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central nervous system (CNS). Astrocytes secrete 
neurotrophic and supportive factors that support, 
nourish, protect, and repair neurons (Rajkowska and 
Miguel-Hidalgo, 2007). Astrocytes regulate the up-
take and clearance of transmitters across synapse gaps 
through amino acid neurotransmitter transporters, and 
thus are important for maintaining synaptic efficacy 
(Koizumi et al., 2003). Astrocytes nourish and protect 
neurons, as well as serve as energy repositories for the 
brain, because astrocytes store almost all the glycogen, 
an important energy reserve for the brain. 

The potential importance of the CNS glycogen 
stores has recently received increased attention. 
Glycogen provides a material basis for astrocyte 
function and energy for neuronal activity and survival 
(Dombro et al., 2000; Dienel and Cruz, 2004). Studies 
on cell cultures have shown that increased amounts of 
glycogen in astrocytes can extend the lifespan of 
neurons (Brown et al., 2005). Brain glycogen may be 
an important source of energy substrates that support 
synaptic activity and maintain glutamatergic neuro-
transmission (Sickmann et al., 2012). Experiments of 
Brown et al. (2003) showed that glycogen is utilized 
to meet the energy needs of axons upon action po-
tential propagation in optic nerve preparations, 
mainly by transferring lactate from astrocytes to ax-
ons. There are studies that indicate that glycogen 
mobilization is closely linked to neuronal activity and 
could supply enough energy substrates for neurons 
when energy substrates are inadequate (Brown et al., 
2005). Reduction of brain glycogen is hypothesized 
herein to be associated with CORT-induced depression- 
like behavior because glycogen in astrocytes is im-
portant to neuronal function. 

 
 

2  Materials and methods 

2.1  Experimental animals 

The procedures of the present experiment were 
in accordance with the regulations set by the Com-
mittee on the Use of Live Animals in Research  
(Certificate No. 0025330; Permit No. SCXK (Su) 
2012-0004), Laboratory Animal Center of Nanjing 
Medical University, China. Adult male C57BL/6N 
mice (18–20 g, 4–5 weeks, housed 5 mice per cage) 
were kept in a room on a standard 12-h light/dark 
cycle at (25±1) °C and provided with food and water 

ad libitum. Mice were allowed one week to adapt to 
the laboratory environment before the actual experi-
ments. The mice were treated in accordance with the 
Guidelines of Accommodation and Care for Animals 
by the Chinese Convention for the Protection of 
Vertebrate Animals used for Experimental and Other 
Scientific Purposes. 

2.2  CORT administration 

The mice were put into two groups (20 each 
group): control and CORT groups. The CORT group 
was conducted as described by Zhao et al. (2008). The 
animals in the CORT group received subcutaneous 
CORT injection (20 mg/kg) once per day (5 ml/kg) at 
random times during the light phase. The control 
animals received subcutaneous injections of the ve-
hicle alone. All behavioral tests were performed 
during the day to avoid bias of dark-cycle locomotor 
activity changes. After four weeks (28 d) of admin-
istration, depression-like behavior in the mice was 
followed by the forced swim test (FST) and tail sus-
pension test (TST). Ten animals from each group 
were randomly chosen, of which blood was collected 
for assessment and hippocampal tissues were used for 
Western blot analysis. The remaining animals were 
flash-frozen through rapid immersion in liquid ni-
trogen, of which hippocampal tissues were used for 
the glycogen assay and the enzyme assay. Five hours 
after the last dose of CORT, the mice were anesthe-
tized using phenobarbital sodium and their cardiac 
blood was collected after injection of CORT on Day 29. 
Plasma was separated via centrifugation at 3000 r/min 
and stored at −20 °C until needed for CORT concen-
tration assay. The skull was opened and then the brain 
tissues were removed rapidly from the skulls. In order 
to expose the hippocampus, we need to remove the 
cerebral cortex covering it. The first incision is at the 
end of the hemisphere; the second incision is about 
1.5–2.0 mm in front of the previous one and it should 
arrive at the lateral ventricle. Both incisions go to the 
brain’s ventral part and meet there. The rest of the 
hippocampus is separated from the cortex covering it, 
along the surface towards the ventral part of the hip-
pocampus. The brain tissues were rapidly removed 
after animals were subjected to rapid immersion in 
liquid nitrogen. The frozen hippocampal tissues were 
pulverized under liquid nitrogen using a mortar and a 
pestle for glycogen assay and enzyme activity assay. 
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2.3  Behavioral tests 
 
