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Abstract. Post-training rounding, also known as quantization, of estimated parameters
stands as a widely adopted technique for mitigating energy consumption and latency in
machine learning models. This theoretical endeavor delves into the examination of the
impact of rounding estimated parameters in key regression methods within the realms of
statistics and machine learning. The proposed approach allows for the perturbation of
parameters through an additive error with values within a specified interval. This method
is elucidated through its application to linear regression and is subsequently extended to
encompass radial basis function networks, multilayer perceptrons, regularization networks,
and logistic regression, maintaining a consistent approach throughout.
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1. Introduction

This study is dedicated to theoretical examinations of the influence of rounding

parameters in fitted (trained) regression models within the domains of statistics and

machine learning. Special emphasis is placed on the research of rounding (quanti-

zation) during the training process of neural networks [4]. Quantization of weights

aims to represent the weights by an efficient low-precision encoding and reducing the

numerical precision of the weights (i.e., rounding) represents one of popular ways of

reducing the energy and/or latency of neural networks [10]. Various sophisticated

adaptive approaches to rounding have been proposed for the context of low-energy
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computation [13], which has also allowed to use specific tailor-made hardware accel-

erators with explicit support for sparse computations [24].

Post-training quantization (PTQ) of pre-trained statistical learning algorithms has

acquired much less attention compared to rounding within the training [28]. Still,

PTQ is very important e.g., for computation on mobile phones with limited energy

resources. More generally, the effect of rounding is omnipresent in computational

intelligence, because only a finite number of digits may be stored in computer memory

replacing any real numbers by rounded or truncated approximations. A complete

state of the art in this field was presented in [15]. The effect on the predictive abilities

of the methods was investigated in numerical experiments, which revealed PTQ to be

much less harmful compared to quantization within the training [26]. The rounding

in the experiments corresponds to using a fixed-point arithmetic, which is known to

be more effective than floating-point arithmetic [4]. PTQ is also one of important

approaches to model compression (sparsification) of a trained neural network [16].

Nevertheless, no theoretical results seem available for evaluating the effect of PTQ.

Low-precision arithmetic has recently been studied (only) empirically in various

machine learning algorithms. To give some examples, it was investigated within

an efficient implementation of Gaussian processes in [14] or in optimization tools for

Bayesian deep learning based on stochastic gradient Markov chain Monte Carlo [29].

Floating-point arithmetic has already been implemented in hardware accelerators

produced by NVIDIA, which is the world’s dominant supplier of graphics processing

units (GPU), and its rounding effects were empirically explored, e.g., in [6].

Our work belongs to the context of low-energy (approximate) computing [4], [24]

obtained by rounding or by random perturbations of the estimated parameters. The-

oretical expressions for the influence of rounding the estimated parameters are pre-

sented for various common models of statistics and machine learning. This work

aims to evaluate the effect of rounding the parameters on the results (predictions)

of various trained models, starting with explaining the ideas on linear regression in

Section 2. Section 3 considers some common types of neural networks (radial basis

function networks, multilayer perceptrons, or regularization networks) for nonlinear

regression. Section 4 investigates the effect of rounding on the parameters of logistic

regression and Section 5 brings conclusions.

2. Linear regression

Firstly, perturbations of parameters will be studied in the standard linear regres-

sion model

(2.1) Yi = β1Xi1 + . . .+ βpXip + ei, i = 1, . . . , n,
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which may be expressed in the matrix notation as Y = Xβ+e. The errors e1, . . . , en

are independent identically distributed random variables, the regressors (predic-

tors) are fixed p-variate vectors, and Y1, . . . , Yn is a continuous random variable.

The ith row of X will be denoted as Xi = (Xi1, . . . , Xip)
⊤ for i = 1, . . . , n. The

estimation of β ∈ Rp is usually considered under the assumptions of the clas-

sical linear regression model [8], i.e., with Ee = 0, var e = σ2I for a σ > 0,

EX⊤
e = 0, and rank(X) = p. Here, we assume to already have a fixed esti-

mate β̂ of β so that these assumptions related to the estimation are not rele-

vant. We stress that β̂ may be any estimate, i.e., not necessarily the least squares

estimate.

