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Abstract: Abiotic stresses, predominately drought, heat, salinity, cold, and waterlogging, adversely affect cereal crops. They 
limit barley production worldwide and cause huge economic losses. In barley, functional genes under various stresses have been 
identified over the years and genetic improvement to stress tolerance has taken a new turn with the introduction of modern gene-
editing platforms. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 
9 (Cas9) is a robust and versatile tool for precise mutation creation and trait improvement. In this review, we highlight the 
stress-affected regions and the corresponding economic losses among the main barley producers. We collate about 150 key 
genes associated with stress tolerance and combine them into a single physical map for potential breeding practices. We also 
overview the applications of precise base editing, prime editing, and multiplexing technologies for targeted trait modification, 
and discuss current challenges including high-throughput mutant genotyping and genotype dependency in genetic transformation 
to promote commercial breeding. The listed genes counteract key stresses such as drought, salinity, and nutrient deficiency, and 
the potential application of the respective gene-editing technologies will provide insight into barley improvement for climate 
resilience.

Key words: Clustered regularly interspaced short palindromic repeats (CRISPR); Gene function; Drought; Genetic improvement;  
Transcription regulation; Breeding

1 Introduction 

Agricultural production faces numerous challenges 
worldwide owing to climate change, insufficient ara‐
ble land, abiotic and biotic stresses, low carbon input 
farming, population growth, and ever-increasing food 
demand which is expected to increase by 35%–56% 
to feed a population of nearly ten billion by 2050 (van 
Dijk et al., 2021). Demand for cereals both as food 
and animal feed is likely to be around three billion 
tonnes per annum by 2050 (FAO, 2009). Rice, wheat, 
maize, and barley are the four major cereal crops in 
terms of worldwide production (Statista, 2022b). Barley 

is used mainly as animal feed and in brewing, while 
only a small percentage is used for human consump‐
tion (Tricase et al., 2018). It is mainly produced in the 
European Union, Russia, Australia, Ukraine, Canada, 
Turkey, the USA, and Argentina (Statista, 2022a). Aus‐
tralia is one of the biggest barley exporters and ac‐
counted for USD 2 billion worth of raw barley in 2021 
(Trade Map, 2022). However, there is a gap between 
the demand for food and its supply, which exerts huge 
pressure on farmers as well as scientists.

Climate change, which affects the growth and 
development of cereal crops, is yet another challenge 
in sustainable agriculture (Fatima et al., 2020). The 
rise of global temperature due to deforestation, burn‐
ing of fossil fuels, etc. affects the economic yield of 
crops. It leads to a loss of nutrients and water, result‐
ing in lower nitrogen and water use efficiency in crops 
(Fatima et al., 2020). Global warming increases flood 
risks, raises the sea level, and increases desertification, 
which eventually leads to abiotic stresses (Huang et al., 
2016). Abiotic stresses such as drought, flooding, 
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waterlogging, frost, high or low temperature, salinity, 
and excess or deficiency of minerals like aluminium 
and boron, prevent crops from achieving their full gen-
etic potential (Gürel et al., 2016) and contribute to 
crop damage, lower yields, and high production costs 
(Kumar et al., 2021). For example, heat stress accounts 
for 15% of the loss in wheat yield per annum in Aus‐
tralia (Wardlaw and Wrigley, 1994). Climate predic‐
tion models indicate severe effects for Africa, the Ara‐
bian Peninsula, and Central South America, where 
barley is important as human food (Samson et al., 
2011). However, agriculture itself contributes to global 
warming owing to the release of greenhouse gases 
(Wang et al., 2018). Low carbon input farming is there‐
fore a strategy proposed to reduce energy inputs and 
the emission of greenhouse gases from agriculture. 
Achieving this aim while at the same time improving 
soil carbon content is a new challenge for farmers 
(Borychowski et al., 2022). Huge annual investments 
are required to meet the goals of the Paris Agreement 
(van Veelen, 2021). Therefore, it is sensible to address 
these issues by developing new cultivars tolerant to 
stressful environments.

Several barley genes have been exploited to ad‐
dress different stress conditions (Zhou et al., 2016; 
Hazzouri et al., 2018; Karunarathne et al., 2020; 
Mwando et al., 2020), including Hordeum vulgare 
aleurone 1 (HVA1) for drought, high-affinity K+ trans‐
porter 1;1 (HKT1;1) for salinity, and abnormal cytoki‐
nin response 1 repressor 1 (ARE1) for nitrogen use 
efficiency (NUE) (Sivamani et al., 2000; Han et al., 
2018; Karunarathne et al., 2022). Also, elite stress-
tolerant barley genotypes such as ‘Golshan’ and ‘Oxin’ 
for salinity, and ‘GrangeR’ and ‘Bridge’ for low-N 
tolerance have been identified through phenotype 
screening (Karunarathne et al., 2020; Bahrani et al., 
2023). ‘Baudin’, ‘Hamelin’, and ‘Flagship’ were re‐
ported to be competitive barley cultivars in the pres‐
ence of weeds such as ryegrass (Paynter and Hills, 
2009). However, these resources are minimal, and 
more research is required to improve the tolerance of 
barley and other crops to abiotic stresses. Traditional 
plant breeding techniques have been widely used to 
improve crop traits, but are labour-intensive and time-
consuming (Zhu et al., 2020). Genetic modification 
that enables the transfer of genes into elite cultivars 
has its own drawbacks due to safety and health con‐
cerns (Pellegrino et al., 2018). Mutagenesis is more 

acceptable than transgenesis in breeding, yet in some 
studies its efficiency is reported to be low (Nonaka 
et al., 2017). Random mutagenesis also requires large-
scale molecular screening to identify a mutation in a 
given gene (Doll et al., 2019). Therefore, more pre‐
cise gene-editing technologies such as clustered regu‐
larly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (Cas9) gene editing, base 
editing, and prime editing are imperative to develop 
new barley lines with superior qualities and better per‐
formance under stress conditions (Lin et al., 2021; 
Karunarathne et al., 2022). The availability of genomic 
information and more advanced sequencing technol-
ogies promotes precise gene editing in crops. For barley, 
the International Barley Genome Sequencing Consor‐
tium (2012) published the first reference genome of 
‘Morex’. Genome annotation and assembly were sub‐
sequently improved (Mascher et al., 2017; Monat et al., 
2019).

