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Abstract. The Möbius metric δG is studied in the cases, where its domain G is an open
sector of the complex plane. We introduce upper and lower bounds for this metric in terms
of the hyperbolic metric and the angle of the sector, and then use these results to find
bounds for the distortion of the Möbius metric under quasiregular mappings defined in
sector domains. Furthermore, we numerically study the Möbius metric and its connection
to the hyperbolic metric in polygon domains.
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1. Introduction

One of the most important concepts in the geometric function theory is the intrin-

sic distance. It means that, given two points in a domain, we do not only consider

how close these points are to each other but also how they are located with respect

to the boundary of the domain. In order to measure these kinds of distances, we

need to use suitable intrinsic or hyperbolic type metrics, which have been recently

studied, for instance, in [1], [5], [6], [7], [9], [12], [13], [14].

In this article, we focus on one of these intrinsic metrics, which is defined as follows:

For any domain G ⊂ R
n
= Rn ∪ {∞} whose complement (Rn \G) contains at least

two points, let the Möbius metric be the function δG : G×G→ [0,∞),

(1.1) δG(x, y) = sup
a,b∈∂G

log(1 + |a, x, b, y|),
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where |a, x, b, y| is the cross-ratio defined in (2.1). This metric was first introduced
in [17], pages 115–116 and then later studied more extensively by Seittenranta in

his PhD thesis (see [15], Definition 1.1, page 511), which is why it is sometimes also

referred to as Seittenranta’s metric.

Due to the Möbius invariance of the cross-ratio, the distances defined with the

Möbius metric are preserved under Möbius transformations, which is one of the most

useful properties of this metric. However, there are still numerous open questions

concerning this metric. For instance, while it is known that the value of this metric

is equal to that of the hyperbolic metric ̺ or the distance ratio metric j in some

special cases, see Theorems 2.1 and 3.1, the Möbius metric is studied very little in

other kinds of domains. To fill this gap, our aim here is to find more information

about the Möbius metric in the cases, where the domain G is either an open sector

of the complex plane or a polygon.

The main result of this article is as follows.

Theorem 1.1. For all points x, y in an open sector Sθ with an angle 0 < θ < 2π,

the following inequalities hold:

̺Sθ
(x, y) 6 δSθ

(x, y) 6 min
{

2,
(

π sin(12θ)

θ

)2}

̺Sθ
(x, y) if θ < π,(1)

δSθ
(x, y) = ̺Sθ

(x, y) if θ = π,(2)

max
{

2 arth
th(12̺Sθ

(x, y))

2
,
(

π sin(12θ)

θ

)2

̺Sθ
(x, y)

}

6 δSθ
(x, y) 6 4ψ if θ > π,(3)

where

ψ =

{

min{̺Sθ
(x, y), arth((θ/π) th(12̺Sθ

(x, y)))} if (θ/π) th(12̺Sθ
(x, y)) < 1,

̺Sθ
(x, y) otherwise.

The structure of this article is as follows. First, in Section 3, we combine some

already known inequalities to create some initial bounds for the Möbius metric in

a general domain. Then, in Section 4, we study the Möbius metric defined in an

open sector by showing how the supremum of the cross-ratio in its definition (1.1)

can be found. These results are used in Section 5, where we introduce bounds for the

Möbius metric in terms of the hyperbolic metric in a sector and prove Theorem 1.1.

In Section 6, we apply these results and prove bounds for the distortion of the Möbius

metric under quasiregular mappings of the unit disk into sector domains. Finally, in

Section 7, we utilise the recent computational methods from [11] to experimentally

study the inequalities between the Möbius and hyperbolic metric in polygon domains

and formulate a few conjectures.
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2. Preliminaries

First, introduce the following notations for the Euclidean metric. Let the distance

from a point x ∈ Rn to a nonempty set F ⊂ Rn be d(x, F ) = inf{|x−z| : z ∈ F}. For
a domain G ( Rn, put dG(x) = d(x, ∂G) for all x ∈ G. Let the Euclidean diameter

of a nonempty set F be d(F ) and the Euclidean distance between two nonempty

separate sets F0, F1 be d(F0, F1). Furthermore, denote the Euclidean open ball

with a center x ∈ Rn and a radius r > 0 by Bn(x, r), the corresponding closed ball

by B
n
(x, r) and its boundary sphere by Sn−1(x, r).

Let R
n
= Rn ∪ {∞} be as in the introduction, and also put Cn

= Cn ∪ {∞}.
For all distinct points x, y ∈ R

n
, introduce the spherical (chordal) metric as (see [6],

equation (3.6), page 29):

q(x, y) =
|x− y|

√

1 + |x|2
√

1 + |y|2
if x 6= ∞ 6= y; q(x,∞) =

1
√

1 + |x|2
.

For any four distinct points a, b, c, d ∈ R
n
, define the cross-ratio as (see [6], equa-

tion (3.10), page 33):

(2.1) |a, b, c, d| = q(a, c)q(b, d)

q(a, b)q(c, d)

and note that, if ∞ /∈ {a, b, c, d}, then this definition yields

|a, b, c, d| = |a− c||b− d|
|a− b||c− d| .

Other than the Möbius metric, we will be needing a few other hyperbolic type

metrics. Introduce the upper half-space Hn = {(x1, . . . , xn) ∈ Rn : xn > 0}, the unit
ball Bn = Bn(0, 1) and the open sector Sθ = {x ∈ C \ {0} : 0 < arg(x) < θ} with an
angle θ ∈ (0, 2π). Here, arg(x) ∈ [0, 2π) denotes the principal branch of the argument

of a complex number x ∈ C \ {0}. Now, we can introduce the hyperbolic metric in
these three domains by using the following formulas:

ch ̺Hn(x, y) = 1 +
|x− y|2

2dHn(x)dHn(y)
, x, y ∈ Hn,

sh2
̺Bn(x, y)

2
=

|x− y|2
(1− |x|2)(1 − |y|2) , x, y ∈ Bn,

̺Sθ
(x, y) = ̺H2(xπ/θ, yπ/θ), x, y ∈ Sθ,

respectively, see [6], equations (4.8) and (4.14). From these formulas, it follows that:

(2.2) th
̺H2(x, y)

2
=

∣

∣

∣

x− y

x− y

∣

∣

∣
, th

̺B2(x, y)

2
=
∣

∣

∣

x− y

1− xy

∣

∣

∣
,

where y is the complex conjugate of y.
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For a domain G ( Rn, the distance ratio metric (see [17], page 25) introduced by

Gehring and Palka (see [4]) is the function jG : G×G→ [0,∞),

jG(x, y) = log
(

1 +
|x− y|

min{dG(x), dG(y)}
)

.