Let us assume that we make predictions for an observation with known regres-

sors Z ∈ R
p, which is not necessarily in the training dataset, with a rounded

(or modified in general) version of β̂. The rounding is connected to approx-

imate computing and may save substantial computational demands especially

for a large p, see [9]. Thus, we consider an alternative vector of parameters

in the form β̃ = β̂ + τ , where τ = (τ1, . . . , τp)
⊤ with τj ∈ [−ε, ε], where

j = 1, . . . , p and ε > 0 is fixed. The fitted value (predicted value) of the re-

sponse in the model with β̂ is denoted as Ŷ (Z) = Z
⊤β̂ ∈ R and in the model

with β̃ is denoted as Ỹ (Z) = Z
⊤β̃. We are interested in expressing Ỹ (Z) in

dependence on Ŷ (Z); the result immediately follows from Lemma 6.1 presented

in Appendix.

Lemma 2.1. In the standard linear regression model (2.1), let β̂ represent a given

estimate of β. Let us have β̃ = β̂ + τ , where τ = (τ1, . . . , τp)
⊤ with τj ∈ [−ε, ε].

Let us denote εp = (ε, . . . , ε)⊤ ∈ Rp. Then the fitted values of the response Ỹ (Z)

for Z ∈ R
p fulfil

(2.2) Ỹ (Z) ∈ [Z⊤β̂ − |Z|⊤εp, Z
⊤β̂ + |Z|⊤εp].

We note that all the results of the paper are formulated without assuming ε to

be infinitesimally small. In addition, it is worth noting that the result (just like all

the results throughout the paper) are derived using deterministic steps, i.e., they are

valid surely. This is because the random variable Ỹ (Z) = Z⊤β̂ is contained also in

the bounds of the interval of (2.2). The same would be true if the fixed regressors

are replaced by random ones. Let us also state explicitly that estimates with a hat

(as in β̂) denote given estimates and estimates with a tilde (as in β̃) denote rounded

estimates throughout this whole paper.
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2.1. Illustrative example. Lemma 2.1 will be illustrated on a dataset with

a single regressor, which can be easily visualized. The data shown in Figure 1 are

levels of two proteins in the blood of hypothyroidism patients analyzed previously

in [12]. The model

(2.3) Yi = β0 + β1Xi + ei, i = 1, . . . , n,

with n = 22 is considered here. The least squares fit is shown as the black line in

Figure 1 and the bounds (2.2) computed for ε = 0.02 are the red lines. We can see

the bounds to become wider together with the increasing regressor.
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Figure 1. The least squares fit for the dataset of Section 2.1 together with the lower and
upper bounds given by formula (2.2). The value ε = 0.020 was used here.

To express (2.2) for the specific model (2.3), let us take an observation with the

value of the regressor equal to z ∈ R. Because of the intercept in (2.3), we have

Z = (1, z)⊤, Z⊤β̂ = β̂0 + β̂1z, and |Z|⊤εp = (1 + |z|)ε. Using simple algebra, the

result (2.2) can be expressed as

(2.4) Ỹ (Z) ∈ [β̂0 − ε+ z(β̂1 − ε sgn(z)), β̂0 + ε+ z(β̂1 + ε sgn(z))].

The interval is the narrowest for z = 0 with the width 2ε and increases for data

with large absolute values of the regressor. Thus, the observations that are outlying

on the horizontal axis could be very influential in the rounded model. This brings

a strong argument in favor of using robust estimators in the rounded models.

The value of ε = 0.020 used in Figure 1 corresponds to quite severe rounding and

is used here to illustrate how the interval of (2.2) gets wider with the increasing re-

gressor. The result of Lemma 2.1 is not primarily intended to reveal the robustness of

linear regression but is rather aimed at evaluating the effect of perturbations as such.