This comprehensive review aims to provide a 
gene pool that includes significant genes for tolerance 
to different abiotic stresses in barley, along with a dis‐
cussion of the potential applications of modern bio‐
technologies such as CRISPR/Cas9 gene editing to im‐
prove barley tolerance. We focus mainly on the eco‐
nomic impact of abiotic stresses in crop production, 
how to choose the right target gene, the extension of 
gene-editing strategies, and how to break genotype de‐
pendency in transformation. Knowledge and genetic 
resources gathered from this review will be useful to 
generate not only resilient cultivars of barley but also 
those of other crops, particularly cereals with increased 
yield and quality.

2 Abiotic stresses threatening crop/barley 
production 

2.1 Drought and extreme high-temperature

Drought is considered the most devastating nat-
ural disaster to crop production globally with wide-
ranging socio-economic impacts. Drought-related crop 
losses are reported on all continents, bar Antarctica, 
and affect all major barley production countries (Kur‐
naz, 2014; Geng et al., 2016; Stahl et al., 2016; Elliot 
et al., 2018; Cammarano et al., 2019; Adisa et al., 
2020; Kirono et al., 2020; Araneda-Cabrera et al., 2021; 
Hudzenko et al., 2021; Hunt et al., 2021; Markonis 

1070



J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2023 24(12):1069-1092    |

et al., 2021). The European heatwave and drought 
of 2003 caused a massive 30% reduction in agricul‐
tural production (Ciais et al., 2005). Mittler (2006) re‐
ported that drought in the USA resulted in USD 20 bil‐
lion in agricultural economic losses during the period 
of 1980–2004. When combined with heat extremes, 
the two stresses were estimated to have caused an as‐
tounding USD 120 billion loss. In developing coun‐
tries, drought not only impacts income and livelihood, 
but also results in millions of deaths through lack of 
water and malnutrition, and the displacement of peo‐
ple. As barley is often the only crop grown in some 
developing countries, particularly in arid and semi-arid 
regions, the impacts of drought and heat extremes on 
barley are of great concern (Kebede et al., 2019; Vi‐
sioni et al., 2019).

The droughts of 2010 and 2012 in the Russian 
Federation caused extensive losses to wheat and barley 
harvests, with a combined agricultural loss of RUB 300 
billion (about USD 5 billion) (Safonova and Safonov, 
2013). The flash drought of 2010 in Western Russia 
reduced over 70% of wheat harvests and threatened 
food security domestically and internationally. The en‐
suing shortages saw domestic wheat price increase, 
and an export ban was put in place to ensure domestic 
availability. Major importers of Russian wheat were 
heavily impacted, with bread prices in Egypt increas‐
ing by 300% and cities erupting in rioting and civil 
unrest (Hunt et al., 2021). Russia is the world’s larg‐
est producer of barley and the effect of harvest losses 
caused by the 2010 drought saw that local feed barley 
prices increase 3.4-fold, and in the drought of 2012, 
prices rose at least 1.6-fold. In the region of Altai, the 
2012 drought caused barley prices to increase by 71.4% 
(Safonova and Safonov, 2013).

Climate change simulation studies predict drought 
and heat events to worsen over the century with the 
most severe changes expected to occur in the second 
half of the century. The frequency, intensity, and dura‐
tion of drought events are expected to increase, and 
terms such as “flash drought” are now used to describe 
the sudden increase in the intensity of drought episodes 
observed (Challinor et al., 2014; Otkin et al., 2018; 
Xie et al., 2018; Ahmadalipour et al., 2019; Cohen et al., 
2021; Otkin et al., 2021; Parker et al., 2021). Naturally, 
there are concerns about how these climatic changes 
will impact barley production and supply. Notably, 
the increasing temperature may lead to contradictory 

impacts on different production areas. For example, 
crop yields are expected to increase in some regions 
such as in Canada and northern Spain, where warmer 
winters would improve yields (Masud et al., 2018; 
Bento et al., 2021), whilst other regions such as France 
and southern Spain are likely to experience increasing 
agricultural losses (Gammans et al., 2017; Bento et al., 
2021). To compensate for negative consequences, 
growers may need to increase expenditure on labour, 
irrigation, and fertilizers to ensure that barley growing 
areas do not decrease in size. This will not always be 
feasible, especially in the context of sustainability and 
water shortages, and it is expected that there will be a 
necessary shift in barley supply globally, with conse‐
quent changes to import/export markets. The priority 
will likely remain feed and food supply, with luxury 
markets such as the brewing industry increasingly im‐
pacted and consumers facing increasing costs (Xie 
et al., 2018; Kebede et al., 2019; Cohen et al., 2021).

2.2 Salinity

Salinity is one of the leading causes of crop losses 
worldwide, affecting an estimated 32 million ha of 
dryland agriculture (Wani et al., 2020). Characterized 
by a high concentration of soluble salts, saline soils 
impact plant growth through osmotic stress, reduced 
water availability, and ion excess. The formation of 
sodic soils or the occurrence of waterlogging can fur‐
ther compound issues for crop producers (Rengasamy 
et al., 2003; Munns and Tester, 2008). Salinity is a 
constraint in many of the major barley production 
countries including Australia, Spain, Turkey, Argentina, 
the USA, and Canada (Huffman et al., 2000; Houk 
et al., 2006; Rengasamy, 2006; Acosta et al., 2011; 
Gorji et al., 2017; Zaman et al., 2018; Taleisnik and 
Lavado, 2021). Saline soils can be restored, but re‐
quire substantial investment to leach the soil and large 
quantities of good quality water, with arid regions suf‐
fering larger costs if access to water is limited (Qadir 
et al., 2014).