As noted in [7], Subsection 2.2, page 1123 and Lemma 2.1, page 1124, this metric

can be used to define another metric, the so called j∗G-metric, j
∗
G : G×G→ [0, 1],

j∗G(x, y) = th
jG(x, y)

2
=

|x− y|
|x− y|+ 2min{dG(x), dG(y)}

.

Furthermore, the quasihyperbolic metric introduced by Gehring and Palka in [4] is

defined as the function kG : G×G→ [0,∞),

kG(x, y) = inf
γ∈Γxy

∫

γ

|dx|
dG(x)

,

where Γxy consists of all the rectifiable curves in G joining x and y. Consider yet

the triangular ratio metric (see [1], equation (1.1), page 683), sG : G×G→ [0, 1],

sG(x, y) =
|x− y|

inf
z∈∂G

(|x− z|+ |z − y|) ,

which was originally introduced by Hästö in 2002, see [8].

The following result expresses the main property of the Möbius metric.

Theorem 2.1 ([6], Theorem 5.16, page 75, [15]). The Möbius metric δG is Möbius

invariant: If G ⊂ R
n
is a domain such that R

n \G contains at least two points and
h : R

n → R
n
is a Möbius transformation, then for all x, y ∈ G

δh(G)(h(x), h(y)) = δG(x, y).

Furthermore, δG = ̺G for G ∈ {Bn,Hn}.

3. General inequalities

In this section, we briefly review a few already existing inequalities and show how

they can be used to create bounds for the Möbius metric. Note that the inequalities

found here concern mostly the situation, in which the shape of the domain G is not

known. For instance, Corollary 3.5 gives us an inequality for a simply connected

uniform domain G, but its constants are probably not very sharp when compared to

those that could be obtained when knowing the exact shape of the domain G.
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Theorem 3.1 ([6], Theorem 5.16, page 75). For all points x, y in a domain

G ( Rn,

jG(x, y) 6 δG(x, y) 6 2jG(x, y)

and in the special case G = Rn \ {0}, δG = jG.

Theorem 3.2 ([2], equation (3.2.1), page 35). For all points x, y in a simply

connected domain G ( R2,

1

2
kG(x, y) 6 ̺G(x, y) 6 2kG(x, y).

Theorem 3.3 ([6], Corollary 5.6, page 69). For all points x, y in a domain

G ( Rn, jG(x, y) 6 kG(x, y).

Definition 3.4 ([6], Definition 6.1, page 84, [10], Definition 2.4, page 8). A do-

main G ⊂ Rn is uniform if there exists a number A > 1 such that the inequality

kG(x, y) 6 AjG(x, y) holds for all x, y ∈ G and the smallest number A fulfilling this

condition is called the uniformity constant of G.

Corollary 3.5. If a domain G ( R2 is simply connected and uniform with the

uniformity constant AG, then

̺G(x, y)

(2AG)
6 δG(x, y) 6 4̺G(x, y)

for all x, y ∈ G.

P r o o f. Follows from Theorems 3.2 and 3.3, and Definition 3.4. �

Now, let us find some bounds for the Möbius metric in terms of the triangular ratio

metric and the j∗-metric in the cases of both a convex domainG and a nonconvex one.

Lemma 3.6 ([7], Lemma 2.1, page 1124, Lemma 2.2, page 1125 and Theo-

rem 2.9 (i), page 1129). For all points x, y in a domain G ( Rn,

j∗G(x, y) 6 sG(x, y) 6 2j∗G(x, y)

and, if G is convex, the constant 2 above can be replaced by
√
2.

Lemma 3.7 ([7], Lemma 2.7 (ii), page 1128). For all points x, y in a convex

domain G ( Rn,

th
jG(x, y)

2
6 sG(x, y) 6 th jG(x, y).
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Corollary 3.8. For a domain G ( Rn such that R
n \ G contains at least two

points and for all x, y ∈ G, the following inequalities hold:

(1) j∗G(x, y) 6 th(12δG(x, y)) 6 th(2 arth(j∗G(x, y))) 6 2j∗G(x, y),

(2) sG(x, y)/2 6 th(12δG(x, y)) 6 th(2 arth(sG(x, y))) 6 2sG(x, y).

Furthermore, if G is convex, then for all x, y ∈ G

(3) sG(x, y)/
√
2 6 th(12δG(x, y)),

(4) sG(x, y) 6 th(δG(x, y)).

P r o o f. (1) Follows from Theorem 3.1 and the definition of j∗-metric.

(2) Follows from the first inequality and Lemma 3.6.

(3) Follows from the first inequality and Lemma 3.6.

(4) Follows from Theorem 3.1 and Lemma 3.7. �

Finally, let us consider the case, where the domain G is an open sector. Note that

neither the inequalities of Corollary 3.10 nor Corollary 3.12 have the best possible

constants. In fact, they are only used to prove our main result (see Theorem 1.1) in

Section 5.

Theorem 3.9 ([14], Corollary 4.9, page 9). For a fixed angle θ ∈ (0, 2π) and for

all x, y ∈ Sθ, the following results hold:

(1) sSθ
(x, y) 6 th(12̺Sθ

(x, y)) 6 (π/θ) sin(12θ)sSθ
(x, y) if θ ∈ (0, π),

(2) sSθ
(x, y) = th(12̺Sθ

(x, y)) if θ = π,

(3) (π/θ)sSθ
(x, y) 6 th(12̺Sθ

(x, y)) 6 sSθ
(x, y) if θ ∈ (π, 2π).

Furthermore, these bounds are also sharp.

Corollary 3.10. For all points x, y ∈ Sθ, the following inequalities hold:

max
{

2 arth
( θ√

2π sin(12θ)
th
̺Sθ

(x, y)

2

)

, arth
( θ

π sin(12θ)
th
̺Sθ

(x, y)

2

)}

(1)

6 δSθ
(x, y) 6 2̺Sθ

(x, y) if 0 < θ < π,

2 arth
th(12̺Sθ

(x, y))

2
6 δSθ

(x, y) if π < θ < 2π,(2)

δSθ
(x, y) 6 4 arth

(θ

π

th
̺Sθ

(x, y)

2

)

if π < θ < 2π and
θ

π

th
̺Sθ

(x, y)

2
< 1.(3)

P r o o f. Follows from Corollary 3.8 and Theorem 3.9. �
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Theorem 3.11 ([10], Theorems 1.7 and 1.8, page 6). An open sector Sθ is uniform

with the constant Aθ that fulfills

Aθ =
1

sin(12θ)
+ 1 if 0 < θ 6 π, and

max
{

2,
2 log(tan(14θ)) + θ − π

log(1− 2 cos(12θ))

}

6 Aθ 6 4
( θ

2π − θ

)2( 1

sin(12θ)
+ 1

)

if π < θ < 2π.