While the effect of rounding on predictions will often be quite small in applications,

the theoretical result (2.2) is evaluated for the most extreme situation and presents
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the widest possible interval in the given context. The width of the interval (2.2)

remains exactly the same if the least squares estimator is replaced by an alterna-

tive estimator, for example by the least weighted squares (LWS) estimator [25], [11],

which is highly robust to outliers and at the same time efficient for noncontaminated

models with normally distributed errors.

In addition, we present a simulation revealing the effect of rounding the estimates

on the prediction ability of the regression estimators. Such effect is not studied in

Lemma 2.1, but prediction is often the very aim of the regression analysis. Using

the same data and model (2.3), the estimate (β̂1, β̂2)
⊤ was 1000-times replaced by

(β̂1+τ1, β̂2+τ2)
⊤, where τ1 and τ2 are independent random variables generated from

uniform distribution U(−ε, ε). Leave-one-out cross-validation was performed for each

situation and the resulting mean square error (MSE) averaged across the individual

choices of τ1 and τ2 is presented for the least squares and the LWS with linearly

decreasing weights in Table 1. The least squares estimator is based on minimizing

MSE, but it is still outperformed here by the LWS as a consequence of using the

cross-validation and because of the rounding. On the whole, the results are not in

contradiction with general recommendations to use robust estimators for real data;

if p is large, regularized estimators (such as the lasso or a robust version of [23]) may

be suitable and the bounds of Lemma 2.1 are valid also for them.

Estimator

ε LS LWS
0.000 0.011 0.012

0.002 0.011 0.013

0.004 0.012 0.013

0.006 0.013 0.014

0.008 0.015 0.015

0.010 0.019 0.018

0.020 0.032 0.027

Table 1. Prediction mean square error (MSE) evaluated in a simulation in a leave-one-
out cross validation for the least squares (LS) and the LWS in the example of
Section 2.1 with different values of ε.

3. Model of nonlinear regression

Let us consider several popular machine learning methods for the task of nonlinear

regression modeling. Estimating and predicting a nonlinear trend of an observed

continuous variable represents an important task with various applications in signal
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and image processing, engineering, biomedicine, economics, etc. [18]. The aim is to

model (estimate and predict) the unknown continuous nonlinear regression function

(3.1) Yi = f(Xi) + ei for i = 1, . . . , n,

based on the given observed data, where e1, . . . , en are independent and identically

distributed random variables (errors). We assume a continuous response variable

Y = (Y1, . . . , Yn)
⊤ and fixed p-variate regressors, where the regressor correspond-

ing to the ith observation is denoted as Xi = (Xi1, . . . , Xip)
⊤. The model (3.1)

encompasses various types of artificial neural networks as special cases. For several

common types, we study the effect of perturbing the estimated parameters on the

fitted (predicted) value of Z ∈ Rp denoted as f̂(Z). Nevertheless, methods of Sec-

tions 3.1 and 3.2 work also for the classification task and the obtained results are

valid for such context as well.

3.1. Radial basis function networks. Radial basis function (RBF) networks

for the model (3.1) contain an input layer with p inputs, a single hidden layer with

the total number N of RBF units (neurons), and a linear output layer. Using the

notation of [2], the user chooses N together with a radially symmetric function

(kernel) ̺ : R
+

0 → R
+

0 , where R
+

0 := {x ∈ R; x > 0}. The model for the RBF

network has the form

(3.2) f(x) =

N∑

j=1

aj̺((x− cj)
⊤(x− cj)), x ∈ R

p,

with parameters c1, . . . , cN ∈ Rp and a1, . . . , aN ∈ R, and possibly with other param-

eters corresponding to the (typically Gaussian) kernel ̺. The presented property is

also valid for robust, regularized, or robust regularized versions of RBF networks [20].