In irrigated areas, salt-induced land degradation 
is estimated to cost USD 27 billion per annum in crop 
losses (Qadir et al., 2014). About 25%–30% of irrigated 
land in the USA has crop yields negatively affected 
by soil salinity (Houk et al., 2006). In Iraq, about 30% 
of farmland cannot be cultivated due to a combination 
of soil salinity and lack of water. Yields of wheat, barley, 
and maize crops are 50%–65% lower than those in 
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non-saline-affected areas, translating to USD 300 mil‐
lion in agricultural losses (Christen and Saliem, 2013). 
In the southwest region of Western Australia, salinity 
was calculated to have cost AUD 519–686 million 
per annum in agricultural losses from 2009 to 2019 
(Office of the Auditor General-Western Australia, 
2018; Bennett, 2021). In Bangladesh, saline soils 
are estimated to reduce crop revenue by 20% and have 
led to diversification into aquaculture as farmers sup‐
plement incomes. For those unable to mitigate losses 
due to salt-induced land degradation, there has been 
an increase in migration of people away from affected 
areas (Chen and Mueller, 2018).

Reduced precipitation due to climate change 
poses increased risks for arid and semi-arid regions 
as desertification and salinization threaten cropland 
in the Mediterranean, Africa, parts of Australia, Cen‐
tral America, and parts of the USA (Corwin, 2021). 
Furthermore, rising sea levels are likely to impact 
coastal agricultural regions through salt intrusion, with 
land degradation predicted in Europe (Bosello et al., 
2012; Daliakopoulos et al., 2016; Ullah et al., 2021).

2.3 Waterlogging

Waterlogging has been estimated to reduce global 
crop yields by 10%–20%, impacting North America, 
Africa, Europe, and Central and South-East Asia. A 
large proportion of barley producing regions are af‐
fected worldwide (Brisson et al., 2002; Setter and 
Waters, 2003; Dickin and Wright, 2008; Yavas et al., 
2012; Ahmed et al., 2013; Rukhovich et al., 2014; 
Twining, 2014; Sorokin et al., 2016; Borrego-Benjumea 
et al., 2019, 2020; Ciancio et al., 2021; Tian et al., 2021; 
Schmitt et al., 2022). Waterlogged soils can occur 
through floods, heavy precipitation, or irrigation prac‐
tices, and are compounded by poor drainage, com‐
pacted soils, or flat topography (Setter and Waters, 
2003; de San Celedonio et al., 2014; Liu et al., 2020c). 
Excess moisture in the soil limits (hypoxia) or com‐
pletely depletes (anoxia) oxygen availability, leading 
to plant oxygen deficiency (Zahra et al., 2021). Global 
maize, wheat, and even rice yields have decreased 
by about 33% due to waterlogging (Tian et al., 2021). 
Barley yields have been reduced by from 35% to as 
much as 70%, dependent on the timing and duration of 
waterlogging, and are accompanied by a delay in phe‐
nology (Liu et al., 2020a). In Australia, waterlogging 
causes an estimated crop loss of AUD 180 million per 

annum, with AUD 100 million and AUD 20 million 
being attributed to wheat and barley losses, respec‐
tively (Manik et al., 2019, 2022). Excess soil moisture 
has been identified as an agricultural issue in the prai‐
rie regions of Canada, where 94% of Canada’s barley 
is grown. Between 1966 and 2017, 37% to 71% of crop 
losses were reported due to excess moisture (Borrego-
Benjumea et al., 2019; de Castro et al., 2022). Wheat 
yields have decreased by as much as 10% every two 
years in central China where extreme waterlogging due 
to climate change is predicted to cause up to 1010 kg/ha 
wheat yield losses by 2080 (Yan et al., 2022).

Waterlogging has become more frequent and un‐
predictable due to climate change, with an increased 
impact on barley cropping regions (Liu et al., 2021). 
Climate change not only alters the frequency of water‐
logging, but also will likely cause a shift in the regions 
affected. Reduced precipitation and warmer tempera‐
tures are likely to improve barley yields in regions 
prone to waterlogging (Liu et al., 2023). However, 
modelling predicts more frequent and severe water‐
logging stress for countries such as Argentina, Ethiopia, 
China, the UK, France, and Germany, some of which 
are the world’s largest barley producers (Liu et al., 
2023). Furthermore, waterlogged soils release larger 
amounts of the greenhouse gas nitrous oxide into the 
atmosphere, contributing to global warming potential, 
and compounding the issues of climate change (An 
et al., 2022; Ren BZ et al., 2022).

2.4 Nitrogen use efficiency

Nitrogen (N) is a major factor limiting crop yield 
potential and grain quality. The addition of N fertiliz‐
ers has significantly increased crop production yields 
and is essential to maintain food security (He et al., 
2021; Karunarathne et al., 2022). NUE is the ratio of 
N uptake by the plant against the total amount of N 
fertilizer applied. Poor NUE is driven by overfertiliza‐
tion and N loss pathways. It is estimated that only 
30%–40% of the current year’s applied N fertilizer is 
taken up by crops, with the remainder remaining in 
the soil or lost out of the cropping system into the air 
and water (Yan et al., 2020; He et al., 2021; Gao et al., 
2022).