Behavioral tests were conducted in JLBehv- 

FSG-4 sound insulation boxes controlled by a Dig 
Behav animal behavior video analysis system; this 
system can automatically record and analyze animal 
movements to provide total immobility time during 
the FST and TST. The FST test was conducted as 
described by Porsolt et al. (1978). The test was con-
ducted in a 5000-ml glass beaker swim tank filled 
with 15 cm-deep water at (25±1) °C. Each mouse was 
put separately and forced into a glass beaker for 6 min. 
Behavior in the glass beaker swim tank was vide-
otaped by a Dig Behav animal behavior video analy-
sis system. Durations of immobility were videotaped 
during the last 4 min. After 6 min, the mouse was 
removed from the glass beaker. The TST test was 
conducted as described by Steru et al. (1985). At 24 h 
after the FST, the mice were individually suspended 
by securely taping the tail 1 cm from the tip, secured 
to a shelf 25 cm above the bottom of a sound insulation 
box. The mice should be hung for 6 min, and the dura-
tion of immobility was videotaped during the last 4 min. 

2.4  CORT assays 

Plasma CORT was measured using the com-
mercial AssayMax CORT ELISA kit (Assaypro, 
Catalog No. EC3001-1). Each sample serum (25 μl) 
and standard were loaded into microtiter plates, and 
then 25 μl biotinylated CORT was added. After a  
2-h incubation, plates were cleaned. Streptavidin- 
peroxidase (50 μl) was then added and incubated for 
30 min at room temperature. After the substrate and 
stop solution were added, the optical density (ab-
sorbance at 450 nm) was measured on a microplate 
reader (Molecular Devices, USA). The standard curve 
suggested a direct relationship between optical den-
sity and serum sample concentration. 

2.5  Western blot analysis 

The powdered hippocampal tissues were ho-
mogenized immediately at 4 °C in 0.5 ml of lysis 
buffer. The solution was denatured in a sample buffer 
at 95 °C for 5 min. The samples were then analyzed 
by 10% (0.1 g/ml) sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE). The 
protein was transferred to membranes. The membrane 
was in turn incubated with a primary antibody, and 

biotin-tagged with a secondary antibody. The primary 
antibodies used to analyze protein expression are 
anti-SYP antibody (1:400 (v/v), Santa Cruz), anti-NF-L 
antibody (1:500 (v/v), Invitrogen), and anti-β-actin 
antibody (1:2000 (v/v), Sigma). The secondary anti-
bodies were IgG (1:4000 (v/v), Gene Script). The 
protein bands were analyzed with an FR-200A elec-
trophoresis image analysis system. The SYP and 
NF-L levels of each sample were normalized against 
the β-actin from the same sample. 

