Skip to main content
Log in

Investigation of mercury accumulation in cattails growing in constructed wetland mesocosms

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Only a few studies have investigated foliar air-surface exchange associated with wetland plants and none have investigated this exchange in an experimental setting as a function of different soil and water mercury (Hg) exposure concentrations or monitored foliar Hg concentrations. In this study, foliar total Hg (THg) and methyl Hg (MeHg) concentrations and foliar Hg flux were investigated using Typha latifolia growing within controlled mesocosms. Exposure scenarios included combinations of two soil exposure Hg concentrations (0.03–0.1 and 0.38–0.44 μg g−1), and two water exposure Hg concentrations (4–8 and 40–140 ng L−1). Soil and water Hg concentrations were not correlated with foliar total Hg concentrations or foliar Hg flux. Foliar Hg fluxes measured with a gas exchange chamber were low, and atmospheric deposition to foliage was the dominant flux for all exposures, except for those plants growing in the low Hg in water and soil scenario. Based on data developed, it is suggested that Hg concentrations in foliage of Typha latifolia growing in media contaminated with Hg from historic mine waste were influenced primarily by assimilation of Hg from the atmosphere and not contaminated by water or sediment. In contrast, foliar MeHg concentrations followed a temporal pattern that was similar to observed changes in water MeHg concentrations. This indicated that MeHg in foliage could have been derived from the rooting media and was assimilated by different processes than THg in leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Apfelbaum, S. I. 1985. Cattail (Typha spp.) management. Natural Areas Journal 5: 9–17.

    Google Scholar 

  • Balogh, S. J., Y. H. Nollet, and H. J. Offerman. 2005. A comparison of total mercury and methylmercury export from various Minnesota watersheds. Science of the Total Environment 340: 261–70.

    Article  CAS  PubMed  Google Scholar 

  • Blum, M., M. S. Gustin, S. Swanson, and S. G. Donaldson. 2001. Mercury in water and sediment of Steamboat Creek, Nevada: implications for stream restoration. Journal of the American Water Resources Association 37: 795–804.

    Article  CAS  Google Scholar 

  • Dahl, T. E. 2000. Status and trends of wetlands in the conterminous United States 1986 to 1997. U.S. Fish and Wildlife Service, Washington, DC, USA. I 49.2: W53/25.

    Google Scholar 

  • Ericksen, J. A. and M. S. Gustin. 2004. Foliar exchange of mercury as a function of soil and air mercury concentrations. Science of the Total Environment 324: 271–79.

    Article  CAS  PubMed  Google Scholar 

  • Ericksen, J. A., M. S. Gustin, D. E. Schorran, D. W. Johnson, S. E. Lindberg, and J. S. Coleman. 2003. Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment 37: 1613–22.

    Article  CAS  Google Scholar 

  • Fleck, J. A., D. F. Grigal, and E. A. Nater. 1999. Mercury uptake by trees: an observational experiment. Water, Air, and Soil Pollution 115: 513–23.

    Article  CAS  Google Scholar 

  • Frescholtz, T. F., M. S. Gustin, D. E. Schorran, and C. J. Fernandez. 2003. Assessing the source of mercury in foliar tissue of Quaking aspen. Environmental Toxicology and Chemistry 22: 2114–19.

    Article  CAS  PubMed  Google Scholar 

  • Graydon, J. A., V. L. St. Louis, S. E. Lindberg, H. Hintelmann, and D. P. Krabbenhoft. 2006. Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber. Environmental Science and Technology 40: 4680–88.

    Article  CAS  PubMed  Google Scholar 

  • Gustin, M. S., P. V. Chavan, K. E. Dennett, S. Donaldson, and G. Fernandez. 2006. Use of constructed wetlands with four different experimental designs to assess the potential for methyl and total Hg outputs. Applied Geochemistry 21: 2023–35.

    Article  CAS  Google Scholar 

  • Hanson, P. J., S. E. Lindberg, T. A. Tabberer, J. G. Owens, and K. H. Kim. 1995. Foliar exchange of mercury vapor: evidence for a compensation point. Water, Air, and Soil Pollution 80: 373–82.

    Article  CAS  Google Scholar 

  • Heyes, A., T. R. Moore, J. W. M. Rudd, and J. J. Dugoua. 2000. Methyl mercury in pristine and impounded boreal peat lands, Experimental Lakes Area, Ontario. Canadian Journal of Fisheries and Aquatic Sciences 57: 2211–22.

    Article  CAS  Google Scholar 

  • Hintelmann, H. and R. D. Wilken. 1995. Levels of total and methylmercury compounds in sediments of the polluted Elbe River: influence of seasonality and spatially varying environmental factors. Science of the Total Environment 166: 1–10.

    Article  CAS  Google Scholar 

  • Hurley, J. P., D. P. Krabbenhoft, L. B. Cleckner, M. L. Olson, G. R. Aiken, and P. S. Rawlik, Jr. 1998. System controls on the aqueous distribution of mercury in the northern Flordia Everglades. Biogeochemistry 40: 293–310.

    Article  CAS  Google Scholar 

  • Knapp, A. K. and J. B. Yavitt. 1995. Gas exchange characteristics of Typha latifolia L. from nine sites across North America. Aquatic Botany 49: 203–15.

    Article  Google Scholar 

  • Knowlton, M. F., C. Cuvellier, and J. R. Jones. 2002. Initial performance of a high capacity surface-flow treatment wetland. Wetlands 22: 522–27.