Lemma 3.1. In the nonlinear regressionmodel (3.1), let â1, . . . , âN and ĉ1, . . . , ĉN

be given estimates of the parameters of a given trained RBF network with a kernel ̺

that is nonincreasing on R
+

0 . Let f̂(Z) be the predicted value of the response ob-

tained using these estimates for Z ∈ Rp. Let us have ãj = âj + θj and c̃j = ĉj + τj

for j = 1, . . . , N , where τj = (τj1, . . . , τjp)
⊤ ∈ Rp, τjk ∈ [−ε, ε] and θj ∈ [−ε, ε] for

j = 1, . . . , N , k = 1, . . . , p, and ε > 0. Let us denote χj = |Z| + |cj | + εp. For

Z ∈ Rp, the fitted value f̃(Z) obtained with the RBF network with parameters ãj

and c̃j for j = 1, . . . , N fulfils

(3.3)

f̃(Z) ∈

[ N∑

j=1

(âj−ε)̺((Z−cj)
⊤(Z−cj)−χ⊤

j εp)

N∑

j=1

(âj+ε)̺((Z−cj)
⊤(Z−cj)+χ⊤

j εp)

]
.
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3.2. Multilayer perceptrons. Multilayer perceptrons (MLPs) contain an input

layer, one or more hidden layers with a fixed number of neurons, and an output

layer. Here, f in model (3.1) is estimated using an MLP with a single hidden layer

and using the notation following [2], although other more or less different versions

of notation may be used in this context as well. The MLP estimates the response Yi

of the ith observation of the training set by

(3.4) Ŷi = g

( N∑

k=1

γkh

( p∑

j=1

ωkjXij + ωk0

)
+ γ0

)
+ c, i = 1, . . . , n,

where g and h must be specified (possibly nonlinear) functions. For a trained MLP,

let us have the estimates of all the parameters

(3.5) (c, γ0, γ1, . . . , γN , ω10, . . . , ωN0, ω11, . . . , ωN1, . . . , ω1p, . . . , ωNp)
⊤.

It is common to use nondecreasing activation functions and to choose g as the iden-

tity. The formula (3.4) for computing the fitted values of the response can be gener-

alized for networks with more layers in a straightforward way. Essentially, the linear

combination of the features also represents a fundamental element of convolutional

neural networks (CNNs) [27].

Lemma 3.2. In the nonlinear regression model (3.1), let us consider a trained

multilayer perceptron (3.4) with nondecreasing functions g and h. Let us denote its

estimated parameters by

(3.6) (ĉ, γ̂0, γ̂1, . . . , γ̂N , ω̂10, . . . , ω̂N0, ω̂11, . . . , ω̂N1, . . . , ω̂1p, . . . , ω̂Np)
⊤

and the predicted value for Z ∈ Rp by f̂(Z). Let us have

(3.7) γ̃k = γ̂k + τk, k = 0, 1, . . . , N,

c̃ = ĉ+ τ−1,

ω̃kj = ω̂kj + θkj , k = 1, . . . , N, j = 1, . . . , p,

where

(3.8)

−ε 6 τk 6 ε, k = −1, 0, . . . , N, −ε 6 θkj 6 ε, k = 1, . . . , N, j = 1, . . . , p,

with ε > 0. The fitted value f̃(Z) obtained with the MLP with parameters (3.7)

then fulfils

(3.9)

f̃(Z) ∈

[
g

( N∑

k=1

(γ̂k−ε)h(δ̂−ik)+ γ̂0−ε

)
+ ĉ−ε, g

( N∑

k=1

(γ̂k+ε)h(δ̂+ik)+ γ̂0+ε

)
+ ĉ+ε

]
,
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where

(3.10) δ̂+ik =

p∑

j=1

ω̂kjZj + ε

p∑

j=1

|Zj|+ ω̂k0 + ε, i = 1, . . . , n,

and

(3.11) δ̂−ik =

p∑

j=1

ω̂kjZj − ε

p∑

j=1

|Zj|+ ω̂k0 − ε, i = 1, . . . , n.

If specifically g is the identity and h is the ReLU function, (3.9) reduces to

(3.12) f̃(Z) ∈

[ N∑

k=1

(γ̂k − ε)δ̂−ik + γ̂0 − 2ε,
N∑

k=1

(γ̂k + ε)δ̂+ik + γ̂0 + 2ε

]
.