Corollary 3.12. For all points x, y ∈ Sθ,

sin(12θ)

2(1 + sin(12θ))
̺Sθ

(x, y) 6 δSθ
(x, y) 6 4̺Sθ

(x, y) if 0 < θ 6 π,(1)

1

8

(2π

θ
− 1

)2 sin(12θ)

1 + sin(12θ)
̺Sθ

(x, y) 6 δSθ
(x, y) 6 4̺Sθ

(x, y) if π < θ < 2π.(2)

P r o o f. Follows from Corollary 3.5 and Theorem 3.11. �

4. Möbius metric in open sector

In this section, our aim is to find ways to estimate the value of the Möbius metric

defined in an open sector Sθ. To do this, we study the supremum of the cross-ratio

needed in the definition of the metric δSθ
in both the cases, where the angle θ is less

than π or greater than π. The main result of this section is Corollary 4.7 but, in

order to prove it, we need to consider several other results first.

Proposition 4.1.

(1) If x, y ∈ H2 such that |x| = |y| = r > 0 and arg(x) 6 arg(y), then

sup
a,b∈R

|a, x, b, y| = |r, x,−r, y|.

(2) If x, y ∈ iR ∩ B2 such that Im(x) 6 Im(y), then sup
a,b∈S1

|a, x, b, y| = | − i, x, i, y|.

P r o o f. Since δH2(x, y) = sup
a,b∈R

log(1 + |a, x, b, y|), both results can be verified by

the fact that δG = ̺G for G ∈ {Bn,Hn} according to Theorem 2.1. �

Lemma 4.2. For all points x, y in an open sector Sθ with an angle 0 < θ < π

such that arg(x) 6 arg(y) and |x| = |y| = r > 0, there is a Möbius transformation f

that maps Sθ onto the lens-shaped domain

B2((1− u)i, u) ∩B2((u − 1)i, u), u =
1

1− cos(12θ)
> 1,

and x, y into f(x), f(y) ∈ iR ∩ B2 so that Im(f(x)) 6 Im(f(y)).
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P r o o f. Define the function f : C → C,

(4.1) f(z) =
−i(1 + eθi/2)(z − reθi/2)

(1− eθi/2)(z + reθi/2)
.

Clearly, f is the Möbius transformation that fulfills

(4.2) f(r) = −i, f(reθi/2) = 0, f(reθi) = i, f(0) =
− sin(12θ)

1− cos(12θ)
= −f(∞).

By the general properties of Möbius transformations, f preserves the angles and must

turn a line into a circle if any three points chosen from it are no longer collinear after

the transformation. Thus, f maps two sides of the sector Sθ onto two circular arcs

that are symmetric with respect to the both coordinate axes, meet each other at the

points f(0) and f(∞) at an angle of θ, and out of which one contains the point i and

the other one the point −i, see Figure 1.

Consider a circle S1((1 − u)i, u), u > 1. Clearly, it is symmetric with respect to

the coordinate axes and i ∈ S1((1 − u)i, u). Using simple trigonometry, it can be

calculated that the two interior angles of the figure consisting of the real axis and

the circular arc S1((1− u)i, u) ∩H2 are

π

2
− arcsin

(u− 1

u

)

∈
(

0,
π

2

)

.

If the value of this angle is 1
2θ, we can solve that

(4.3) u =
1

1− cos(12θ)
.

By combining all our observations made above we have that for all 0 < θ < π,

f(∂Sθ) = (S1((1− u)i, u) ∩H2) ∪ (S1((u− 1)i, u) \H2),

f(Sθ) = B2((1 − u)i, u) ∩B2((u− 1)i, u),

where u is as in (4.3). The final part of the lemma is very trivial: From the behaviour

of the points in (4.2), we see that the transformation f maps the circle S1(0, r) onto

the imaginary axis and if x, y ∈ S1(0, r) such that 0 < arg(x) 6 arg(y) < θ, then

clearly f(x), f(y) ∈ [−i, i] so that −1 < Im(f(x)) 6 Im(f(y)) < 1. �

The result of Lemma 4.2 is very useful because it follows from the Möbius invari-

ance of the cross-ratio that the value of the Möbius metric between x, y ∈ Sθ can be

calculated in the lens-shaped symmetric domain f(Sθ) for f(x), f(y), see Figure 1.
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f

r

reθi/2reθi
θ
2

0

i

−i

θ
2

Figure 1. Sector Sθ before and after the Möbius transformation f defined in (4.1), when
θ = 3

4
π.

Theorem 4.3. For all 0 < θ < π and x, y ∈ Sθ such that arg(x) 6 arg(y) and

|x| = |y| = r > 0, the supremum sup
a,b∈∂Sθ

|a, x, b, y| is given by the points a = r and

b = reθi.

P r o o f. Let f be the Möbius transformation defined in (4.1), under which the

open sector Sθ with an angle 0 < θ < π is mapped onto a lens-shaped domain f(Sθ).

For all points x, y ∈ iR∩B2, choose a, b ∈ f(∂Sθ) so that the cross-ratio |a, x, b, y| is
at greatest. Note that, for all points u ∈ iR ∩ B2 and v ∈ C \ B2, the inequality

(4.4) max
{ |i− v|
|u− i| ,

| − i− v|
|u− (−i)|

}

> 1

holds. It follows from this that |x− a| 6 |a− b| holds, because otherwise replacing a
either by i or −i would give a greater value for the cross-ratio |a, x, b, y|.
Fix now a′ ∈ [x, a] ∩ S1. By the inequality |x − a| 6 |a − b| and the triangle

inequality,

(4.5)
|a− b|
|x− a| 6

|a− b| − |a− a′|
|x− a| − |a− a′| =

|a− b| − |a− a′|
|x− a′| 6

|a′ − b|
|x− a′| .

Let us yet show that there is a point b′ ∈ S1 such that

(4.6)
|a′ − b|
|y − b| 6

|a′ − b′|
|y − b′| .

If |y− b| 6 |a′− b| holds for the point b′ ∈ [y, b]∩S1, then the inequality (4.6) follows

from the triangle inequality just like (4.5). If |y − b| > |a′ − b| instead, then there is
b ∈ {i,−i} such that |y−b′| 6 |a′−b′| by the inequality (4.4) and the inequality (4.6)
clearly holds for this choice of b′.

