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Abstract: Prostate cancer (PCa) incidence and mortality have decreased in recent years. Nonetheless, it remains
one of the most prevalent cancers in men, being a disquieting cause of men’s death worldwide. Changes in many cell
signaling pathways have a predominant role in the onset, development, and progression of the disease. These include
prominent pathways involved in the growth, apoptosis, and angiogenesis of the normal prostate gland, such as an-
drogen and estrogen signaling, and other growth factor signaling pathways. Understanding the foundations of PCa is
leading to the discovery of key molecules that could be used to improve patient management. The ideal scenario would
be to have a panel of molecules, preferably detectable in body fluids, that are specific and sensitive biomarkers for PCa.
In the early stages, androgen deprivation is the gold standard therapy. However, as the cancer progresses, it even-
tually becomes independent of androgens, and hormonal therapy fails. For this reason, androgen-independent PCa is
still a major therapeutic challenge. By disrupting specific protein interactions or manipulating the expression of some
key molecules, it might be possible to regulate tumor growth and metastasis formation, avoiding the systemic side
effects of current therapies. Clinical trials are already underway to assess the efficacy of molecules specially designed
to target key proteins or protein interactions. In this review, we address that recent progress made towards under-
standing PCa development and the molecular pathways underlying this pathology. We also discuss relevant molecular
markers for the management of PCa and new therapeutic challenges.
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1 Introduction Old age, black ethnicity, and a family history of

the disease are the risk factors most commonly asso-

Prostate cancer (PCa) is the second most com-
mon noncutaneous cancer in men (exceeded only by
lung cancer), accounting for 14% of all new cancer
cases in men worldwide. In 2008, 900 000 cases were
identified, and 258000 of them resulted in death
(Jemal et al., 2011). These dark figures resulted in the
identification of PCa as the sixth leading cause of
death from all cancers among men worldwide (Ferlay
et al.,2010).
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ciated with PCa. The average age at the time of di-
agnosis is 67 years and about two-thirds of cases are
diagnosed in men aged 65 years and over-diagnosis
before age 40 years is rare. Environmental risk factors
such as eating habits, early sexual initiation, and
sexually transmitted infections, both viral (herpes
simplex virus 2, human papillomaviruses 18 and 16,
and human cytomegalovirus) and bacterial (Neisseria
gonorrhoea, Treponema pallidum, and Chlamydia
trachomatis), are also associated with the disease
(Nelson et al., 2003).

In terms of geographic variation, developed
countries account for about 72% of all diagnosed PCa
cases and 53% of all deaths related to the condition.
PCa incidence is high in Australia and New Zealand,
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whereas South-Central Asia has the lowest incidence
rate. Variation in PCa incidence is partly attributed to
differences in access to diagnostic and treatment
procedures (Ferlay et al., 2010; Jemal et al., 2011).

Interestingly, as disease incidence has been
increasing, mortality has been decreasing markedly.
This is due, in part, to the early detection of the
disease as a result of the widespread implementation
of prostate-specific antigen (PSA) screening, and
significant advances in PCa therapeutics (Miller et al.,
2003). Nonetheless, the use of PSA screening is
controversial because the early detection of PCa
based on this measurement can lead to the diagnosis
and treatment of PCa cases that would not otherwise
cause symptoms or threaten life (Schroder et al., 2006;
Lumen et al., 2012). Recently published data suggest
that PSA-based screening results in the detection of
more cases of PCa, but the effects on PCa mortality
are minimal or non-existent (Djulbegovic et al., 2010;
Ilic et al., 2011). These findings are aggravated when
considering that PCa treatment can have major side
effects, including urinary incontinence and sexual
impotence.

