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Abstract:    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. 
However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are 
limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO gener-
ation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO 
release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, 
whereas Put had no such effect. Moreover, H2O2 might act as an upstream signal to stimulate NO production. Both 
exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting 
the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions 
of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their en-
zyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and 
blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling 
stress. The results showed that NO induced by Spd plays a crucial role in tomato’s response to chilling stress. 
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1  Introduction 
 

Polyamines (PAs), mainly putrescine (Put), 
spermidine (Spd), and spermine (Spm), are a group of 
phytohormone-like aliphatic amine compounds. PAs 
exert influence in the plant life cycle, including cell 
division and elongation, morphogenesis, seed ger-
mination, flowering, and senescence (Igarashi and 
Kashiwagi, 2000; Bais and Ravishankar, 2002; Yoda 

et al., 2006; Wimalasekera et al., 2011; Gupta et al., 
2013). Furthermore, PAs also have impact on plants 
in response to diverse abiotic stresses, such as salinity 
(Zapata et al., 2004; Shu et al., 2012), drought (Yang 
et al., 2007; Li et al., 2015), oxidative stress (Rider  
et al., 2007; Puyang et al., 2015), high temperature 
(Cheng et al., 2012; Mostofa et al., 2014), and 
chilling stress (Nayyar, 2005; Yamamoto et al., 2012). 
It was previously suggested that the elevated stress 
tolerance of plants due to PAs may be attributed to 
their polycationic nature at physiologic pH. PAs can 
interact with negatively charged macromolecules, 
which inhibits the phase change under stressed con-
dition (Groppa and Benavides, 2008; Alcázar et al., 
2010). Additionally, PAs can directly or indirectly 
scavenge reactive oxygen species (ROS) and enhance 
the activities of antioxidant enzymes (Verma and 
Mishra, 2005; Parvin et al., 2014). 

 

Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 

ISSN 1673-1581 (Print); ISSN 1862-1783 (Online) 

www.zju.edu.cn/jzus; www.springerlink.com 

E-mail: jzus@zju.edu.cn 

 
 
‡ Corresponding author 
§ The two authors contributed equally to this work 
* Project supported by the China Agriculture Research System (No. 
CARS-25) and the Liaoning Innovative Research Team in University 
(No. LZ2015025), China 
# Electronic supplementary materials: The online version of this article 
(http://dx.doi.org/10.1631/jzus.B1600102) contains supplementary mate-
rials, which are available to authorized users 

 ORCID: Qian-nan DIAO, http://orcid.org/0000-0001-5086-5166 
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2016 



Diao et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol)  2016 17(12):916-930 
 

917

Nitric oxide (NO) is a highly reactive gaseous 
molecule that regulates diverse plant growth and 
development processes, including seed germination, 
root growth, flowering, and senescence (Neill et al., 
2003; Besson-Bard et al., 2008). Several studies have 
suggested that NO can participate in controlling the 
various plant responses toward diverse abiotic 
stresses. For example, Esim and Atici (2014) ob-
served that exogenous NO (sodium nitroprusside 
(SNP)) can effectively alleviate chilling stress dam-
age in maize seedlings. Tian and Lei (2006) reported 
that NO treatment improved the growth of wheat 
seedlings and relieved oxidative damage. In contrast, 
according to Tun et al. (2006), PAs induced accu-
mulation of NO in Arabidopsis thaliana seedlings. 
Arasimowicz-Jelonek et al. (2009) presented evidence 
that PAs promoted NO synthesis in cucumber seed-
lings during drought stress. In light of the common 
functions of PAs and NO in abiotic stresses, it can be 
conjectured that NO is linked to PA-induced stress 
responses (Wimalasekera et al., 2011). 

Many potential sources of NO production exist 
in plants; among them, the nitric oxide synthase (NOS) 
and nitrate reductase (NR) enzymatic pathways have 
been the focus of most studies (Guo et al., 2003; 
Wimalasekera et al., 2011). NR has been found to be 
the source of NO in Arabidopsis, tobacco, sunflower, 
alfalfa, spinach, and maize (Desikan et al., 2002; 
Rockel et al., 2002; Dordas et al., 2003; Planchet  
et al., 2005). In animals, NO is synthesized via NOS. 
Although mammalian-type NOS is intricate (Guo  
et al., 2003; Zemojtel et al., 2006), NOS-like activity 
has been found extensively in plants, and inhibitors of 
mammalian NOS can suppress NO production in 
plants (Neill et al., 2008; Tewari et al., 2013). NO and 
hydrogen peroxide (H2O2), as universal signal trans-
duction molecules, have been shown to be involved in 
controlling many physiological functions in plants 
(Finkel and Holbrook, 2000; Bright et al., 2006; 
Dickinson and Chang, 2011). A growing number of 
studies show that there is a relationship between NO 
and H2O2. During plant responses to various stresses 
or stimuli, NO and H2O2 production often occur in 
parallel or in short succession (Bright et al., 2006; 
Pasqualini et al., 2009). Interestingly, evidence has 
been found suggesting that H2O2 can be also gener-
ated via PA catabolic pathways, through diamine 
oxidase (DAO) and polyamine oxidase (PAO) activ-