About 57% of the global market share of N fer‐
tilizer is consumed by China, India, and the USA 
(31%, 15%, and 11%, respectively), followed by Bra‐
zil, Pakistan, Indonesia, Canada, and France with a 
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combined share of 13% (Heffer and Prud'homme, 2016; 
Lu and Tian, 2017). About 55% of global N fertilizer 
is used for cereals crops, with wheat, rice, and maize 
dominating (Heffer and Prud'homme, 2016). The ap‐
plication of N fertilizers to agricultural land is costly 
and is an environmental hazard, costing developing 
countries billions of USD in losses. Production of N 
fertilizers consumes fossil fuels and contributes to 
greenhouse gas emission impacting climate change. 
Furthermore, nitrogen fertilizers negatively impact 
aquatic ecosystems through nutrient runoff, and con‐
taminate ground and drinking water (Houlton et al., 
2019; Langholtz et al., 2021).

Increasing NUE in crops is a sustainable solution 
that not only maximizes yield potential in the face of 
increasing global food demands, but also would miti‐
gate the economic and environmental impacts of fer‐
tilizer use (Houlton et al., 2019; He et al., 2021; Lang‐
holtz et al., 2021; Karunarathne et al., 2022). Model‐
ling of USA cropping systems has estimated that a 
10% increase in NUE over a 10-year period would in‐
crease crop revenue by USD 350 million per annum. 
A 20% increase in NUE would increase crop revenue 
by USD 743 million per annum and reduce the cost 
of water treatment by about USD 15–136 million per 
annum (Langholtz et al., 2021).

2.5 Herbicide resistance

Weeds are increasingly becoming a worldwide 
problem that affects crop productivity. They compete 
with crop plants for sunlight, nutrients, moisture, and 
space (Naeem et al., 2022). About 35% of yield is 
lost in major crops, globally, due to weed infestations 
(Oerke, 2006). Yield reductions in wheat, rice, and 
maize are 27%, 37%, and 31%, respectively. Global 
economic loss owing to the reduction in crop produc‐
tion is USD 32 billion per annum (Kubiak et al., 2022). 
The total economic loss is estimated to be around USD 
11 billion for ten major crops in India (Gharde et al., 
2018). Winter wheat yield loss ranges from 2.9% to 
34.4% in the USA, which translates to an average loss 
of USD 2.19 billion between 2007 and 2017 (Flessner 
et al., 2021). In Russia, the average spring barley 
yield loss is 13% in plots not treated with herbicides 
(Mayerová et al., 2018). Barley yield loss is estimated 
to range from 43% to 78% in Australia (Mahajan 
et al., 2020). The total cost of weeds, including the 
expenditure and the income loss, is around AUD 2.5–

4.5 billion per annum in Australia (GRDC GrowNotes, 
2016; Llewellyn et al., 2016).

Wild oats, annual ryegrass, and flaxleaf fleabane 
are the common weeds in barley paddocks (Mahajan 
et al., 2020), while ryegrass, wild radish, brome grass, 
and wild oats are reported to be among the costliest to 
control in Australia (Llewellyn et al., 2016). Although 
weeds can be controlled by mechanical or hand weed‐
ing, both methods are restricted owing to the labour-
intensive nature of large-scale hand weeding and the 
loss of soil structure in mechanical weeding (Jabran 
et al., 2015). Spraying herbicides is currently the most 
widely used strategy for weed management in Austra‐
lian grain crops (Mwendwa et al., 2022). However, 
the evolution of herbicide resistance in weeds and the 
inability to use certain herbicides due to the increased 
sensitivity of crops are major concerns in chemical 
weed control (GRDC GrowNotes, 2016). Some of these 
weeds have developed resistance to herbicides that 
inhibit acetyl-coenzyme A carboxylase (ACCase), ac‐
etolactate synthase (ALS), and enol pyruvyl shiqui‐
mate phosphate synthase (EPSPS), suggesting that her‐
bicides with new modes of action are needed (Galon 
et al., 2022). Therefore, the development of herbicide 
resistance in cereals is a cost-effective alternative to 
avoid crop damage caused by herbicides and to main‐
tain high productivity.

3 Genetic resources for barley improvement 

3.1 Candidate genes for enhancing barley abiotic 
stress tolerance

Plant responses to abiotic stress are complex and 
multigenic, with changes at the cellular, molecular, and 
physiological levels. Abiotic stresses activate the ab‐
scisic acid (ABA)-independent and -dependent signal‐
ling transduction pathways, but also activate signal‐
ling pathways typically associated with biotic stresses, 
such as the jasmonic acid (JA) pathway (Visioni et al., 
2019). Plant growth and photosynthesis genes are often 
downregulated during abiotic stress, impairing plant 
growth and further exacerbating crop yield losses 
(Ali and Malik, 2021).

From previous studies, we consolidated a suite 
of named Hordeum vulgare (H. vulgare) functional and 
regulatory genes that participate in plant abiotic stress 
protection (Fig. 1). Although numerous mapping, 
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microarray, and transcriptome studies were assessed 
(Talamè et al., 2007; Tommasini et al., 2008; Janiak et al., 
2018; Collin et al., 2020; Karunarathne et al., 2020; 
Nefissi Ouertani et al., 2021; Manik et al., 2022), the 
summary focused on known barley genes as primary 
candidates for gene editing and molecular breeding. 
Genes for secondary traits that allow for stress escape, 
such as flowering time, were compiled, as well as 
genes to combat impaired growth due to abiotic stress 
response. Gene locations and annotations were ob‐
tained by blasting the National Center for Biotechnol‐
ogy Information (NCBI), UniProt, or Morex v1 acces‐
sion information provided in publications against the 
Morex v3 reference sequence (Colmsee et al., 2015; 
Afgan et al., 2018; Tello-Ruiz et al., 2022). A com‐
piled gene list with published accession information, 
gene function, Morex v3 gene ID with annotation, and 
publication references was supplied in Table S1. More 
than 150 genes covering all seven chromosomes have 
been mapped. The list reflects the dominance of drought 
and salinity studies in the literature, with 44% of iden‐
tified genes induced by drought stress, followed by 

23% induced by salt stress. Several genes were re‐
portedly activated under multiple stresses. These are 
represented by transcription factors, reactive oxygen 
species (ROS) scavengers, and protective proteins, 
such as late embryogenesis abundant (LEA) proteins 
(Table S1). Regulatory genes, such as transcription 
factors, were a predominant category. Modifying regu-
latory genes can alter the expression of multiple 
downstream stress response genes, and therefore has 
the potential to produce a more significant and durable 
phenotypic change than targeting a single functional 
gene (Umezawa et al., 2006).