    Article  Google Scholar 

  • Korthals, E. T. and M. Winfrey. 1987. Seasonal and spatial variations in mercury methylation and demethylation in an oligotrophic lake. Applied and Environmental Microbiology 53: 2397–2404.

    CAS  PubMed  Google Scholar 

  • Lee, X., G. Benoit, and X. Hu. 2000. Total gaseous mercury concentration and flux over a coastal salt marsh vegetation in Connecticut, USA. Atmospheric Environment 34: 4205–13.

    Article  CAS  Google Scholar 

  • Liang, L., M. Horvat, and N. S. Bloom. 1994. An improved speciation method for mercury by GC/CVAFS after aqueous phase ethylation and room temperature precollection. Talanta 41: 371–79.

    Article  CAS  PubMed  Google Scholar 

  • Lindberg, S. E., W. Dong, and T. P. Meyers. 2002. Transpiration of gaseous elemental mercury through vegetation in a subtropical wetland in Florida. Atmospheric Environment 36: 5207–19.

    Article  CAS  Google Scholar 

  • Lindberg, S. E. and T. P. Meyers. 2001. Development of an automated micrometeorological method for measuring the emission of mercury vapor from wetland vegetation. Wetlands Ecology and Management 9: 333–47.

    Article  CAS  Google Scholar 

  • Lyman, S. N., M. S. Gustin, E. M. Prestbo, and F. J. Marsik. 2007. Measurement of dry deposition of atmospheric mercury in Nevada by direct and indirect methods. Environmental Science and Technology 41: 1970–76.

    Article  CAS  PubMed  Google Scholar 

  • Lyons, W. B., D. M. Wayne, J. J. Warwick, and G. A. Doyle. 1998. The Hg geochemistry of a geothermal stream, Steamboat Creek, Nevada: natural vs. anthropogenic influences. Environmental Geology 34: 143–50.

    Article  CAS  Google Scholar 

  • Marsik, F. J., G. J. Keeler, S. E. Lindberg, and H. Zhang. 2005. Air-surface exchange of gaseous mercury of a mixed sawgrasscattail stand within the Florida Everglades. Environmental Science and Technology 39: 4739–46.

    Article  CAS  PubMed  Google Scholar 

  • Millhollen, A. G., M. S. Gustin, and D. Obrist. 2006. Foliar mercury accumulation and exchange for three tree species. Environmental Science and Technology 40: 6001–06.

    Article  CAS  PubMed  Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands, third edition. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Morel, M. M., A. M. L. Kraepiel, and M. Amyot. 1998. The chemical cycle and bioaccumulation of mercury. Annual Review of Ecological Systems 29: 543–66.

    Article  Google Scholar 

  • Poissant, L., M. Pilote, P. Constant, C. Beauvais, H. Zhang, and X. Xu. 2004a. Mercury gas exchanges over selected bare soils and flooded sites in the bay St. Francois wetlands (Quebec, Canada). Atmospheric Environment 38: 4205–14.

    Article  CAS  Google Scholar 

  • Poissant, L., M. Pilote, X. Xu, H. Zhang, and C. Beauvais. 2004b. Atmospheric mercury speciation and deposition in the Bay St. Francois wetlands. Journal of Geophysical Research 109: D11301.

    Article  CAS  Google Scholar 

  • Spieles, D. J. and J. M. Mitsch. 2000. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low- and high-nutrient riverine systems. Ecological Engineering 14: 77–91.

    Article  Google Scholar 

  • Spurkland, L. E. 2001. Watershed restoration and water quality improvements along Steamboat Creek using constructed wetlands. M.S. Thesis. University of Nevada, Reno, NV, USA.

    Google Scholar 

  • Stamenkovic, J., M. S. Gustin, and K. E. Dennett. 2005. Net methyl mercury production versus water quality in constructed wetlands: trade-offs in pollution control. Wetlands 25: 748–57.

    Article  Google Scholar 

  • Stamenkovic, J., M. S. Gustin, M. C. Marvin-DiPasquale, B. A. Thomas, and J. L. Agee. 2004. Distribution of total methyl mercury in sediments along Steamboat Creek (Nevada, USA). Science of the Total Environment 322: 167–77.

    Article  CAS  PubMed  Google Scholar 

  • St. Louis, V. L., J. W. M. Rudd, C. A. Kelly, K. G. Beaty, R. J. Flett, and N. T. Roulet. 1996. Production and loss of methylmercury and loss of total mercury from Boreal forest catchments containing different types of wetlands. Environmental Science and Technology 30: 2719–29.

    Article  CAS  Google Scholar 

  • Watras, C. J., K. A. Morrison, J. S. Host, and N. S. Bloom. 1995. Concentrations of mercury species in relationship to other site specific factors in the surface water of northern Wisconsin lakes. Limnology and Oceanography 40: 556–65.

    Article  CAS  Google Scholar 

  • Zhang, H., L. Poissant, X. Xu, and M. Pilote. 2005. Explorative and innovative dynamic flux bag method developed and testing for mercury air-vegetation gas exchange fluxes. Atmospheric Environment 39: 7481–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fay, L., Gustin, M.S. Investigation of mercury accumulation in cattails growing in constructed wetland mesocosms. Wetlands 27, 1056–1065 (2007). https://doi.org/10.1672/0277-5212(2007)27[1056:IOMAIC]2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2007)27[1056:IOMAIC]2.0.CO;2

Key Words

Navigation