ities (Martin-Tanguy, 2001; Kusano et al., 2007; 
Hussain et al., 2011; Gupta et al., 2013). In Zea mays, 
PAO modulates H2O2 production during wound 
healing (Angelini et al., 2008). In the development of 
soybean lateral roots, DAO and PAO play important 
roles in H2O2 formation (Su et al., 2006). 

Chilling is a main abiotic stress factor that di-
rectly influences plant growth and productivity. It has 
been suggested that Put, Spd, and NO have effects on 
plant responses to chilling stress (Neill et al., 2003; 
Cuevas et al., 2008; Li et al., 2014). We have recently 
shown that Put and Spd accumulated to some extent 
in tomato seedlings in response to low temperature 
(Song et al., 2015). However, limited studies exist on 
whether PAs are involved in NO production under 
chilling stress, or whether PAs can enhance chilling 
tolerance by inducing NO production. Therefore, we 
performed a series of experiments using tomato 
seedlings to clarify these problems. The aims of this 
study were as follows: (1) to study which type of PAs 
can induce NO accumulation under chilling stress;  
(2) to clarify the possible mechanism underlying 
PA-induced NO synthesis under chilling stress; and 
(3) to determine whether NO production induced by 
PAs can enhance chilling tolerance. 
 
 
2  Materials and methods 

2.1  Plant materials, growth, and treatment  
conditions 

Seeds of tomato (Lycopersicon esculentum Mill. 
cv. Moneymaker) were germinated and grown in  
12 cm×12 cm plastic pots containing peat moss in a 
greenhouse (temperature 25 °C (day)/15 °C (night), 
natural light, relative humidity 60%) in September 
2014 at Shenyang Agricultural University, China. 
The seedlings were watered daily. The tomato plants 
at the five-leaf stage were treated as follows. 

The seedlings were subjected to three treatments: 
(1) H2O+chilling (as control); (2) 1 mmol/L Put+ 
chilling; and (3) 1 mmol/L Spd+chilling. In order to 
carry out chilling treatment, the seedlings were trans-
ferred to a phytotron. The environmental conditions 
were as follows: light irradiation of 600 μmol/(m2·s) 
and temperature of 4 °C. Put and Spd treatments were 
carried out by spraying over the whole leaves of to-
mato seedlings (five-leaf-old), which were then  
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exposed to 25 °C (day)/15 °C (night) for 24 h before 
chilling treatment. Samples for physiological and 
biochemical analyses (including NO and H2O2 con-
tents, NR activity, and NOS-like activity) were har-
vested at 0, 12, and 24 h after the treatment. 

To further investigate whether Spd induced  
NO, before chilling treatment (4 °C) some seedlings 
were pretreated with 1 mmol/L methylglyoxal- 
bis(guanylhydrazone) (MGBG, an inhibitor of Spd 
synthesis), 200 μmol/L 2-phenyl-4,4,5,5-tetramethyl- 
imidazoline-1-oxyl-3-oxide (PTIO, a scavenger of NO), 
or distilled water, and treated with Spd or distilled 
water 12 h later. Some seedlings with distilled water 
treatment at 4 °C served as the control. The leaves for 
NO analysis were harvested at 24 h after the treatments. 

Also, to investigate the effect of Spd on the 
major enzymatic pathway of NO, some seedlings 
were treated with distilled water at 4 °C in a phytotron 
and used as the control. Other seedlings were treated 
with distilled water, 200 μmol/L NG-nitro-L-arginine 
methyl ester (L-NAME, an inhibitor of NOS), or  
200 μmol/L tungstate (an inhibitor of NR); the pre-
treatment was done from 6:00 p.m. to 6:00 a.m. for 3 d. 
After 12 h, the seedlings were sprayed with 1 mmol/L 
Spd, and then subjected to chilling stress for 24 h. 

To investigate whether PAs induced NO via the 
production of H2O2, before chilling treatment these 
seedlings were treated with catalase (CAT, 100 U/ml; 
H2O2 scavenger) or distilled water and then sprayed 
with Put and Spd 12 h later, respectively. Some 
seedlings subjected to distilled water treatment at 
4 °C served as the control. The leaves for NO analysis 
were harvested at 12 and 24 h after the treatments. 