3.2 Barley prebreeding resources

A modest range of gene-editing tools have been 
used to develop abiotic stress tolerance in barley 
(Tables 1 and S2). Key functional genes, regulatory 
genes, and genes controlling plant growth and photo‐
synthetic machinery have been modified to elucidate 
the mechanisms controlling abiotic stress response. The 
usefulness of this material for breeding tolerant cultivars 
is largely dependent on the outcomes of these studies.

Fig. 1  Potential candidates for gene editing and molecular breeding for improvement of barley abiotic stress tolerance. 
Identified genes were assigned to physical locations using the Morex v3 reference sequence (comprehensive gene information 
is available in Table S1). NUE: nitrogen use efficiency. Drawn with PhenoGram software following Wolfe et al. (2013).
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Numerous overexpression lines have been devel‐
oped with significant phenotypic improvement reported 
across a range of abiotic stresses (Table 1). However, 
constitutive overexpression yielded variable results on 
plant development and growth, depending on the gene 
targeted. In some cases, plant growth remained healthy 
under normal and stressed conditions and even exhib‐
ited enhanced growth and plant biomass, compared to 
the wild type. In other instances, abnormal growth and 
reproductive development were observed, particularly 
under normal and unstressed conditions. In transgenic 
barley, the use of stress-inducible or modified promot‐
ers has been shown to address abnormal growth asso‐
ciated with constitutive overexpression and could plau‐
sibly be applied here (Kovalchuk et al., 2013).

Gene silencing is an elegant tool for elucidating 
the functional role of a gene of interest, but outcomes 
are not necessarily predictable. For instance, knock‐
down of HvHKT1;1 ultimately led to reduced salt 
tolerance, whereas knockdown of negative regulator 
HvHKT1;5 enhanced salt tolerance (Table 1). Whilst 
both outcomes are academically valuable in establish‐
ing the role of these genes in salt stress response, only 
one of the exhibited phenotypes is desirable for breed‐
ing purposes. Likewise, virus-induced gene silencing 
(VIGS) rapidly provides valuable insights into gene 
function, but its transient nature is of limited benefit 
to plant breeders.

The CRISPR/Cas9 system is a more precise tech‐
nique than overexpression, yet only Vlčko and Ohnout‐
ková (2020), Fu et al. (2022), and Karunarathne et al. 
(2022) had used this technology for barley germplasm 
development (Table 1). In two of these cases, a se‐
ries of mutants with variable phenotypes were suc‐
cessfully generated. Other editing tools, such as tran‐
scription activator-like effector nucleases (TALENs) 
or prime editing, were unrepresented for the abiotic 
stresses, and only Fujii et al. (2012) had examined 
promoter modification.

It was shown that selecting early flowering culti‐
vars with high yield potential mitigated some of the 
impacts of heat and drought stresses occurring during 
the maturation stage (He et al., 2022). Liu et al. (2020b) 
highlighted the importance of identifying optimal sow‐
ing and flowering periods to alleviate the negative 
consequences of water, heat, frost, and potentially water-
logging for Australian barley. Targeting genes that 
maintain plant growth and photosynthetic capabili‐
ties whilst under abiotic stress is therefore a valuable 

approach to improve tolerance in barley germplasm 
(Atkinson and Urwin, 2012; Ali and Malik, 2021). 
Constitutive overexpression of HvFC1 and HvFC2 not 
only improved drought tolerance, but also improved 
the photosynthetic rate under normal and drought-
stressed conditions (Table 1). This suggests that modi‐
fication of such genes has the potential to mitigate 
some of the yield losses associated with abiotic stress 
responses.

A single candidate gene approach is often under‐
taken in germplasm development, but there is some 
skepticism that this is enough to confer acceptable 
tolerance in a field setting over an entire season. Zhou 
et al. (2013) showed that although overexpression of 
HvAACT1 enhanced plant tolerance to aluminium (Al3+), 
engineered lines were not as tolerant as the existing 
cultivar ‘Dayton’, leading the authors to propose mul‐
tiple mechanisms conferring Al3+ tolerance in barley 
(Table 1). Furthermore, of the material presented in 
Table 1, only al Abdallat et al. (2014) had examined 
plant response in a field environment, with many stud‐
ies focusing only on the seedling stage of growth 
(Table S2). Significant differences that are observed 
for short durations under controlled laboratory or glass‐
house conditions may yield only minor or negligible 
improvement once in the field (Hirayama and Shino‐
zaki, 2010; Atkinson and Urwin, 2012). Plant stress 
response is interactive and non-additive, with some 
genes acting synergistically and others antagonisti‐
cally. Once an initial abiotic stress response is activated, 
plants may alter how they respond to secondary stress, 
resulting in a phenotype that is unexpected from 
observing a single stress in isolation (Mittler, 2006; 
Atkinson and Urwin, 2012). While it is essential to 
test specific variables in isolation for preliminary stud‐
ies, such as in functional genomics, it is also essential 
to assess responses to multiple stresses simultaneously 
(both abiotic and biotic), observed over multiple growth 
stages, and in the field.