Thus, if a, b ∈ f(∂Sθ) give the supremum of |a, x, b, y| for given points x, y ∈ iR∩B2

and a′, b′ are chosen like above, it follows from the inequalities (4.5) and (4.6) that

|a, x, b, y| 6 |a′, x, b, y| 6 |a′, x, b′, y| 6 sup
a′,b′∈S1

|a′, x, b′, y|.
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By Proposition 4.1 (2) if x, y∈ iR∩B2 such that Im(x)6 Im(y), then sup
a′,b′∈S1

|a′, x, b′, y|

is given by a = −i and b = i. Since i,−i ∈ f(∂Sθ) ∩ S1, it must hold that

sup
a,b∈f(∂Sθ)

|a, x, b, y| = | − i, x, i, y|.

Because f preserves the cross-ratio as a Möbius transformation, we can now show

that, for all x, y ∈ Sθ such that |x| = |y| = r and arg(x) 6 arg(y),

sup
a,b∈∂Sθ

|a, x, b, y| = sup
a,b∈f(∂Sθ)

|a, f(x), b, f(y)| = | − i, f(x), i, f(y)| = |r, x, reθi, y|.

�

Note that Theorem 4.3 does not hold in the case θ > π, as the following example

shows.

Example 4.4. For x = e(1−k)θi/2 and y = e(1+k)θi/2 with 0 < k < 1 and

π < θ < 2π,

lim
k→0+

|1, x, eθi, y|
|0, x,∞, y| = lim

k→0+

sin(12θ)

2 sin2(14 (1 − k)θ)
=

sin(12θ)

2 sin2(14θ)
=

cos(14θ)

sin(14θ)
< 1

and it follows that sup
a,b∈∂Sθ

|a, x, b, y| is not attained with a = 1 and b = eθi.

However, we can still use Lemma 4.2 to calculate the supremum of the cross-ratio

in the Möbius metric for points x, y in a sector Sθ with θ > π, as can be seen from

the following result.

Corollary 4.5. For any open sector Sθ with an angle π < θ < 2π, there is

a Möbius transformation f that maps Sθ onto the domain

B2((1 − u)i, u) ∪B2((u− 1)i, u), u =
1

1− cos(12θ)
∈
(1

2
, 1
)

and for all x, y ∈ Sθ,

sup
a,b∈∂Sθ

|a, x, b, y| = sup
a,b∈f(∂Sθ)

|a, f(x), b, f(y)|.

P r o o f. Let the Möbius transformation f be as in (4.1) with, for instance, r = 1.

The proof now goes just like that of Theorem 4.3, but it must be noted that f

maps the sides of Sθ onto circular arcs that meet each other at an angle θ > π.

Thus, f(Sθ) must be a union of two disks B2((1− u)i, u) and B2((u− 1)i, u) instead

of their intersection and 1
2 < u < 1 now, see Figure 2. The final part of the proof

follows from the Möbius invariance of the cross-ratio. �
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Several computational experiments support the next conjecture.

Conjecture 4.6. If π < θ < 2π, and x = re(1−k)θi/2 and y = re(1+k)θi/2 with

r > 0 and 0 < k < 1, then

sup
a,b∈∂Sθ

|a, x, b, y| = max{|r, x, reθi, y|, |0, x,∞, y|}.

The results of this section about the supremum of the cross-ratio give us informa-

tion about the values of the Möbius metric δSθ
defined in a sector domain.

f

0 r

reθi/2

reθi

θ
2

i

0

−i

θ
2

Figure 2. Sector Sθ before and after the Möbius transformation f defined in (4.1), when
θ = 5

4
π.

Corollary 4.7. For all x, y ∈ Sθ with 0 < θ < 2π such that |x| = |y| and
arg(x) 6 arg(y),

δSθ
(x, y) > log

(

1 +
sin(12θ) sin(

1
2 (arg(y)− arg(x)))

sin(12 arg(x)) sin(
1
2 (θ − arg(y)))

)

,

where the equality holds whenever θ 6 π.

P r o o f. Let x = reui and y = revi with 0 < u 6 v < θ. By Theorem 4.3 and

Proposition 4.1 (1), the supremum sup
a,b∈∂Sθ

|a, x, y, b| is now found by choosing a = r

and b = reθi if θ 6 π, and these choices of a, b give a lower limit for the supremum

if θ > π. The result follows now directly from the definition of δSθ
(x, y). �

5. Möbius metric and hyperbolic metric in open sector

In this section, we study the connection between the Möbius metric and the hy-

perbolic metric in an open sector Sθ with an angle 0 < θ < 2π. The main result of

this section is Corollary 5.8, which will be used to prove Theorem 1.1. However, in

order to derive these results, we need to introduce the following quotient.
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For all 0 < k < 1 and 0 < θ < 2π, put

(5.1) Q(k, θ) ≡ log
(

1 +
sin(12θ) sin(

1
2kθ)

sin2(14 (1− k)θ)

)

/ log
(

1 +
sin(12kπ)

sin2(14 (1− k)π)

)

.

The quotient above is very much needed here because it equals to the value of the

quotient between the Möbius metric and the hyperbolic metric in certain cases, as

is shown in the next lemma.

Lemma 5.1. For all x, y ∈ Sθ such that x = re(1−k)θi/2 and y = re(1+k)θi/2 with

r > 0 and 0 < k < 1,

δSθ
(x, y)

̺Sθ
(x, y)

= Q(k, θ) if 0 < θ < π; and
δSθ

(x, y)

̺Sθ
(x, y)

> Q(k, θ) if π < θ < 2π.

P r o o f. Recall the trigonometric identities sin(u) = cos(12π − u) and cos(2v) =

1− 2 sin2(v). It follows from these that

1− sin
(1

2
kπ

)

= 1− cos
(1

2
(1− k)π

)

= 2 sin2
(1

4
(1− k)π

)

.

By using this formula, we have

̺Sθ
(x, y) = ̺Sθ

(re(1−k)θi/2, re(1+k)θi/2) = ̺H2(rπ/θe(1−k)πi/2, rπ/θe(1+k)πi/2)

= log
( |e(1−k)πi/2 − e−(1+k)πi/2|+ |e(1−k)πi/2 − e(1+k)πi/2|
|e(1−k)πi/2 − e−(1+k)πi/2| − |e(1−k)πi/2 − e(1+k)πi/2|

)

= log
(1 + sin(12kπ)

1− sin(12kπ)

)

= log
(

1 +
2 sin(12kπ)

1− sin(12kπ)

)

= log
(

1 +
sin(12kπ)

sin2(14 (1− k)π)

)

.