To investigate the effect of NO on Fv/Fm 
(maximum quantum efficiency of photosystem II 
(PSII), the ratio of variable fluorescence and maxi-
mum fluorescence) and electrolyte leakage, the to-
mato seedlings were sprayed with 200 μmol/L SNP 
(an NO donor) for 12 h daily for 3 d (the treatments 
were as described above), and then exposed to chilling 
stress for 24 h after a 12-h pretreatment. Other seed-
lings were pretreated with distilled water, 200 μmol/L 
L-NAME, 200 μmol/L tungstate, or 200 μmol/L PTIO. 
The pretreatment was done for 12 h daily for 3 d. 
After 12 h, the seedlings were treated with 1 mmol/L 
Spd, and then exposed to chilling stress for 24 h. The 
seedlings that were subjected to 25 or 4 °C for 24 h 
served as control and chilling control, respectively. 

To investigate the effect of NO in the antioxidant 
system induced by Spd, the tomato seedlings were 
sprayed with distilled water, 200 μmol/L L-NAME, 
200 μmol/L tungstate, or 200 μmol/L PTIO. After 12 h, 
the seedlings were treated with 1 mmol/L Spd and 
exposed to chilling stress for 24 h. The seedlings 
subjected to 25 or 4 °C for 24 h served as control and 
chilling control, respectively. 

The third and fourth fully expanded leaves were 
sampled from 12 uniform tomato seedlings for each 
treatment. All leaf samples were repeatedly washed 
with distilled water, then frozen in liquid N2, and 
stored at −80 °C for subsequent analysis. 

2.2  Determination of electrolyte leakage 

Electrolyte leakage was measured based on the 
method of Sairam and Srivastava (2002). Leaf sam-
ples (0.2 g) were rinsed three times with deionized 
water and placed in 20 ml distilled water at 25 °C for 
3 h, and the initial electrical conductivity of the solu-
tion (E1) was measured. Leaves were incubated at 
100 °C for 30 min and cooled to room temperature, 
and then the final electrical conductivity (E2) was 
measured. The relative electrolyte leakage was de-
termined as E1/E2 and expressed as percent. 

2.3  NO release determination 

NO content was measured by the method of 
Murphy and Noack (1994) with slight modifications. 
Leaf samples (0.5 g) were placed in 100 U of CAT 
and 100 U of SOD for 5 min to remove endogenous 
ROS before adding 10 ml of 5 mmol/L oxyhemoglo-
bin (HbO2). After incubation, NO was determined by 
assaying the conversion of HbO2 to methemoglobin 
(metHb), and the NO content was estimated by using 
the formula of ε(A401 (metHb)−A421 (HbO2)), where ε is 
extinction coefficient of 77 ml/(mol·cm), and A401 (metHb) 
and A421 (HbO2) are the absorbance of metHb at 401 nm 
and HbO2 at 421 nm, respectively. 

2.4  NO detection by confocal microscopy 

NO detection was carried out according to Corpas 
et al. (2006) with small modifications, by binding to 
the cell-permeable, NO-sensitive fluorescent dye 3-amino, 
4-aminomethyl-2',7'-difluorescein diacetate (DAF-FM 
DA, Beyotime). Epidermal fragments of tomato were 
incubated in 1 ml of 5 μmol/L DAF-FM DA  
(10 mmol/L Tris-HCl buffer, pH 7.2) at 25 °C for  
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20 min. After washing with fresh loading buffer three 
times, the fluorescence images of NO were observed 
with a Zeiss Axiovert 200 M inverted microscope 
equipped with a confocal laser scanner (Zeiss LSM 
510). Excitation and emission were at 495 and 515 nm, 
respectively. The Zeiss 2012 software was used to 
analyze the images. 

2.5  Assay of NR activity 

NR activity was measured as described by 
Scheible et al. (1997) with slight modifications. Leaf 
samples (0.5 g) were homogenized in extraction 
buffer, including 100 mmol/L HEPES-KOH (pH 7.5), 
5 mmol/L dithiothreitol, 1 mmol/L ethylenedia-
minetetraacetic acid (EDTA), 10% glycerol, 0.1%  
(1 g/L) Triton X-100, 0.5 mmol/L phenylmethyl-
sulfonyl fluoride, 1 µmol/L leupeptin, 20 µmol/L 
flavin adenine dinucleotide, 5 µmol/L Na2MoO4, and 
10 g/L polyvinylpolypyrrolidone (PVP). The ho-
mogenates were centrifuged at 4 °C and 10 000g for 
20 min, and then the resulted supernatant was used for 
NR analysis. The nitrite produced was determined by 
absorbance at 520 nm. 