4 Precise gene editing in barley—advances, 
strategies, and challenges 

4.1 Current progress using CRISPR/Cas9 system

As highlighted under barley prebreeding resources, 
the CRISPR/Cas system is a precise technique in gene-
editing. It is an integral part of the bacterial and 
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archaeal immune systems, which has now been adapted 
by scientists in various fields including agriculture. The 
working mechanism of CRISPR is well explained in 
many recent reviews (Najera et al., 2019; McCarty 
et al., 2020; Wada et al., 2020; Nejat et al., 2022). The 
introduction of CRISPR as a gene-editing platform 
has greatly improved the efficiency of breeding (Non‐
aka et al., 2017) and the functional characterization of 
genes (Zhang et al., 2021; Karunarathne et al., 2022). 
It is a revolutionary tool for basic research and bio‐
technology. Gene knockout is the widely used applica‐
tion of CRISPR/Cas9, and single or multiple gene 
knockouts have been successfully observed in maize, 
barley, wheat, and rice (Li et al., 2013; Doll et al., 2019; 
Kim et al., 2019; Lawrenson and Harwood, 2019; 
Křenek et al., 2021; Zhang et al., 2021; Karunarathne 
et al., 2022). Advancement of the technique to multi‐
plex gene editing allows the simultaneous editing of 
several targets in a single genome (Xing et al., 2014). 
Engineered CRISPR systems have become more effi‐
cient and flexible, with base and prime editing tools 
among the most recent advances of CRISPR. Base 
editing targets single nucleotide mutations with the use 
of deactivated Cas9 (dCas9) or nickase Cas9 (nCas9). 
Prime editing allows for all types of desired base sub‐
stitutions, small insertions up to 44 bp and deletions 
up to 88 bp at selected target sites with the use of 
CRSIPR/Cas9 nickase-reverse transcriptase fusions 
(Anzalone et al., 2019; Lin et al., 2020). CRISPR/Cas9 
is the most widely used system, but new systems such 
as Cas12, Cas13a, and Cas13b are in the pipeline 
(Smargon et al., 2017; Zaidi et al., 2017; Aman et al., 
2018). Products of gene editing are classified as site-
directed nuclease-1 (SDN-1), SDN-2, and SDN-3 types. 
SDN-1 products rely on a non-homologous end joining 
(NHEJ) pathway to introduce a few base insertions or 
deletions. SDN-2 and SDN-3 rely on homology-directed 
repair (HDR) in which a template DNA sequence is 
used (Grohmann et al., 2019).

Compared to other gene-editing methods such as 
TALEN or zinc finger nuclease (ZFN), CRISPR/Cas9 
has advantages in simple target design, multiplexed 
mutation, versatility, and efficiency (Leong et al., 2018). 
There have been numerous proof-of-concept experi‐
ments conducted using the CRISPR/Cas9 gene-editing 
platform (Lawrenson et al., 2015), but few devel‐
opments have reached commercialization (Nonaka 
et al., 2017). A γ-aminobutyric acid (GABA)-enriched 
tomato from Japan was the first CRISPR-edited food 

to enter the market. Introduction of a stop codon to 
the Solanum lycopersicum L. glutamate decarbox‐
ylase SlGAD2 and SlGAD3 genes through CRISPR/
Cas9 technology increased the GABA content in the 
tomatoes by 7-fold to 15-fold (Nonaka et al., 2017). 
In barley, CRISPR/Cas9 gene editing has been suc‐
cessfully used to create insertion/deletion (InDel) mu‐
tations in eukaryotic translation initiation factor 4E 
(elF4E), H. vulgare mitogen-activated protein kinase 
6 (HvMPK6), H. vulgare nudum (HvNud), H. vulgare 
purple acid phosphatase phytase (HvPAPhy), H. vul‐
gare protein targeting to starch 1 (HvPTST1), H. vul‐
gare granule-bound starch synthase 1 (HvGBSS1), 
H. vulgare homogentisate phytyltransferase (HvHPT), 
and H. vulgare homogentisate geranylgeranyl trans‐
ferase (HvHGGT) genes to improve desirable traits 
(Holme et al., 2017; Zhong et al., 2019; Zeng et al., 
2020; Křenek et al., 2021; Kershanskaya et al., 2022; 
Zang et al., 2022). This marks the potential applica‐
tion of the technology in developing abiotic stress 
tolerance and accelerating barley breeding.

4.2 CRISPR gene-editing strategies to develop 
abiotic stress tolerance in barley

Gene-editing strategies that need to be used to 
develop stress tolerance in barley differ based on their 
positive or negative effects or transcriptional regula‐
tion of the potential genes (Tables 1 and S2). For in‐
stance, downregulation of the ARE1 gene has been 
identified to improve NUE in cereals, which makes 
CRISPR/Cas9 gene knockout the best strategy to create 
loss of function mutant barley lines (Karunarathne 
et al., 2022). Choosing the wrong gene-editing strategy 
could produce plants with impaired growth or an 
unfavourable phenotype under stress conditions. The 
knockout mutant lines generated for vacuolar H. vul‐
gare H+-pyrophosphatase (HvHVP10) in barley had 
decreased salt tolerance (Fu et al., 2022). This might 
have been because HvHVP10 is known to be upregu‐
lated in response to salt stress in barley roots. The study 
was doubtlessly invaluable to elucidate the gene’s func‐
tion, but inducing overexpression using CRISPR would 
have been a better approach in terms of commercial 
breeding. Most of the genes in Table 1 have been over‐
expressed to achieve drought and frost tolerance, but 
not through CRISPR/Cas9. Where gene knockouts 
in the coding region cause unfavourable pleiotropic 
effects, modification of the promoters to induce gene 
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activation is desirable in developing stress tolerance 
in crops (Ren C et al., 2022). CRISPR/Cas9 can be 
reprogrammed for transcriptional regulation by fusing 
transcriptional activator domains to a dCas9 in barley. 
In rice, simultaneous multigene activation is possi‐
ble using the CRISPR activation (CRISPRa) system 
(Lowder et al., 2018). Therefore, this may be a prom‐
ising application in other monocots too, including 
barley, to study the transcriptional network underlying 
abiotic stresses.