On the other hand, advances in PCa treatment
are recognized as a crucial factor in reducing PCa
mortality. For instance, sipuleucel T, a cancer treat-
ment vaccine approved by the US Food and Drug
Administration (FDA) in 2010, improves the survival
of men with advanced PCa (Kantoff et al., 2010;
Thara et al.,, 2011). However, advanced hormone
resistant or metastatic disease continues to challenge
medical management, which can offer only palliative
care in most of these cases. Therefore, effective
treatment and management of advanced PCa is still an
important preoccupation in clinical practice (Turner et
al., 2011; Drudge-Coates and Turner, 2012).

The identification of new molecular markers not
only allows a more reliable prediction of the patho-
logical stage of the disease, but can also be useful in
the process of selecting therapeutic targets: the ideal
scenario would be a panel of molecular biomarkers.

In this review, we briefly describe the patho-
physiological features of PCa, focusing on the main
molecular processes involved. We also analyze the
conventional approaches to PCa diagnosis and
treatment. Lastly, we explore recent advances in the
establishment of new molecular markers and thera-
peutic targets for PCa management.

2 Biology of prostate cancer
2.1 Prostate cancer precursors

Despite controversies concerning precancerous
prostate lesions, proliferative inflammatory atrophy
(PIA), prostatic intraepithelial neoplasia (PIN), and
atypical small acinar proliferation (ASAP) have been
accepted as the main precursors of PCa (Bostwick et
al., 1996; de Marzo et al., 1999; Putzi and de Marzo,
2000; Samaratunga et al., 2006; Davidsson et al.,
2011). Several mechanisms have been identified as
triggers for each stage of progression (Fig. 1).

PIA consists of a chronic inflammation found
mainly in the peripheral zone of the prostate. The
hallmarks of PIA are focal glandular atrophy, a low
frequency of apoptosis, and a high proliferation of
epithelial cells. Apparently, atrophic cells in PIA
undergo malignant transformation and originate PCa
either directly or indirectly via development of
high-grade PIN (HGPIN). This mechanism is cor-
roborated by the common presence of PIA near foci of
HGPIN or PCa (Putzi and de Marzo, 2000; Wang et
al., 2009).

Like PIA, PIN is found primarily in the periph-
eral zone (Bostwick and Brawer, 1987). PIN presents
many of the genotypic alterations, architectural and
cytological features, and markers of differentiation of
early invasive carcinoma (Bostwick and Brawer,
1987; Bostwick et al., 1996; Abate-Shen and Shen,
2000). However, unlike PIA, the basement membrane
remains intact in PIN (avoiding stromal invasion) and
cells express the same proteins and integrin receptors
as in normal or hyperplastic stages (Bonkhoft, 1998).
Also, these lesions do not produce high levels of PSA
(Abate-Shen and Shen, 2000). Microscopically,
changes observed in PIN are a continuum between
low-grade (almost normal) and high-grade (abnormal)
forms thought to be the immediate precursors of early
invasive carcinoma (Abate-Shen and Shen, 2000).
Alternatively, PIN cells might undergo a senescence
period in which their viability is preserved but no
proliferation is observed. This phenotype was ex-
perimentally demonstrated in cells with complete
inactivation of the phosphatase and tensin homolog
(PTEN). It was enhanced in the presence of S-phase
kinase-associated protein 2 (Skp2) E3-ubiquitin ligase
inactivation, and reversed with the inactivation of p53
(Chen et al., 2005; Lin et al., 2010).
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Fig. 1 Stages and processes underlying human prostate cancer (PCa) initiation and development