2.6  Assay of NOS-like activity 

The NOS-like activity was measured with an 
NOS colorimetric assay kit (Nanjing Jiancheng Bio-
engineering Institute, China). Leaf samples (0.5 g) 
were homogenized with 2 ml of 50 mmol/L potassium 
phosphate buffer (pH 7.4, 1 mmol/L leupeptin,  
1 mmol/L EDTA, 10 mmol/L ethylene glycol-bis(β- 
aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), 
1 mmol/L phenylmethylsulfonyl fluoride (PMSF),  
10 g/L PVP) and centrifuged at 15 000g for 20 min; 
the supernatant was incubated in the assay reagent at 
37 °C for 15 min, which was then terminated by a stop 
buffer. The absorbance was recorded at 530 nm. 

2.7  Determination of H2O2 content 

H2O2 content was quantified by the method of 
Patterson et al. (1984) with some modifications. Leaf 
samples (0.5 g) were homogenized with 3 ml ice-cold 
acetone. Titanium reagent (20% titanium tetrachlo-
ride in concentrated HCl) was added to extract the 
supernatant. An ammonia solution (0.2 ml at 17 mol/L) 
was added in Ti-H2O2, centrifuged at 4 °C and 
30 000g for 10 min, and the supernatant was discarded. 
The pellet was washed three times with ice-cold  

acetone, then drained, and dissolved in 3 ml 1 mol/L 
H2SO4. The absorbance of the solution was measured 
at 410 nm. 

2.8  Measurement of chlorophyll fluorescence 

Chlorophyll fluorescence was measured with a 
Dual-PAM 100 chlorophyll fluorometer (Walz, Ef-
feltrich, Germany) at room temperature according to 
the method of Song et al. (2015). 

2.9  Determination of antioxidative enzyme activity 

For the extraction of antioxidative enzymes, leaf 
samples (0.5 g) were homogenized with 50 mmol/L 
Na2HPO4-NaH2PO4 buffer (pH 7.8) including 0.2 mmol/L 
EDTA and 20 g/L PVP, and then centrifuged for  
20 min at 12 000g, and the resulting supernatant was used 
for the assay of enzyme activity. All operations were 
carried out at the temperature of 0–4 °C. All spectropho-
tometric analyses were conducted on a UV-vis spec-
trophotometer (UV-2401, Shimadzu Co., Ltd., Japan). 

SOD activity was determined by measuring its 
ability to inhibit the photochemical reduction of nitro 
blue tetrazolium (NBT), following the method of 
Giannopolitis and Ries (1977). POD activity was 
measured as described by Thomas et al. (1982). The 
reaction mixture contained 3 ml of phosphate buffer  
(pH 7.0), 1.0 ml of 0.18% H2O2, 1.0 ml of enzyme 
extract, and 1.0 ml of 0.1% guaiacol. CAT activity 
was assayed by the method of Cakmak and Marschner 
(1992). The decomposition of H2O2 was observed as a 
decrease in absorbance at 240 nm. APX activity was 
measured following the description of Nakano and 
Asada (1981) by measuring the rate of ascorbate ox-
idation at 290 nm. 

In all enzyme preparations, protein concentra-
tion was determined according to the method of 
Bradford (1976); bovine serum albumin (BSA; Sigma) 
was used as standard. 

2.10  Total RNA extraction and gene expression 
analysis 

Total RNA was extracted with the RNAprep 
pure plant total RNA extraction kit (Kangwei, Beijing, 
China). The complementary DNA (cDNA) synthesis 
was carried out according to the manufacturer’s in-
structions (Tiangen, China). Primer 3.0 was used for 
primer design. The polymerase chain reaction (PCR) 
primer sequences are listed in Table 1. Real-time PCR  
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analysis was performed on ABI 7500 (Applied Bio-
systems, USA) by using the SYBR Green PCR Real 
Master Mix (Tiangen, China). The 2−ΔΔCT method was 
used to measure relative expression of gene, and the 
threshold cycle (CT) value was normalized to actin. 

2.11  Statistical analysis 

Two independent experiments were performed 
with three replicates in each treatment. Data used 
Duncan’s multiple range tests at the 0.05 level of 
significance. The charts were made by using Origin 8.0. 
 
 

3  Results and discussion 

3.1  Exogenous Spd-induced NO production in 
tomato leaves under chilling stress 

NO as a signaling molecule in plant was found as 
late as 1998 (Delledonne et al., 1998). A growing 
number of studies have indicated that NO is involved 
in plant’s stress response (Siddiqui et al., 2011). PAs 
have also been known to increase NO generation. 
However, the actual reaction mechanism has not been 
solved. Yamasaki and Cohen (2006) have indicated 
that PAs can induce NO generation through an un-
certain pathway. Here, we describe the correlation of 
NO production with PAs in tomato leaves under 
chilling stress. 