Combining the expression above and Corollary 4.7, our result follows. �

While the result of Lemma 5.1 holds only for the distinct points x, y ∈ Sθ that

are symmetric with respect to the angle bisector of the sector and fulfill |x| = |y|,
Corollary 5.4 shows us why studying the quotient Q(k, θ) is useful also outside these

restrictions.

Lemma 5.2 ([14], Lemma 4.2, pages 7–8). For given two distinct points x, y ∈ H2,

there exists a Möbius transformation g : H2 → H2 such that |g(x)| = |g(y)| = 1 and

Im(g(x)) = Im(g(y)).

(1) If Im(x) = Im(y), then g(z) = (z−a)/r, where a = Re(12 (x+y)) and r = |x−a|.
(2) If Re(x) = Re(y) = a and r =

√

Im(x) Im(y), then g is the Möbius transfor-

mation fulfilling g(a− r) = 0, g(a) = 1 and g(a+ r) = ∞.
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(3) In the remaining case, the angle α = ∡(L(x, y),R) belongs to (0, 12π). Let

S1(c1, r1) and S
1(c2, r2) be two circles centered at the real axis and orthogonal

to each other, such that x, y ∈ S1(c1, r1) and c2 = L(x, y) ∩ R. Then g is

determined by g(B2(c1, r1) ∩ H2) = B2 ∩ H2, g(c1 − r1) = −1, g(c1 + r1) = 1

and g(S1(c2, r2) ∩H2) = {yi : y > 0}.

Lemma 5.3 ([14], Lemma 4.5, page 8). For all distinct points x, y ∈ Sθ with

0 < θ < 2π, there is a conformal mapping f : Sθ → Sθ such that f(x) = e(1−k)θi/2

and f(y) = e(1+k)θi/2 for some k ∈ (0, 1).

P r o o f. Consider a conformal map h : Sθ → H2, h(z) = zπ/θ. Fix g : H2 → H2

as the Möbius invariant map of Lemma 5.2 for the points h(x), h(y). Intro-

duce a conformal mapping f = h−1 ◦ g ◦ h. Since |g(h(x))| = |g(h(y))| = 1

and Im(g(h(x))) = Im(g(h(y))), we can write g(h(x)) = e(1−k)πi/2 and g(h(y)) =

e(1+k)πi/2 for some 0 < k < 1. By using this k, we have the points f(x) = e(1−k)θi/2

and f(y) = e(1+k)θi/2. �

Corollary 5.4. For all 0 < θ < 2π and distinct x, y ∈ Sθ,

inf
0<k<1

Q(k, θ) 6
δSθ

(x, y)

̺Sθ
(x, y)

6 sup
0<k<1

Q(k, θ) if 0 < θ 6 π,

inf
0<k<1

Q(k, θ) 6
δSθ

(x, y)

̺Sθ
(x, y)

if π < θ < 2π,

where f(x) = e(1−k)θi/2 and f(y) = e(1+k)θi/2.

P r o o f. Let the mappings f , g, h be as in Lemma 5.2 and the proof of Lemma 5.3.

Note that, even though the mapping f does not necessarily preserve the dis-

tance δSθ
(x, y), by Theorem 2.1 and the conformal invariance of the hyperbolic

metric,

δH2(h(x), h(y)) = δH2(g(h(x)), g(h(y))) = ̺H2(g(h(x)), g(h(y))) = ̺H2(h(x), h(y)),

̺Sθ
(x, y) = ̺Sθ

(f(x), f(y))

for all points x, y ∈ Sθ. It follows from this that

inf
x,y∈Sθ

δSθ
(f(x), f(y))

̺Sθ
(f(x), f(y))

6
δSθ

(x, y)

̺Sθ
(x, y)

6 sup
x,y∈Sθ

δSθ
(f(x), f(y))

̺Sθ
(f(x), f(y))

,

which leads to the result of our corollary by Lemmas 5.1 and 5.3. �
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Before studying the values of the quotientQ(k, θ), consider yet the following propo-

sition.

Proposition 5.5.

(1) For all constants u, v ∈ (0, π], the quotients sin(uk)/ sin(vk) and sin((1 − k)v)/

sin((1− k)u) are increasing with respect to 0 < k < 1 if and only if u 6 v, and

decreasing if u > v instead.

(2) The quotient sin(12 t)/t is decreasing with respect to 0 < t < 2π.

(3) The quotient t sin(t)/ sin2(12 t) is decreasing with respect to 0 < t < 2π.

(4) The quotient log(1 + µq)/ log(1 + q) is increasing with respect to q > 0 if

0 < µ 6 1, and decreasing if µ > 1.

P r o o f. (1) First, introduce a function f1 : [0, π] → R, f1(t) = sin(12 t) − 2t, and

note that by calculus f1(t) 6 0 for all 0 6 t 6 π. Now, consider the function

f2 : (0, π] → R, f2(u) = u cos(uk)/ sin(uk) with 0 < k < 1. By differentiation and

simple trigonometric identities,

f ′
2(u) =

sin(12uk)− 2uk

2 sin2(uk)
=

f1(uk)

2 sin2(uk)
6 0

so f2 is decreasing with respect to 0 < u 6 π. Finally, denote f3 : (0, 1) → R,

f3(k) = sin(uk)/ sin(vk), where u, v ∈ (0, π] are constants. By differentiation,

f ′
3(k) =

u cos(uk) sin(vk) − v sin(uk) cos(vk)

sin2(vk)
> 0

⇔ u cos(uk)

sin(uk)
>
v cos(vk)

sin(vk)
⇔ f2(u) > f2(v) ⇔ u 6 v.

This is enough to prove the result because 1/f3(1 − k) is increasing (or decreasing)

with respect to 0 < k < 1 whenever f3 is.

(2) Introduce f4, f5 : (0, 2π) → R, f4(t) = sin(12 t), f5(t) = t. Since f4(0) =

f5(0) = 0 and f ′
4(t)/f

′
5(t) =

1
2 cos(

1
2 t) is decreasing with respect to t, by [6], Theo-

rem B.2, page 465, f4(t)/f5(t) is decreasing, too.