Some agronomic traits are controlled by a few 
quantitative trait loci (QTL), and in such cases editing 
one gene is less likely to give a favourable phenotype. 
Multiplex gene editing can solve this problem by fa‐
cilitating the simultaneous editing of two or more genes, 
or multiple loci of the same gene (Xing et al., 2014). 
Especially when improving abiotic stress tolerance in 
crops, we can develop a mutant line with tolerance to 
multiple stresses through multiplex gene editing, which 
otherwise demands prolonged conventional crossing. 
An editing efficiency of 21% was observed with heri‐
table mutations in multiplex editing of two barley cy‐
tokinin oxidase/dehydrogenase (CKX) genes, HvCKX1 
and HvCKX3, using a polycistronic transfer RNA 
(tRNA)-guide RNA (gRNA) construct (Gasparis et al., 
2018). The Western Crop Genetics Alliance, Murdoch 
University (Australia) has successfully used multiple 
independent cassettes as a proof of concept to target 
WRKY transcription factors to develop a high-throughput 
mutant library in barley (Nejat, 2022). A number of 
mutants were obtained with improved agronomic and 
plant architecture traits such as seed number, spike 
length, tiller number, and root structure, and are cur‐
rently being screened under different stress conditions 
(Nejat, 2022).

Alteration of one nucleotide in a gene is reported 
to have the potential to improve important crop traits in 
agriculture (Tian et al., 2018). These single nucleotide 
polymorphisms (SNPs) can now be achieved through 
base or prime editing (Lin et al., 2021; Xiong et al., 
2022). Base-editing studies conducted in Arabidopsis 
and rice provide confidence in using this technique in 
barley to improve useful traits, for instance, inducing 
early or late flowering to escape stress windows such 
as those for frost or drought (Li et al., 2020; Xiong 
et al., 2022). More importantly, herbicide-resistant 
barley lines can be developed through base editing 
(Shimatani et al., 2017; Tian et al., 2018). It can also 

be repurposed as a gene loss of function tool by creat‐
ing a stop codon or a gene knockdown by creating an 
upstream open reading frame (uORF) (Billon et al., 
2017; Kuscu et al., 2017; Xiong et al., 2022). Prime 
editing is the latest technique that can induce precise 
mutations (Lin et al., 2021). Plant prime-editing sys‐
tems have been used in rice and wheat, but not in bar‐
ley (Lin et al., 2020; Xu et al., 2020). They provide 
another platform for generating herbicide resistance in 
barley, especially as they can introduce pre-determined 
single base substitutions precisely. For instance, the rice 
gene Oryza sativa acetolactate synthase (OsALS) was 
targeted to develop resistance to the herbicide bispy‐
ribac sodium (Butt et al., 2020). We can maximise the 
use of prime editing by combining it with multiplex 
gene editing to generate improved barley lines with 
resistance to multiple herbicides with different modes 
of action.

4.3 Confidence in targeting genes

We have collated a long list of genes related 
to different abiotic stresses in barley (Fig. 1, Table 1). 
However, choosing the most significant genes for 
downstream experiments is challenging. Researchers 
have sometimes used gene expression studies with re‐
verse transcription-polymerase chain reaction (RT-PCR) 
or differential gene expression to determine potential 
genes for any given trait (Feng et al., 2020a; Karunara‐
thne et al., 2022). VIGS is an effective tool widely 
used to study gene function in plants. It allows a 
quick study of several genes without the need for 
transformation (Han et al., 2018; Feng et al., 2020b). 
This is an ideal tool to narrow down our gene list and 
eventually pick only the most significant genes. VIGS 
has been used to functionally analyse the Triticum 
aestivum enhanced response to abscisic acid 1 (TaEra1) 
and basic transcription factor 3 (TaBTF3) genes in 
wheat, and inwardly rectifying potassium (K+ ) chan‐
nels HvAKT1 and HvAKT2, HVA1, and Hv dehydrin 6 
(HvDhn6) genes in barley for drought tolerance (Liang 
et al., 2012; Kang et al., 2013; Manmathan et al., 2013; 
Feng et al., 2020a). Barley stripe mosaic virus-induced 
gene silencing has been conducted in barley by Han 
et al. (2018), and our lab has an established platform 
to use VIGS to back up gene selection (unpublished 
data). Since VIGS is transient, after confirming the gene, 
CRISPR/Cas9 gene editing should be used to generate 
stable successful mutants. Furthermore, the availability 
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of barley pan-genome sequences facilitates the identi‐
fication of structural variations and conserved se‐
quences within the genes of interest and pinpoints the 
most plausible gene for editing (Jayakodi et al., 2020).

4.4 Breaking genotype dependency for commercial 
breeding

Gene editing in barley is performed mainly by 
delivering the CRISPR/Cas9 gene-editing complex 
through particle bombardment or Agrobacterium-
mediated transformation (Han et al., 2021). Stable 
transformation of barley from immature embryos, 
microspore-derived embryos, and callus from young 
embryos was first reported by Wan and Lemaux (1994). 
Regardless of the delivery method, the process in‐
volves tissue culture, which is tedious, time-consuming, 
and genotype-dependent. The spring barley cultivar 
‘Golden Promise’ has been used for decades with 
a successful transformation and regeneration rate. A 
reference genome assembly for this genotype is now 
available (Schreiber et al., 2020). Other cultivars such 
as ‘Compass’, ‘Spartacus’, and the breeding line 
WI4330 have been used in previous research, but with 
low efficiency (Ismagul et al., 2014; Han et al., 2021; 
Karunarathne et al., 2022). ‘RGT Planet’ has now 
been found to have a high transformation and regener‐
ation efficiency almost similar to that of ‘Golden 
Promise’ (Nejat, 2022). A barley pan-genome is now 
available that provides more sequence information 
for gene editing, but the transformation capacity of 
pan-genome accessions is yet to be tested (Jayakodi 
et al., 2020). Overexpression of developmental regu‐
lators such as the maize BABY BOOM (BBM) and 
WUSCHEL 2 (WUS2) genes has increased the trans‐
formation efficiency in sorghum, rice, and sugarcane 
(Lowe et al., 2016; Mookkan et al., 2017). The latest 
breakthrough is the overexpression of the T. aestivum  
WUSCHEL-related homeobox 5 (TaWOX5) gene to 
overcome genotype dependency in wheat, barley, and 
maize genetic transformation (Wang et al., 2022). The 
use of virus-based vector, namely sonchus yellow net 
rhabdovirus (SYNV), to deliver the entire CRISPR/Cas9 
cassette is an alternative way to bypass the tissue cul‐
ture process. This does not require the isolation of 
plant cells or tissues and can be delivered directly into 
intact plants. It is reported to achieve both single 
and multiplex mutagenesis with high efficiency in to‐
bacco (Ma et al., 2020). De novo induction of gene-
edited meristems also avoids the tissue culture step 