Under chilling stress, exogenous Spd treatment 
greatly increased the NO content at 12 and 24 h 
compared to control. However, compared to control, 
there was no change in the NO content with Put 
treatment (Figs. 1a and 1b). To further confirm 
whether Spd had this effect, we analyzed the levels of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
NO with MGBG and PTIO pretreatments (Bais and 
Ravishankar, 2002; He et al., 2002; Arasimowicz- 
Jelonek et al., 2009; Gong et al., 2014) before Spd 
application. Both MGBG and PTIO reduced the NO 
content induced by Spd under chilling stress (Figs. 1c 
and 1d). Hence, we concluded that Spd could induce 
NO production in tomato leaves under chilling stress. 
In accordance with our results, Tun et al. (2006) re-
ported a correlation between PAs and NO biosynthe-
sis in Arabidopsis seedlings, in which Spd induced 
NO production, whereas Put had very little effect. 
However, Silveira et al. (2006) reported that Put en-
hanced NO production in the embryogenic culture of 
Araucaria angustifolia. Therefore, the effect of PAs 
on NO may depend on the species, types, and stress 
conditions. 

3.2  NOS and NR pathways involved in Spd-induced 
NO synthesis in tomato leaves under chilling stress 

In plants, NOS-like and NR enzymes have been 
suggested to be the two major sources of NO accu-
mulation (Guan et al., 2014). Since Ninnemann and 
Maier (1996) first identified the existence of NOS-like 
enzyme activity in plants, a growing number of 
studies have indicated that NOS-like activity is de-
tectable in different plant species (del Rı́o et al., 2004). 
NOS-like enzyme could produce NO through the 
oxidation of L-arginine (Guo et al., 2003; Neill et al., 
2003). With the exception of NOS-like enzyme, the 
well documented route for NO in plants is the NR 
pathway, which is located in the cytosol and catalyzes 
the reduction of nitrate to nitrite by NADH (Gupta  
et al., 2011). In our study, the NOS-like and NR  
activities were both increased by Spd treatment,  

Table 1  Accession numbers and primer sequences of the analyzed genes in this study 

Category Accession No. 
Encode corresponding 

enzyme 
Primer sequence 

Cu/Zn-SOD AF034411.1 SOD F: 5'-ACCACAACCAGCACTACCAAT-3' 
R: 5'-GTCCAGGAGCAAGTCCAGTTA-3' 

cat1 M93719.1 CAT F: 5'-GATGAGCACACTTTGGAGCA-3' 
R: 5'-TGCCCTTCTATTGTGGTTCC-3' 

APX NM_001247702 APX F: 5'-CCACTTGAGGGACGTGTTTG-3' 
R: 5'-CCACTTGAGGGACGTGTTTG-3' 

cevi16 NM_001247041.2 POD F: 5'-ACAGCTCCTCCGAATTCCAA-3' 
R: 5'-GGAATCACGAGCAGCAAGAG-3' 

TPX1 NM_001247242.1 POD F: 5'-GAGATGCAGTTGTGGCTACG-3' 
R: 5'-GCGAAGGATTGTTGCAGTCT-3' 

TPX2 NM_001247715.2 POD F: 5'-AGCGGGTTCTAGCTATGGTC-3' 
R: 5'-AAGAGATGGAGCGTTTGGGA-3' 

Actin Q96483 Reference gene F: 5'-TGTCCCTATTTACGAGGGTTATGC-3' 
R: 5'-AGTTAAATCACGACCAGCAAGAT-3' 

          F: forward; R: reverse 
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compared to control. However, the application of Put 
did not have this effect (Figs. 2a and 2b). Rosales et al. 
(2012) found that PAs can regulate the combination 
of 14-3-3 proteins with the H+-ATPase, thereby in-
ducing NR activity. Tanou et al. (2014) indicated that 
Spm can increase the relative expression of leNR in 
citrus under salinity stress. In addition, compared to 
control, treatment with Spd increased transcript levels 
of leNR in tomato, but exogenous Put did not alter 
leNR expression under chilling stress. Application of 
Put and Spd reduced leNOS1 relative expression  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
compared to control (Fig. S1 and Table S1). The 
leNOS1 expression was inconsistent with NOS-like ac-
tivity, most probably due to an uncertain gene, but in 
most cases the genes were predicted. Therefore, it still 
needs to be clarified whether they did encode relative 
genes or affect enzyme synthesis. Furthermore, we 
also examined the contents of NO in tomato leaves 
after treatment with tungstate, an inhibitor of NR, and 
L-NAME, an inhibitor of NOS (Besson-Bard et al., 
2009; Xiong et al., 2012; Alemayehu et al., 2015; Sun 
et al., 2015). In this experiment, the two inhibitors  