(3) Denote f6 : (0, 2π) → R, f6(t) = t sin(t)/ sin2(12 t). By differentiation and some

trigonometric identities,

f ′
6(t) =

(sin(t) + t cos(t))(1 − cos(t))− t sin2(t)

2 sin4(12 t)
=

(sin(t)− t)(1− cos(t))

2 sin4(12 t)
6 0,

so f6 is decreasing for 0 < t < 2π.
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(4) Introduce f7, f8 : (0,∞) → R, f7(q) = log(1 + µq), f8(q) = log(1 + q). Note

that f7(0) = f8(0) = 0 and f ′
7(q)/f

′
8(q) = µ(1+q)/(1+µq) is increasing with respect

to q > 0 if 0 < µ 6 1 and decreasing if µ > 1. By [6], Theorem B.2, page 465,

the quotient f7(q)/f8(q) is increasing (or decreasing) whenever f ′
7(q)/f

′
8(q) is, so the

result follows. �

Theorem 5.6. For all 0 < k < 1 and 0 < θ < 2π, the quotient Q(k, θ) defined

in (5.1) fulfills

1 6 Q(k, θ) 6
(

π sin(12θ)

θ

)2

if θ < π,

(

π sin(12θ)

θ

)2

6 Q(k, θ) 6 1 if θ > π.

P r o o f. Note that the quotient Q(k, θ) can be written as log(1 + q0(k, θ))/

log(1 + q1(k)), where

(5.2) q0(k, θ) =
sin(12θ) sin(

1
2kθ)

sin2(14 (1− k)θ)
, q1(k) =

sin(12kπ)

sin2(14 (1− k)π)
.

Clearly,
q0(k, θ)

q1(k)
= sin

(1

2
θ
) sin(12kθ)

sin(12kπ)

(sin(14 (1− k)π)

sin(14 (1− k)θ)

)2

.

Trivially, q0(k, θ)/q1(k) = 1, whenever θ = π. It follows from Proposition 5.5 (1)

that q0(k, θ)/q1(k) is increasing with respect to k if 0 < θ < π, and decreasing if

π < θ < 2π. Thus, this quotient is bounded by its limit values

µ0(θ) ≡ lim
k→0+

q0(k, θ)

q1(k)
=

θ sin(12θ)

2π sin2(14θ)
, µ1(θ) ≡ lim

k→1−

q0(k, θ)

q1(k)
=

(

π sin(12θ)

θ

)2

.

By Proposition 5.5 (2) (3), both of the functions µ0(θ) and µ1(θ) are decreasing with

respect to 0 < θ < 2π. Since µ0(π) = µ1(π) = 1, this means that the functions µ0, µ1

are greater than or equal to 1 for 0 < θ < π, and less than or equal to 1 for π < θ < 2π.

It follows that

(5.3) q1(k) 6 µ0(θ)q1(k) 6 q0(k, θ) 6 µ1(θ)q1(k) if 0 < θ < π, and

µ1(θ)q1(k) 6 q0(k, θ) 6 µ0(θ)q1(k) 6 q1(k) if π < θ < 2π.

Recall now the expression for the quotient q1(k) from (5.2). This quotient q1(k)

must be strictly increasing with respect to 0 < k < 1, because it has a strictly

increasing positive numerator sin(12kπ) and a strictly decreasing positive denominator
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sin2(14 (1 − k)π). Since q1(k) has limit values lim
k→0+

q1(k) = 0 and lim
k→0+

q1(k) = ∞,
it maps the interval (0, 1) onto (0,∞). Furthermore, we already earlier noted that

µ1(θ) > 1 if 0 < θ < π, and µ1(θ) 6 1 if π < θ < 2π. It follows from these

observations, inequalities in (5.3) and Proposition 5.5 (4) that if 0 < θ < π,

inf
0<k<1

Q(k, θ) = inf
0<k<1

log(1 + q0(k, θ))

log(1 + q1(k))
> inf

0<k<1

log(1 + q1(k))

log(1 + q1(k))
= 1,

sup
0<k<1

Q(k, θ) 6 sup
0<k<1

log(1 + µ1(θ)q1(k))

log(1 + q1(k))
= lim

q1→0+

log(1 + µ1(θ)q1)

log(1 + q1)
= µ1(θ),

and, if π < θ < 2π,

inf
0<k<1

Q(k, θ) > inf
0<k<1

log(1 + µ1(θ)q1(k))

log(1 + q1(k))
= lim

q1→0+

log(1 + µ1(θ)q1)

log(1 + q1)
= µ1(θ),

sup
0<k<1

Q(k, θ) 6 sup
0<k<1

log(1 + q1(k))

log(1 + q1(k))
= 1,

which proves the theorem. �

It can be verified that the number 1 in the inequalities of Theorem 5.6 is the

best possible constant by showing that it is the limit value of the quotient Q(k, θ)

whenever k → 1−. However, the bound (π sin(12θ)/θ)
2 in Theorem 5.6 does not seem

to be sharp. According to several numerical test, the quotient Q(k, θ) is monotonic

with respect to k, either decreasing when 0 < θ 6 π or increasing when π 6 θ < 2π,

which would lead into the following result.

Conjecture 5.7. For all 0 < k < 1 and 0 < θ < 2π, the quotient Q(k, θ) fulfills

1 = lim
k→1−

Q(k, θ) 6 Q(k, θ) 6 lim
k→0+

Q(k, θ) =
θ sin(12θ)

2π sin2(14θ)
if θ < π,

θ sin(12θ)

2π sin2(14θ)
= lim

k→0+
Q(k, θ) 6 Q(k, θ) 6 lim

k→1−
Q(k, θ) = 1 if θ > π.

Finally, we have the following result.

Corollary 5.8. For all 0 < θ < 2π and x, y ∈ Sθ, the following inequalities hold:

(1) ̺Sθ
(x, y) 6 δSθ

(x, y) 6 (π sin(12θ)/θ)
2̺Sθ

(x, y) if θ < π,

(2) δSθ
(x, y) = ̺Sθ

(x, y) if θ = π,

(3) (π sin(12θ)/θ)
2̺Sθ

(x, y) 6 δSθ
(x, y) if θ > π.

P r o o f. Follows from Corollary 5.4, Theorem 5.6 and the fact that Q(k, π) = 1.

�
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Remark 5.9. If Conjecture 5.7 holds, then the coefficient (π sin(12θ)/θ)
2 in

Corollary 5.8 can be replaced by θ sin(12θ)/(2π sin2(14θ)), which gives us even sharper

bounds for the Möbius metric.

Note that Corollary 5.8 does not offer an upper bound for the metric δSθ
in terms

of ̺Sθ
in the case θ > π. As stated in Corollary 5.4, Q(k, θ) is only a lower limit for the

quotient δSθ
(x, y)/̺Sθ

(x, y), so the result of Theorem 5.6 gives us this upper bound.

Specifically, even though Q(k, θ) 6 1 for π < θ < 2π, the inequality δSθ
(x, y) 6

̺Sθ
(x, y) does not hold, as will be shown next.

Lemma 5.10. For all π < θ < 2π, there are some points x, y ∈ Sθ such that

δSθ
(x, y) > ̺Sθ

(x, y).

