci, and E. Pelletier, Geochim. Cosmochim. Acta, 1995, 59, 2663.

    Article  CAS  Google Scholar 

  26. L. G. Berry and B. Mason, “Mineralogy”, 1961, Freeman, San Francisco.

    Google Scholar 

  27. L. Galoisy, G. Calas, and G. E. Brown, Am. Mineral., 1995, 80, 1089.

    Article  CAS  Google Scholar 

  28. M. Nomura, A. Koyama, and M. Sakurai, KEK Report, 1991, 1, 1.

    Google Scholar 

  29. F. W. Lytle, R. B. Greegor, D. R. Sandstrom, E. C. Marques, J. Wong, C. L. Spiro, G. P. Huffman, and F. E. Huggins, Nucl. Instrum. Methods, 1984, 226, 542.

    Article  CAS  Google Scholar 

  30. J. A. Victoreen, J. Appl. Phys., 1948, 19, 855.

    Article  CAS  Google Scholar 

  31. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes in C”, 1988, Cambridge University Press, Cambridge.

    Google Scholar 

  32. J. Zupan and J. Gasteiger, “Neural Networks for Chemists”, 1993, VCH, Weinheim.

    Google Scholar 

  33. G. P. Huffman, S. Mitra, F. E. Huggins, N. Shah, S. Vaidya, and F. Lu, Energy Fuels, 1991, 5, 574.

    Article  CAS  Google Scholar 

  34. S. Bajt, S. B. Clark, S. R. Sutton, M. L. Rivers, and J. V. Smith, Anal. Chem., 1993, 65, 1800.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuno, A., Matsuo, M. Nondestructive Speciation of Solid Mixtures by Multivariate Calibration of X-Ray Absorption Near-Edge Structure Using Artificial Neural Networks and Partial Least-Squares. ANAL. SCI. 16, 597–602 (2000). https://doi.org/10.2116/analsci.16.597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.16.597

Navigation