Fig. 1  NO accumulation induced by PAs 
(a) Tomato seedlings were applied with PAs (1 mmol/L Put and 1 mmol/L Spd) or distilled water (control). The samples were 
harvested for analysis of NO content during chilling stress (4 °C; 0, 12, and 24 h). (b) Fluorescence images of NO in tomato 
leaves by the NO-selective fluorochrome DAF-FM DA. Scale bar for NO accumulation represents 25 μm. (c) To further in-
vestigate the effect of Spd on NO content, some seedlings were pretreated with 1 mmol/L MGBG (an inhibitor of Spd syn-
thesis) 12 h before chilling treatment; other seedlings were pretreated with 1 mmol/L MGBG, 200 μmol/L PTIO (a scavenger of 
NO), or distilled water, and then sprayed with Spd 12 h later. The seedling leaves for NO analysis with various treatments were 
harvested at 24 h under chilling stress. (d) Fluorescence images of NO in tomato leaves by the NO-selective fluorochrome 
DAF-FM DA. Scale bar for NO accumulation represents 60 μm. Data are expressed as mean±standard error (SE), with n=3. 
Different letters denote significant differences at P≤0.05 according to Duncan’s multiple range tests 
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both abolished the effect of Spd on the NO content 
(Figs. 2c and 2d). Arasimowicz-Jelonek et al. (2009) 
indicated that the NOS-like and NR pathways are 
associated with PA-induced NO generation in cu-
cumber leaves during drought stress. The present 
study suggests that Spd induced NO production 
through both the NOS-like and NR pathways in to-
mato leaves under chilling stress. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PAs can enhance H2O2 production via Put, Spd, 
or Spm catabolism (Su et al., 2006; Alcázar et al., 
2010; Wimalasekera et al., 2011; Moschou et al., 
2012; Pál et al., 2015). H2O2 plays a dual role in 
plants: at low concentrations, it serves as a signal 
molecule, playing a pivotal role in signal transduction 
network under various stress conditions (Tanou et al., 
2009; Jiang et al., 2012; Lizárraga-Paulín et al., 2013); 

Fig. 2  Involvement of NOS-like and NR in PA-induced NO generation 
(a) Tomato seedlings were treated with PAs (1 mmol/L Put and 1 mmol/L Spd) and distilled water (control). The samples were 
harvested for analysis of NOS-like activity during chilling stress (4 °C; 0, 12, and 24 h). (b) Analysis of NR activity during 
chilling stress. (c) Some seedlings with distilled water treatment at 4 °C were used as control. Other seedlings were pretreated 
with distilled water, 200 μmol/L L-NAME (an inhibitor of NOS), or 200 μmol/L tungstate (an inhibitor of NR). After 12 h, the 
seedlings were treated with 1 mmol/L Spd, and then exposed to chilling stress at 4 °C for 24 h. The seedlings’ leaves for NO 

analysis were harvested at 24 h during chilling stress. (d) Fluorescence images of NO in tomato leaves by the NO selective 
fluorochrome DAF-FM DA. Scale bar for NO accumulation represents 60 μm. Data are expressed as mean±SE, with n=3. 
Different letters denote significant difference at P≤0.05 according to Duncan’s multiple range tests 
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at high concentrations, it can lead to extensive cell 
injury or death (Quan et al., 2008). H2O2 and NO are 
two types of signaling molecules, the generation of 
which often occurs in short succession or in parallel, 
and they can act both synergistically and inde-
pendently (Bright et al., 2006; Pasqualini et al., 2009). 
To determine whether PAs increase NO production 
by inducing H2O2 under chilling stress, we studied the 
effect of PAs on the H2O2 content under chilling 
stress and the NO content in tomato leaves pretreated 
with CAT (an H2O2 scavenger) before the application 
of PAs. As shown in Fig. 3a, exogenous Spd resulted 
in an increased H2O2 content in tomato leaves com-
pared to control. However, compared to control, there 
was no obvious change in H2O2 production with Put 
treatment. In accordance with our results, Iannone et al. 
(2013) indicated that Spd and Spm increased H2O2 
content by enhancing PAO activity in tobacco tissues,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