P r o o f. For x = e(1−k)θi/2 and y = e(1+k)θi/2 with 0 < k < 1, the distance ̺Sθ
is

as in the proof of Lemma 5.1 and, consequently,

lim
k→0+

δSθ
(x, y)

̺Sθ
(x, y)

> lim
k→0+

|0, x,∞, y|
̺Sθ

(x, y)

= lim
k→0+

log(1 + 2 sin(12kθ))

log(1 + sin(12kπ)/ sin2(14 (1− k)π))
=
θ

π

> 1.

�

Finally, we can combine the inequalities of Corollary 5.8 with our earlier results

from Section 3 in order to show that Theorem 1.1 holds.

P r o o f of Theorem 1.1. Follows directly from Corollaries 3.10, 3.12 and 5.8.

Note that Theorem 1.1 contains only the best ones out of the bounds found and, for

instance, the lower bound for δSθ
(x, y) in Corollary 3.10 (1) is never better than the

one in Corollary 5.8 (1). Similarly, it can be shown that Corollary 5.8 has always

better lower bounds than Corollary 3.12. �

6. Möbius metric under quasiregular mappings

In this section, we yet briefly consider the behaviour of the Möbius metric underK-

quasiregular mappings. This topic has already been researched in [15], Theorem 5.12,

pages 528–529, but we can improve the existing results with our new bounds for the

Möbius metric in sector domains. However, let us first define all the concepts needed.

Definition 6.1 ([6], pages 289–288). Choose a domain G ⊂ Rn and let the

function f : G→ Rn be ACLn, as defined in [6], page 150. Suppose that there exists

a constant K > 1 such that the inequality

(6.1) |f ′(x)|n 6 KJf(x), |f ′(x)| = max
|h|=1

|f ′(x)h|,
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where Jf (x) is the Jacobian determinant of f at the point x ∈ G, holds a.e. in G.

Then the function f is called quasiregular and the smallest constant K > 1 fulfilling

the inequality (6.1) is the outer dilatation of f . Similarly, the inner dilatation of f

is the smallest constant K > 1 such that the inequality

(6.2) Jf (x) 6 Kl(f ′(x))n, l(f ′(x)) = min
|h|=1

|f ′(x)h|

holds a.e. in G. The function f is K-quasiregular, if max{KI(f),KO(f)} 6 K, where

KI(f) and KO(f) are the inner and the outer dilatation of f , respectively.

See [6], equation (7.1), page 104, and [16] for the definition of the conformal

modulus of a curve family Γ and denote it by M(Γ). For any nonempty subsets

F0, F1 ( Rn, let ∆(F0, F1;R
n) be the family of all the closed nonconstant curves

joining these two subsets F0 and F1. Furthermore, denote the Euclidean line segment

between two points x, y ∈ (Rn∪{∞}) by [x, y] and let ek be the kth unit vector of the
n-dimensional space, k = 1, . . . , n. Now, we can define the Grötzsch capacity (see [6],

equation (7.17), page 121) as the decreasing homeomorphism γn : (1,∞) → (0,∞),

γn(s) = M(∆(B
n
, [se1,∞];Rn)), s > 1.

Note that, if n = 2, we have the explicit formulas (see [6], equation (7.18), page 122)

γ2(1/r) =
2π

µ(r)
, µ(r) =

π

2

K
(√

1− r2
)

K(r)
, K(r) =

∫ 1

0

dx
√

(1 − x2)(1 − r2x2)
.

By using the definition of the Grötzsch capacity, we can define also an increasing

homeomorphism ϕK,n : [0, 1] → [0, 1], (see [6], equation (9.13), page 167)

ϕK,n(r) =
1

γ−1
n (Kγn(1/r))

for 0 < r < 1, K > 0; ϕK,n(0) = 0, ϕK,n(1) = 1,

and a number λn (see [6], equation (9.5), page 157 and equation (9.6), page 158)

logλn = lim
t→∞

((γn(t)/ωn−1)
1/(1−n) − log t),

where ωn−1 is the (n−1)-dimensional surface area of the unit sphere Sn−1(0, 1). For

every n > 2, 4 6 λn < 2en−1, and λ2 = 4.

The Schwarz lemma is one of the most well-known results in the distortion theory

and, while its original version is about the distortion of the Euclidean metric under

holomorphic functions, there exists the following modified version of the Schwarz

lemma that tells about the distortion of the hyperbolic metric under K-quasiregular

mappings.

230



Theorem 6.2 ([6], Theorem 16.2, page 300 and Theorem 16.39, page 313). Let

G,G′ ∈ {Hn,Bn}, f : G → f(G) ⊂ G′ be a nonconstant K-quasiregular mapping

and α = KI(f)
1/(1−n). Now,

th
̺G′(f(x), f(y))

2
6 ϕK,n

(

th
̺G(x, y)

2

)

6 λ1−α
n

(

th
̺G(x, y)

2

)α

,(1)

̺G′(f(x), f(y)) 6 KI(f)(̺G(x, y) + log 4)(2)

holds for all x, y ∈ G. Furthermore, in the two-dimensional case n = 2,

̺G′(f(x), f(y)) 6 c(K)max{̺G(x, y), ̺G(x, y)1/K}(3)

for all x, y ∈ G, where

c(K) = 2 arth(ϕK,2(th(
1
2 ))) 6 v(K − 1)+K, v = log

(

2
(

1+
√

1− 1/e2
))

< 1.3507,

see [6], Theorem 16.39, page 313. Here, c(K) → 1 when K → 1 and, by the

conformal invariance of the hyperbolic metric, the result (3) also holds for any two

simply connected planar domains G, G′ because they can be mapped conformally

onto the unit disk B2.

Corollary 6.3. If Sθ is a sector with an angle 0 < θ 6 π and f : Sθ → Sθ is

a nonconstant K-quasiregular mapping, then

δSθ
(f(x), f(y)) 6 c(K)min

{

2,
(

π sin(12θ)

θ

)2}

max{δSθ
(x, y), δSθ

(x, y)1/K}

for all x, y ∈ Sθ.

P r o o f. Follows from Theorems 1.1 (1)–(2) and 6.2 (3). �

A similar result holds for a nonconvex sector.

Corollary 6.4. If Sθ is a sector with an angle π < θ < 2π and f : Sθ → Sθ is

a nonconstant K-quasiregular mapping, then

δSθ
(f(x), f(y)) 6 4c(K)max

{( θ

π sin(12θ)

)2

δSθ
(x, y),

( θ

π sin(12θ)

)2/K

δSθ
(x, y)1/K

}

for all x, y ∈ Sθ.