2.6  Tissue glycogen assay 

Hippocampal glycogen assays were conducted 
as described by Kong et al. (2002). Briefly, powdered 
hippocampal tissues were separated into two samples 
(Fractions A and B). Two identical hippocampal 
powder portions from each sample were homoge-
nized in 6% (0.06 g/ml) ice-cold perchloric acid, 
which instantly stops glycogen metabolism. Fraction A 
was treated with 100 μl homogenate, 20 μl of  
1.0 mol/L KHCO3, 1 ml of 0.2 mol/L sodium acetate, 
and 20 U/ml of amyloglucosidase; Fraction B was 
subjected to the same procedure, except the addition 
of 20 U/ml of amyloglucosidase. The reaction was 
terminated by adding 0.5 ml of perchloric acid solu-
tion. The mixtures were centrifuged at 20 000 r/min at 
4 °C for 10 min and then neutralized by a KOH solu-
tion, and the resulting supernatants were used for the 
glucose assay. The glucose content was detected in 
96-well plates, with 200 μl reaction solution at pH 8.1 
in each well. The plates were laid in a fluorescence 
plate reader (SpectraMax Gemini, Molecular Devices, 
Menlo Park, CA, USA) and NADPH formation was 
measured at 355 nm excitation, 480 nm emission, and 
420 nm cutoff wavelengths after shaking. The meas-
urements were conducted after the incubation of  
30 min with hexokinase added to each well. Desic-
cated glycogen hydrolyzed with 6% perchloric acid 
was found to exactly yield the predicted amount of 
glucose. Tissue glycogen levels, expressed as astro-
cyte glucose units (g/g wet tissue), were calculated by 
subtracting the final glucose concentrations in the 
unhydrolyzed tissues from those in the hydrolyzed 
tissues. 

2.7  Enzyme activity assay 

The powdered hippocampal tissues were ho-
mogenized in ice-cold lysis buffer (1:5, w/v) at pH 7.5. 
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Marks et al. (2009) researched the effect of repeated 
CORT injections in an open-field test and in a wire 
suspension test. The results show that repeated CORT 
injections have no significant effect on locomotor 
activity or muscle strength, suggesting that CORT- 
induced depressogenic effects occur independently of 
changes in nonspecific motor behavior. Repeated 
CORT injections have recently been considered re-
liable to study chronic stress-induced depression in 
rodents. Four-week CORT injections were also found 
in this study to greatly increase serum CORT levels 
and depression-like behavior in male mice both in the 
FST and the TST (P<0.01). This is similar to the 
study of Zhao et al. (2008) and further confirms that 
long-term exposure to high CORT levels could cause 
depression-like behavior in rodents. 

4.2  Long-term CORT injection damages the 
structural plasticity of hippocampal neurons 

Yau et al. (2011) found that CORT inhibits 
neurogenesis, thereby reducing hippocampal spine 
density and causing spatial learning disorders. SYP is 
an indicator of synapses and synaptic transmission 
efficiency, and NF-L is involved in maintaining 
normal morphology and motor function of neurons, 
the spatial configuration of axons, and nerve signal 
transduction. Our results showed that the two proteins 
were significantly decreased (P<0.01), further con-
firming that long-term elevated glucocorticoid is 
detrimental to hippocampal plasticity. 

4.3  Long-term CORT injection reduces hippo-
campal glycogen levels 

Glycogen is most frequently localized to astro-
cytes (Pfeiffer-Guglielmi et al., 2003), not evenly 
distributed throughout the brain. An electron micro-
scopic study of glycogen granules in the brain shows 
that glycogen is concentrated in the part with the 
greatest synaptic density, suggesting that brain gly-
cogen plays a role in the energy-dependent process of 
synaptic transmission (Xu and Sun, 2010). 

Neurons are sensitive to energy shortages and 
have limited energy reserves. The ability to absorb 
sugar is thus critical for continuation of normal neu-
ronal function. The main energy substrate sources of 
neurons are glucose. Glucose enters into astrocytes, 
and generates glycogen stored. The glycogen can be 
rapidly metabolized to provide energy substrates 

when they are needed by neurons. Glycogen stored in 
astrocytes also provides additional energy for neurons 
when in great need (Suzuki et al., 2011). Our study 
showed that the hippocampal glycogen content in 
CORT-injected mice decreased significantly com-
pared with the controls. Glucocorticoids decrease 
glycogen stored in cultured astrocytes (Allaman et al., 
2004). Tsoi et al. (2011) showed that restraint stress 
could lead to glucose metabolism disorder, which 
decreases glycogen content. 