whereas Put had little effect on H2O2 formation. 
Moschou et al. (2008) and Yoda et al. (2003) have 
suggested that Spd is catabolized by PAO to produce 
H2O2. The results reported here suggest that H2O2 can 
be generated via PA catabolic pathways induced by 
Spd treatment. However, the application of Put has no 
such effect. NO production induced by Spd was 
markedly reduced by CAT, but CAT did not affect the 
NO production with Put treatment (Fig. 3b). It was 
observed that H2O2 can activate calcium channels 
(Pei et al., 2000; Kwak et al., 2003); in turn, calcium 
transients could induce NO accumulation (Besson- 
Bard et al., 2008; Courtois et al., 2008). Taken to-
gether, our results suggest that H2O2 acts upstream of 
NO to enhance its production in tomato. Some studies 
have also shown that H2O2 can induce NO production 
(Bright et al., 2006; Zhang et al., 2007). However, 
opposite results were reported in other studies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Involvement of H2O2 in PA-induced NO generation 
(a) Tomato seedlings were treated with PAs (1 mmol/L Put and 1 mmol/L Spd) and distilled water (control). The samples were 
harvested for analysis of H2O2 content during chilling stress (4 °C; 0, 12, and 24 h). (b) To further investigate the effect of Spd 
on NO content, some seedlings were treated with CAT (100 U/ml, H2O2 scavenger), and then sprayed with Put and Spd 12 h 
later, respectively. The seedlings’ leaves for NO analysis were harvested at 12 and 24 h during chilling stress. Data are expressed as 
mean±SE, with n=3. Different letters denote significant difference at P≤0.05 according to Duncan’s multiple range tests 
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In tobacco leaves, NO treatment caused rapid H2O2 
accumulation, but H2O2 treatment had no effect on 
NO generation (Pasqualini et al., 2009). This em-
phasizes that the linkage between NO and H2O2 in 
plants is a complicated issue to elucidate, due to the 
differences found in different species, the types of 
stress, or the experimental conditions used. Recent 
reports have indicated that exogenous NO induces PA 
generation (Fan et al., 2013; Li et al., 2014). As ob-
served by Filippou et al. (2013), SNP treatment led to 
an enhancement in Put levels in Medicago truncatula 
plants. Similarly, in our previous studies, applying 
SNP increased the Put and Spm contents in tomato 
seedlings under chilling stress (data not shown). 
Hence, there may be a potential link between PAs and 
NO under environmental stresses. 

3.3  NO involved in Spd-induced chilling tolerance 
in tomato 

We have shown that Spd can induce increased 
production of NO; however, whether the NO induced 
by Spd is involved in Spd-enhanced stress tolerance 
remains unclear. The diamine Put protects against cell 
death and membrane damage; however, the higher 
PAs, Spd and Spm, are documented to be detrimental 
to cell viability, relying on the concentration and 
exposure time (Iannone et al., 2013). In our study, we 
found that the increase in the Fv/Fm of tomatoes 
treated with Spd was reduced by NO synthesis inhib-
itors and scavengers, but SNP (NO donor) pretreat-
ment could increase Fv/Fm compared to control (Fig. 4). 
It is well known that the chlorophyll fluorescence 
parameter is used to detect and quantify chilling stress 
by means of changes induced in PSII. Fv/Fm, as a kind 
of chlorophyll fluorescence parameter, can be used as 
an important indicator of injury to PSII (Rizza et al., 
2001; Lu et al., 2003; Tambussi et al., 2004; Baker, 
2008; Liu et al., 2013; Zhou et al., 2015). Addition-
ally, the present study showed that the application of 
Spd and SNP significantly decreased chilling-induced 
electrolyte leakage, compared to the chilling treat-
ment alone. NO synthesis inhibitors and the scaven-
ger both decreased the function of Spd (Fig. 5). These 
results showed that Spd can enhance chilling toler-
ance by inducing NO accumulation in tomato leaves. 
However, according to Groppa et al. (2008), NO 
induced by Spm is involved in wheat root growth 
inhibition. These contrasting results concerning 
whether PAs induce NO production or whether NO is 

induced by the physiological effects of PAs can be 
attributed to the use of different species, plant parts, 
and conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4  Fv/Fm of different treatments in tomato leaves 
during chilling stress 
Some seedlings were treated with 200 μmol/L SNP, and after 
12 h exposed to chilling stress at 4 °C for 24 h. Other seed-
lings were treated with distilled water, 200 μmol/L L-NAME, 
200 μmol/L tungstate, or 200 μmol/L PTIO. After 12 h, the 
seedlings were sprayed with 1 mmol/L Spd, and then ex-
posed to chilling stress at 4 °C for 24 h. The seedlings sub-
jected to 25 or 4 °C for 24 h in phytotron were used as control 
and chilling treatment, respectively. Fv/Fm was measured 
with a Dual-PAM 100 chlorophyll fluorometer at 24 h during 
chilling stress. Data are expressed as mean±SE, with n=3. 
Different letters denote significant difference at P≤0.05 
according to Duncan’s multiple range tests 
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Fig. 5  Electrolyte leakage of different treatments in 
tomato leaves under chilling stress 
The treatment details are as in the Fig. 4. Data are expressed 
as mean±SE, with n=3. Different letters denote significant 
difference at P≤0.05 according to Duncan’s multiple range 
tests 
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We also further investigated the effects of NO 
inhibitor or scavenger treatment on the transcript levels 
and activities of antioxidant enzymes, including SOD, 
POD, CAT, and APX. In the present study, chilling 
treatment reduced both the activities and gene expres-
sions of antioxidant enzymes, compared to those ob-
tained with control. Exogenously applied Spd in-
creased the transcript levels of antioxidant enzymes, as 
well as the activities of their relevant antioxidant en-
zymes, compared to chilling treatment. The increases 
in both transcripts and activities were suppressed by 
NO scavengers or inhibitors of NO biosynthesis  
(Figs. 6 and 7). NO has been suggested to increase the 
activities of antioxidant enzymes and up-regulate the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