P r o o f. Follows from Theorems 1.1 (3) and 6.2 (3). �
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Corollary 6.5. If Sθ is a sector with an angle π < θ < 2π and f : Sθ → Sθ is

a nonconstant K-quasiregular mapping, then

th
δSθ

(f(x), f(y))

4
6 c(K)

θ

π

(

2 th
δSθ

(x, y)

2

)1/K

for all x, y ∈ Sθ.

P r o o f. By Theorems 1.1 (3), 6.2 (3) and 3.9 (3),

th
δSθ

(f(x), f(y))

4
6
θ

π

th
̺Sθ

(f(x), f(y))

2
6
θ

π

th
(c(K)

2
max{̺Sθ

(x, y), ̺Sθ
(x, y)1/K}

)

6
θ

π

th
(c(K)

2
max{2 arth(sSθ

(x, y)), (2 arth(sSθ
(x, y)))1/K}

)

.

It follows from [14], Theorem 5.3, page 11, that

th
(C

2
max{2 arth(t), (2 arth(t))1/K}

)

6 Ct1/K

for all 0 < t < 1, K > 1 and C > 1. Consequently,

th
δSθ

(f(x), f(y))

4
6 c(K)

θ

π

sSθ
(x, y)1/K .

By Corollary 3.8 (2), sSθ
(x, y) 6 2 th(12δSθ

(x, y)), so the result follows. �

Remark 6.6. Neither Corollary 6.4 nor Corollary 6.5 offers a bound for the dis-

tortion that is always better than the result of the other corollary, which can be seen

by studying the case, where θ → π
− and c(K) = K = 1 for varying points x, y ∈ Sθ.

Corollary 6.7. If Sθ is a sector with an angle 0 < θ < 2π and f : B2 → Sθ is

a nonconstant K-quasiregular mapping, then, for all x, y ∈ B2,

δSθ
(f(x), f(y)) 6 c(K)min

{

2,
(

π sin(12θ)

θ

)2}

max{δB2(x, y), δB2(x, y)1/K},

if 0 < θ 6 π, and

δSθ
(f(x), f(y)) 6 4c(K)max{δB2(x, y), δB2(x, y)1/K} if π < θ < 2π.

P r o o f. Follows from Theorems 2.1, 1.1 and 6.2 (3). �

Corollary 6.8. If Sθ is a sector with an angle 0 < θ 6 π and f : B2 → Sθ is

a nonconstant K-quasiregular mapping, then for all x ∈ B2 such that |x| > (e− 1)/

(e + 1),

|f(x)| 6 |f(0)|
(1 + |x|
1− |x|

)c(K)u(θ)

with u(θ) = min
{

2,
(

π sin(12θ)

θ

)2}

.
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P r o o f. By the triangle inequality, Theorems 3.1, 1.1 and 6.2 (3), and [6], equa-

tion (4.14), page 55

log
|f(x)|
|f(0)| 6 log

|f(x)− f(0)|+ |f(0)|
|f(0)| = log

(

1 +
|f(x)− f(0)|

|f(0)|
)

6 log
(

1 +
|f(x) − f(0)|

min{dSθ
(f(x)), dSθ

(f(0))}
)

= jSθ
(f(x), f(0)) 6 δSθ

(f(x), f(0))

6 u(θ)̺Sθ
(f(x), f(0)) 6 c(K)u(θ)max{̺B2(x, 0), ̺B2(x, 0)1/K}

= c(K)u(θ)max
{

log
1 + |x|
1− |x| ,

(

log
1 + |x|
1− |x|

)1/K}

,

and, if the inequality

log
1 + |x|
1− |x| >

(

log
1 + |x|
1− |x|

)1/K

⇔ 1 + |x|
1− |x| > e ⇔ |x| > e− 1

1 + e

holds, then we have

log
|f(x)|
|f(0)| 6 c(K)u(θ) log

1 + |x|
1− |x| ⇔ |f(x)| 6 |f(0)|

(1 + |x|
1− |x|

)c(K)u(θ)

.

�

Remark 6.9. Note that Corollary 6.8 refines [6], Theorem 16.19 (1), page 306,

when n = 2.

7. Möbius metric in polygon

In this section, we introduce a few open questions related to the Möbius metric

inside a polygon domain. Especially, we are interested in the inequality between the

Möbius metric and the hyperbolic metric defined in a polygon. All the computational

findings and Figure 3 have been made with MATLAB programs from [11].

Even though the inequality ̺Sθ
(x, y) 6 δSθ

(x, y) holds in all convex sectors by

Theorem 1.1 and these metrics are equivalent in such convex domains as the unit disk

and the upper half-plane, our computer experiments verify that neither of metrics is

always greater than or equal to the other in all polygonal domains, not even in all

convex polygons.

Conjecture 7.1. If G ( R2 is any bounded polygonal domain, there are always

some points x, y, u, v ∈ G such that ̺G(x, y) < δG(x, y) and ̺G(u, v) > δG(u, v).
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However, the values of these two metrics do not differ very much from each

other in the domain Gk shaped like a regular convex k-gon with k vertices ep2πi/k,

p = 0, 1, . . . , k−1, especially as the value of k grows and this domain resembles more

and more the unit disk, where these metrics are equivalent.

Conjecture 7.2. If Gk is the above regular k-gon and x, y ∈ ∩Gk are distinct

points, then

lim
k→∞

( δGk
(x, y)

̺Gk
(x, y)

)

→ 1.

Furthermore, recall from Corollary 3.5 that the inequality δG(x, y) 6 4̺G(x, y)

holds for all points x, y in a simply-connected domain G, and our computer tests

suggest that this result can be improved in the case of polygonal domains.

Conjecture 7.3. For all polygonal domains G ( R2, the inequality 1
2̺G(x, y) 6

δG(x, y) 6 2̺G(x, y) holds for all x, y ∈ G.

Figure 3 contains an example of a nonconvex polygon, where the values of the

quotient δG(x, y)/̺G(x, y) vary at least on the interval [0.73, 1.64]. Note that, based

on our computer tests, the latter constant in the inequality of Conjecture 7.3 can be

replaced with a smaller one when considering only convex domains. Another interest-

ing notion is that by Corollary 3.5 the uniformity constant AG of a domain G fulfills

AG >
̺G(x, y)

2δG(x, y)

for all points x, y in the domain x, y, so computing the maximum value of the

quotient ̺G(x, y)/(2δG(x, y)) gives a lower bound for the uniformity constant AG.
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Figure 3. Contour plot of the quotient δG(x, y)/̺G(x, y), when G is the polygon with ver-

tices 1, e0.95πi/3, 0.1eπi/3, e1.05πi/3, e2πi/3, eπi, e4πi/3, e5πi/3, the point x is fixed
as 0, and y varies inside G.
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