and can be induced in aseptically grown seedlings 
and soil-grown plants (Maher et al., 2020). Injection 
of Agrobacterium tumefaciens carrying the develop‐
ment regulators WUS2 and SHOOT MERISTEMLESS 
(STM) into tobacco seedlings led to the development 
of gene-edited shoots with heritable mutations (Maher 
et al., 2020). The use of nanoparticles, such as meso‐
porous silica nanoparticles, liposomes, and layered 
double hydroxides, as vectors for the delivery of the 
CRISPR/Cas9 system is a significant development 
in gene editing (Chen and Mueller, 2018; Alghuthaymi 
et al., 2021). It can avoid genotype dependency in plants 
but requires further insight in terms of application.

4.5 High-throughput mutation screening

Identification of the genotype of mutants is the 
most important task in gene editing. Several molecu‐
lar techniques from agarose gel electrophoresis to se‐
quencing can be used for this task (Zhang et al., 2021; 
Karunarathne et al., 2022). PCR-restriction enzyme 
digestion has proved to be useful in genotyping mu‐
tants. Enzymes that can digest the wild-type DNA, 
but not the mutant DNA, can be used to pinpoint mu‐
tations as heterozygous or homozygous on agarose gels 
(Han et al., 2021; Karunarathne et al., 2022). Enzyme 
recognition sites are usually chosen close to the proto‐
spacer adjacent motif (PAM), and thus any mutations 
away from PAM/recognition site can give false nega‐
tive results, limiting the application of this method. 
Single-strand conformation polymorphism (SSCP) on 
the other hand can be used to detect SNPs due to its 
simplicity and low cost. Altered conformation due to a 
single base change in the DNA can cause different band 
patterns on non-denaturing gels which separate mutant 
and wild-type DNA (Zhu, 2005). High-resolution melt‐
ing (HRM) is useful in a large-scale screening of mu‐
tants. It generates sequence-related melting profiles and 
reveals the genotype at the level of a single nucleotide 
(Chatzidimopoulos et al., 2019). Third generation dig‐
ital PCR (dPCR) enables rare mutation detection and 
trace DNA detection but is not suitable for large am‐
plicons and cannot detect multiple targets in one sam‐
ple (Mao et al., 2019). Regardless, all the above tech‐
niques must be followed by sequencing, which is the 
gold standard for genotyping mutants (Xu et al., 2020; 
Zhang et al., 2021). Sanger sequencing is widely used 
and useful for low-volume high-quality DNA sequenc‐
ing (Nonaka et al., 2017; Doll et al., 2019). The more 
advanced next generation sequencing (NGS) is useful 
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for sequencing large mutant populations at lower cost 
(Peterson et al., 2016; Yang et al., 2022). Both tech‐
niques enable the identification of the exact order of a 
gene sequence, and the alignment of this DNA or pro‐
tein sequence helps us to detect the respective amino 
acid change in mutants. TA-cloning can be used to 
clone multiple DNA fragments for sequencing, which 
can detect heterozygous or chimeric mutations (Ma 
et al., 2020). Transgene-free homozygous mutants are 
desirable and in barley are feasible in the T1 genera‐
tion (Zeng et al., 2020). Tracking of InDels by Decom‐
position (TIDE) is an effective web tool (https://tide.
nki.nl) that can be used to analyse sequencing data, 
which estimates the spectra and frequencies of small 
insertions and deletions generated from gene editing 
(Brinkman et al., 2014).

5 Conclusions and perspectives 

Cereal crops including barley suffer significant 
yield and economic losses in the face of increased abi‐
otic stresses due to climate change. Thus, improving 
abiotic stress tolerance in barley is imperative to ensure 
food security. CRISPR/Cas9 gene-editing provides an 
ideal platform with high efficiency and versatility, which 
has already been applied in both monocots and dicots 
to improve numerous agronomic traits, and some prod‐
ucts have already been commercialised. CRISPR/Cas9-
based multiplexed gene-editing is useful to develop 
new barley lines with tolerance to more than one stress 
condition by targeting multiple genes simultaneously. 
A combination of gene-editing with speed breeding 
techniques can accelerate crop breeding to develop 
new cultivars with desirable traits. Further applications 
of CRISPR/Cas9 not discussed in this review include 
haploid induction and generating male sterile lines to 
support hybrid vigour. Barley wild species have huge 
genetic diversity and CRISPR/Cas9-aided domestica‐
tion for climate resilience and other desirable traits 
takes only a short time compared to traditional domes‐
tication. Even though CRISPR/Cas9 gene-editing has 
advanced over the years, more insight and further de‐
velopment of the toolkit are essential in certain crops. 
New and efficient methods for delivery of the gene-
editing complex such as the use of nanoparticles must 
be tested within crops to accelerate the transformation 
process.
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