expressions of the antioxidant genes in plants (Zhou  
et al., 2005; Zhang et al., 2007). It is well known that the 
antioxidant defense system plays vital roles in plants’ 
tolerance to stressful conditions (Guan et al., 2009; Gill 
and Tuteja, 2010). Therefore, Spd could improve the 
chilling tolerance in tomato via the antioxidant system 
that is activated by NO. Moreover, previous studies 
have demonstrated that PAs could enhance the expres-
sions and activities of antioxidant enzymes (Wi et al., 
2006; Hussain et al., 2011). This phenomenon is gener-
ally attributed to their multifaceted nature (Velikova  
et al., 2000). Thus, it is concluded that Spd, as a kind of 
PA, can enhance the expressions and activities of anti-
oxidant enzymes by inducing NO production in tomato. 
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Fig. 6  Involvement of NO in Spd-induced expression of antioxidant genes in tomato leaves during chilling stress 
The tomato seedlings were pretreated with distilled water, 200 μmol/L L-NAME, 200 μmol/L tungstate, or 200 μmol/L PTIO. 
After 12 h, the seedlings were applied with 1 mmol/L Spd and exposed to chilling stress at 4 °C for 24 h. The seedlings sub-
jected to 25 or 4 °C for 24 h were used as control and chilling treatment, respectively. The seedlings’ leaves for antioxidant 
genes with various treatments were harvested at 24 h during chilling stress. Data are expressed as mean±SE, with n=3. Dif-
ferent letters denote significant difference at P≤0.05 according to Duncan’s multiple range tests 
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4  Conclusions 
 

Based on our results, we suggest that Spd induces 
NO production directly through enhancing both NOS- 
like and NR activities or indirectly through inducing 
H2O2, which acts upstream of NO synthesis in tomato 
leaves under chilling stress. However, Put does not 
show such an effect. Moreover, NO participates in 
Spd-induced chilling tolerance in tomato, most proba-
bly via regulating the induction of antioxidant genes 
and enhancing the antioxidant activities. 
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中文概要 

 
题 目：多胺诱导产生的一氧化氮通过影响番茄幼苗抗氧

化系统抵御低温胁迫 

目 的：研究多胺（PA）对低温胁迫下番茄幼苗中一氧化

氮（NO）产生的影响，并探讨 NO 在 PA 诱导的

耐冷性中发挥的作用。 

创新点：在番茄幼苗中证明亚精胺（Spd）对 NO 产生的

影响及可能的作用途径，且此作用与番茄耐低温

性有密切关系。 

方 法：通过检测氧合血红蛋白（HbO2）向高铁血红蛋白

（metHb）的转化进行 NO 含量测定；通过与 NO

特异性荧光探针（DAF-FM DA）结合检测 NO 释

放量（图 1 和 2）。超氧化物歧化酶（SOD）活

性根据其抑制氮蓝四唑（NBT）在光下的还原作

用测定；过氧化物酶（POD）活性通过测定酶提

取液与愈创木酚、过氧化氢（H2O2）的混合物的

吸光度确定；过氧化氢酶（CAT）活性根据 H2O2

在 240 nm 波长下的降解能力来测定；抗坏血酸

过氧化物酶（APX）活性的测定参照 Nakano 和

Asada（1981）的方法在波长 290 nm 下测定（图

6 和 7）。 

结 论：本研究的结果显示，Spd 诱导番茄叶片中 NO 的

产生可直接通过增加一氧化氮合酶（NOS）和硝

酸还原酶（NR）的活性实现（图 2）。H2O2作为

上游信号能够刺激 NO 的生成（图 3）。NO 通过

增加抗氧化酶活性和相关基因的表达来参与 Spd

诱导的番茄耐冷性（图 6 和 7）。综上所述，Spd

诱导产生的 NO 在番茄响应低温胁迫中发挥重要

作用。 

关键词：番茄；亚精胺；耐冷性；一氧化氮；抗氧化酶 