Changes of the glycogen content in astrocytes 
may significantly alter brain energy metabolism, 
because glycogen is the largest energy reserve in the 
CNS and glycogen level reduction directly affects 
astrocyte metabolism and function. Astrocytes have 
an important nutritional role for neurons. Changes of 
the glycogen in astrocyte down-regulate neuronal 
function and directly affect neuronal metabolism. 
When astrocytes cannot supply glycogen to the brain 
to provide energy in a timely manner, neurons atro-
phy and die. If glycogen content in the CNS decreases, 
neurotransmitters and action potentials will be im-
mediately and seriously affected. Brain glycogen 
shortage may therefore directly compromise the 
structure and function of astrocyte, causing astrocyte 
atrophy, which will in turn worsen the neuronal en-
ergy crisis, increase the apoptosis potential, and re-
duce the neuronal excitability (Ibrahim et al., 2011), 
thereby resulting in depression. 

4.4  Reduction of hippocampal glycogen levels is 
due to decreased glycogen synthesis and increased 
glycogenolysis 

Tesfaye et al. (2011) showed that the glycogen 
content is affected by several factors, such as glucose, 
insulin, neurotransmitters, and neuronal activation. 
The key enzymes regulating synthesis and degrada-
tion of brain glycogen, glycogen synthase and gly-
cogen phosphorylase, are contrastingly regulated by 
phosphorylation. Glycogen is synthetized from glu-
cose by glycogen synthase, which catalyzes the for-
mation of α-1,4-glycosidic linkage in the polymer, 
and the glycogen branching enzyme. Degradation 
occurs in the cytosol through glycogen phosphorylase 
and the debranching enzyme (Greenberg et al., 2006; 
Palsamy and Subramanian, 2009). Chronic CORT 
injection was found to increase glycogen phosphorylase 
activity, indicating increased glycogenolysis, but 
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reduce glycogen synthase activity. 
Glucocorticoid hormones modulate energy sup-

ply (Russell et al., 2006). Glucocorticoids not only 
can inhibit glucose transfer to neurons and astrocytes 
but also can curb the noradrenergic activity to reduce 
glycogen synthesis (Allaman et al., 2004). Astrocyte 
activity may thus be down-regulated by increased 
HPA activity in stressful situations. High glucocor-
ticoid levels acting on astrocytes impair glycogen 
replenishment, deplete energy reserves, and reduce 
lactate transport. 

 
 

5  Conclusions 
 

The results showed that chronic CORT injection 
decreased hippocampal glycogen level and glycogen 
synthase activity, but increased glycogen phosphor-
ylase activity. Chronic CORT injection also reduced 
NF-L and SYP levels in mice. Our study suggested 
that reduced glycogen levels may be one of the rea-
sons why chronic CORT treatment caused hippo-
campus atrophy and depression-like behavior in male 
mice. 
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中文概要 
 

题 目：慢性皮质酮降低海马糖原水平及诱导小鼠抑郁样

行为 

目 的：探讨慢性皮质酮（CORT）注射对脑糖原水平以

及小鼠抑郁样行为的影响。 

创新点：首次发现长期注射皮质酮可减少海马糖原浓度，

降低糖原合酶活性，但增加糖原磷酸化酶活性。 

方 法：将 40 只雄性 C57BL/6N 小鼠随机分为正常对照组

与模型组。对模型组小鼠进行连续四周的 CORT

皮下注射，构建慢性应激抑郁障碍小鼠模型。采

用强迫游泳和悬尾实验，验证慢性应激模型的建

立；采用放免法，测定小鼠血清中 CORT 水平；

采用蛋白免疫印迹法，检测海马神经微丝轻链

（NF-L）和突触囊泡蛋白（SYP）的表达水平；

采用酶法，检测海马组织的糖原浓度以及糖原合

成酶和糖原磷酸化酶的活性。 

结 论：慢性 CORT 注射引起的海马神经元损伤和诱导小

鼠抑郁样行为，可能与 CORT 降低海马糖原水平

有关。 

关键词：皮质酮；应激；抑郁症；糖原；海马 