To recall, the ReLU (rectified linear unit) function considered in (3.12) is defined

as h(x) = max{0, x} for x ∈ R. The presented results are valid also for robust,

regularized, or robust regularized versions of MLPs [5].

3.3. Regularization networks. Regularization networks [17] may be character-

ized as tools for nonlinear regression (3.1) with a clear interpretation and a straight-

forward computation. They are distinct from regularized neural networks [2], where

the latter can be described simply as regularized versions of any models of neural

networks. Regularization networks can be derived in the context of reproducing

Hilbert kernel spaces (RKHS). Briefly, the method exploits a chosen reproducing

kernel, which is a function κ : Rp ×Rp → R aimed to produce the symmetric matrix

K ∈ Rn×n with values Kij = κ(Xi,Xj) for i, j = 1, . . . , n. Most commonly, the

function κ is chosen as the Gaussian kernel so that

(3.13) Kij = κ(Xi,Xj) := exp
(
−
‖Xi −Xj‖

2

2σ2

)
,

where ‖·‖ denotes the Euclidean distance. The fixed parameter σ > 0 can be esti-

mated from the data.

The fitted value of the response for a new observation Z ∈ R
p is obtained using

(3.14) f̂(Z) =

n∑

i=1

α̂iκ(Z,Xi),

where α̂ ∈ Rn is an estimate of the parameter α ∈ Rn. A standard estimate of α

allows an explicit expression

(3.15) α̂ = (K⊤
K+ λK)−1

K
⊤
Y = (K+ λIn)

−1
Y,
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where In ∈ Rn×n is the unit matrix. The regularization parameter λ > 0 may be

found by cross-validation. The formula (3.15) corresponds to the ridge estimator for

the linear regression model (2.1) in the form Y = Kα+ e and the estimator (3.15)

is therefore commonly denoted as the generalized ridge estimator.

Lemma 3.3. In the nonlinear regression model (3.1), let (3.14) represent the

regularization network prediction of f(Z), where Z ∈ Rp and α̂ is the estimate (3.15)

of α. Let us have α̃ = α̂+τ , where τ = (τ1, . . . , τn)
⊤ with τi ∈ [−ε, ε] for i = 1, . . . , n

and ε > 0. Then the fitted values obtained with α̃ fulfil

(3.16) f̃(Z) ∈

[
f̂(Z)− ε

n∑

i=1

κ(Z,Xi), f̂(Z) + ε

n∑

i=1

κ(Z,Xi)

]
.

4. Logistic regression

Logistic regression is commonly used for models with a binary response variable [1].

Let Y = (Y1, . . . , Yn)
⊤ denote values of a random variable following Bernoulli dis-

tribution, i.e., a binary variable with values 1 or 0. The probability of Yi = 1,

denoted as πi(Xi), is explained by Xi = (Xi1, . . . , Xip)
⊤; the regressors are as-

sumed to be fixed and may include continuous as well as discrete variables. The

expectation of Yi, which is dependent on the nonrandom regressors, is obtained as

EYi = P(Yi = 1) = πi(Xi) for i = 1, . . . , n and the model considers

(4.1) log
π(Xi)

1− π(Xi)
= X

⊤

i β, i = 1, . . . , n.

Let us now have a given (arbitrary) estimate β̂ = (β̂1, . . . , β̂p)
⊤ of the parameter

β ∈ Rp. For an observation with regressors Z ∈ Rp, which is not necessarily in the

training data, the model estimates π(Z) := P (Z = 1) by

(4.2) π̂(Z) =
exp{Z⊤β̂}

1 + exp{Z⊤β̂}
.

We are interested in the lower and upper bounds for the estimated probabilities π̃(Z)

obtained for β̃ = β̂ + τ , where τ = (τ1, . . . , τp)
⊤ with τj ∈ [−ε, ε]. A generaliza-

tion of the logistic function to more than 2 outcomes, i.e., the multinomial logistic

regression, is known as the softmax function, which is often used in the output layer

of classification neural networks [7].
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Lemma 4.1. In the logistic regression model (4.1), let an estimate β̂ of β be

considered in the form β̃ = β̂ + τ , where τ = (τ1, . . . , τp)
⊤ with τj ∈ [−ε, ε] for

j = 1, . . . , p and a fixed ε > 0. Let us denote εp = (ε, . . . , ε)⊤ ∈ Rp. Then it holds

that

(4.3) π̃(Z) ∈
[ exp{Z⊤β̂ − |Z|⊤εp}

1 + exp{Z⊤β̂ + |Z|⊤εp}
,

exp{Z⊤β̂ + |Z|⊤εp}

1 + exp{Z⊤β̂ − |Z|⊤εp}

]
.

5. Conclusion

This paper explores the impact of small perturbations in estimated parameters

on predictions across various regression methods. Our focus on perturbations in the

parameters is different from that of the measurement error theory, which is based on

error-in-variables (EIV) models with perturbations in the data [3], [21].

The results in the form of derived lower and upper bounds (typically) for the pre-

dicted values are derived for selected regression models, without using any properties

of the given estimates of the parameters. As a consequence, the obtained formulas

are valid not only for the most standard estimates, but for every possible alternatives

estimates including estimates that are robust due to the presence of measurement

errors and/or outliers in the data [19]. In other words, there turns out to be no oppo-

sition between the robustness to outliers and the effect of perturbations. It is argued

in the illustration of Section 2.1 that robust estimators are actually much preferable

for rounded models because the impact of rounding may be very large for observa-

tions that are outlying in the regressors. Besides, the lower and upper bounds are

not affected by multicollinearity; this is an appealing property for machine learning

models, where the level of multicollinearity is typically very severe.

The predictions depend on the perturbations in a continuous way, i.e., are ob-

tained as continuous functions of ε. Here, we assume the random perturbations to

be within an interval [−ε, ε] for some ε > 0. Such approach corresponds to rounding

the estimates, e.g., if the model is trained using some low-precision arithmetic. The

obtained results may be exploited within the task to evaluate the effect of perturba-

tions within convolutional neural networks (CNNs) [22], where the effect of rounding

was intensively studied in numerical experiments. For example, tested pipelines for

different approaches to rounding in the training of neural networks were provided

in [15] together with experiments evaluating their accuracy degradation. Practical

suggestions for saving the multiplier demands of CNNs using efficient floating-point

formats and low-precision representations were compared in [4]. These papers (just

like the current paper) are not focused on robustness issues of different rounding
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schemes, but rather on the average effect of rounding, which is quite small, although

the (theoretical) effect in the worst case may be quite severe. As a topic for fu-

ture theoretical work, it remains to derive analogous relationships for CNNs; their

fully connected layers correspond precisely to MLPs, but the convolutional layers

represent very complex hierarchical structures [22]. There is void of theoretical in-

vestigations of the effect of rounding also on classification methods of multivariate

statistics and machine learning.

6. Appendix

We start here by formulating a lemma helpful for deriving some of the expressions

throughout the whole paper, and proceed with proving other lemmas.

Lemma 6.1. Let us assume τ = (τ1, . . . , τp)
⊤ ∈ R

p fulfilling τj ∈ [−ε, ε] for

j = 1, . . . , p with ε > 0. Let us denote εp = (ε, . . . , ε)⊤ ∈ Rp.

(a) For fixed r ∈ Rp and s ∈ Rp, it holds that

(6.1) r
⊤
s− |r|⊤εp 6 r

⊤(s + τ ) 6 r
⊤
s+ |r|⊤εp.

(b) For fixed r ∈ Rp and s ∈ Rp, it holds that

(6.2)

(r− s)⊤(r− s)− (|r|⊤ + |s|⊤ + ε⊤p )εp 6 (r− (s+ τ ))⊤(r− (s + τ ))

6 (r− s)⊤(r− s) + (|r|⊤ + |s|⊤ + ε⊤p )εp.

(c) For a fixed u ∈ R and v ∈ R, it holds that

(6.3) (u − ε sgn(v))(v − ε sgn(u)) 6 (u+ τ)(v + τ) 6 (u+ ε sgn(v))(v + ε sgn(u)).

P r o o f of Lemma 6.1. The first two parts are straightforward. To obtain the

third part, one can start by realizing that

(6.4) (u + τ)v > (u+ ε) if v < 0,

(u + τ)v > (u− ε) if v > 0.

This can be expressed as (u + τ)v > (u − ε sgn(v))v and analogous reasoning leads

to (u + τ)v 6 (u+ ε sgn(v))v. Combining these two expressions yields

(6.5) (u− ε sgn(v))v 6 (r + τ)v 6 (u+ ε sgn(v))v,

which finally leads to (5.3) if combined with an analogous result

(6.6) u(v − ε sgn(v)) 6 u(v + τ) 6 u(v + ε sgn(u)).

�
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P r o o f of Lemma 3.1. First, if only ĉ1, . . . , ĉN are replaced by c̃1, . . . , c̃N re-

taining â1, . . . , âN unchanged, we use (5.2) and the nonincreasing property of ̺ to

obtain

(6.7) f̃(Z) ∈

[ N∑

j=1

âj̺((Z−ĉj)
⊤(Z−ĉj)−χ⊤

j εp),
N∑

j=1

âj̺((Z−ĉj)
⊤(Z−ĉj)+χ⊤

j εp)

]
.

Secondly, let us also prepare

(6.8)

N∑

j=1

θj̺((Z− ĉj)
⊤(Z− ĉj)) 6 ε

N∑

j=1

̺((Z− ĉj)
⊤(Z− ĉj)).

We are now interested in

(6.9) f̃(Z) =

N∑

j=1

(âj + θj)̺((Z − ĉj − τj)
⊤(Z − ĉj − τj))

6

N∑

j=1

(âj + ε)̺((Z − ĉj − τj)
⊤(Z− ĉj − τj)),

which exploits (5.8), and using the first preparatory step (5.7) leads us now to the

upper bound given in the lemma. Analogous reasoning leads to the lower bound

for f̃(Z). �

P r o o f of Lemma 3.2. First, if only values of ω̂kj are replaced by ω̂kj + θkj for

k = 1, . . . , N and j = 0, 1, . . . , p, we obtain

(6.10) f̃(Z) 6 g

( N∑

k=1

γ̂kh

( p∑

j=1

(ω̂kj + θkj)Zj + ω̂k0 + θk0

)
+ γ̂0

)
+ ĉ

6 g

( N∑

k=1

γ̂kh

( p∑

j=1

ω̂kjZj +

p∑

j=1

|Zj |ε

)
+ ω̂k0 + ε+ γ̂0

)
+ ĉ,

because f and g are nondecreasing. Second, if only values of γ̂k are replaced by

γ̂k + τk for k = 0, 1, . . . , N , we obtain

(6.11) f̃(Z) = g

( N∑

k=1

γ̂kh(ξ̂j) +

N∑

k=1

τkh(ξ̂j) + γ̂0 + τ0

)
+ ĉ

6 g

( N∑

k=1

γ̂kh(ξ̂j) + ε

N∑

k=1

h(ξ̂j) + γ̂0 + τ0

)
+ ĉ

6 g

( N∑

k=1

(γ̂k + ε)h(ξ̂j) + γ̂0 + τ0

)
+ ĉ,
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where ξ̂=
p∑

j=1

ω̂kjZj + ω̂k0. Finally, using the notation

(6.12) ζ̂k =

p∑

j=1

(ω̂kj + θkj)Zj + ω̂k0 + θk0, k = 1, . . . , N,

we can use the combination of (5.10) and (5.11) to obtain

(6.13) f̃(Z) 6 g

( N∑

k=1

γ̂kh(ζ̂k) +

N∑

k=1

τkh(ζ̂k) + γ̂0 + ε

)
+ c̃

6 g

( N∑

k=1

γ̂kh(δ̂
+

ik) + ε

N∑

k=1

h(δ̂+ik) + γ̂0 + ε

)
+ ĉ+ ε,

where the right-side is equal to the upper bound of (3.9). The lower bound is obtained

by analogous steps. �
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