Genetic predisposition, inflammation, and increased cell proliferation are determinant factors for PCa initiation. The occurrence
of these processes in the normal prostate epithelium gives rise to proliferative inflammatory atrophy (PIA) or atypical small
acinar proliferation (ASAP). These lesions can directly progress to primary PCa. PIA might also evolve to an intermediate stage,
prostatic intraepithelial neoplasia (PIN), in which a loss of proliferation capability in basal cell layers coincides with an increase
in the proliferation activity of luminal secretory cells. Loss of tumor suppressor genes, oncogene activation, and altered cell
signaling promote the progression to localized PCa. For instance, the loss of PTEN in addition to TMPRSS2-ETS fusion (mainly
with the v-ets erythroblastosis virus E26 oncogene homolog (avian) member of the ETS family, ERG) promotes progression to
PCa through downstream pathways. Alternatively, cells in PIN may undergo a senescence process in which the disease enters a
latent stage which, nonetheless, can be reactivated. The establishment of metastases encompasses alterations in cell-cell and
cell-matrix interactions that culminate in local invasion, migration, survival to the immune system, and transmigration to sec-
ondary sites. While PCa progresses, the dependence on androgens decreases until a completely androgen-independent cancer is
formed. The scheme on the left represents the stages of PCa progression up until a metastatic and androgen-independent stage.
On the right, each grey rectangle relates to the phase of progression shown immediately to the left. AMACR, a-methylacyl-CoA
racemase; AR, androgen receptor; BRCA2, breast cancer 2, early onset; CHEK2, checkpoint kinase 2; ETS, E-twenty six; GST-r,
glutathione-S-transferase m; HPC1, hereditary prostate cancer 1; HPC2, hereditary prostate cancer 2; miRNAs, microRNAs;
MSR1, macrophage scavenger receptor 1 gene; p53, protein 53; PTEN, phosphatase and tensin homologue; Rb, retinoblastoma
tumor suppressor gene; RNASEL, ribonuclease L (2',5"-oligoisoadenylate synthetase-dependent); STAT3, signal transducer and
activator of transcription 3; TMPRSS2, transmembrane protease serine 2

ASAP is the precancerous lesion most related to
PCa (Moore et al., 2005; Amin et al., 2007; Lopez,
2007). By definition, ASAP consists of a focus of
small acinar structures formed by atypical epithelial

cells and is considered a strong risk factor for PCa.
Consequently, a follow-up of patients with ASAP
is mandatory (Mancuso et al., 2007; Koca et al.,
2011).
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2.2 Underlying prostate cancer development and
metastasis formation

PCa is a relatively heterogeneous and multifocal
disorder. Around 70% of PCa cases originate in the
peripheral zone, 15%-20% in the central zone, and
only 10%—-15% in the transition zone of the prostate
gland (Crawford, 2009). PCa can assume diverse
histological patterns, but most cases correspond to
acinar adenocarcinomas that arise from prostatic ep-
ithelial cells which express androgen receptor (AR)
(Bostwick, 1989). Ductal adenocarcinomas, mucin-
ous carcinomas, and signet ring adenocarcinomas are
extremely rare (Grignon, 2004).

The cellular origin of PCa has been attributed
either to the acquisition of dedifferentiation and
mortality by differentiated luminal cells or to the
malignant transformation of prostate stem cells that
reside among the basal cells (Knudsen and Vasiou-
khin, 2010). It has also been observed that PCa can
arise from basal cells, although the aggressive poten-
tial of luminal and basal cell populations differs (Lu et
al., 2013).

The severe differentiation and proliferation ab-
normalities that underlie PCa development might
involve multiple genetic changes, such as loss of
heterozygosity, activation of oncogenes, and loss of
tumor suppressor genes (Foster et al., 2000). Several
other factors have been associated with PCa devel-
opment and progression (Fig. 1). Most are a conse-
quence of the natural aging process—age is the most
significant risk factor for PCa development. In addi-
tion to the genetic causes already mentioned, factors
that contribute to the carcinogenesis of PCa include
inflammation (Gueron et al., 2012; Kazma et al.,
2012; Sfanos and de Marzo, 2012), oxidative stress
and DNA damage (Miyake et al., 2004; Lockett
et al., 2006; Battisti et al., 2011; Gupta-Elera et al.,
2012), telomere shortening and telomerase activity
(Kageyama et al., 1997; Donaldson et al., 1999;
Fordyce et al., 2005; Treat et al., 2010; Xu et al.,
2011), genomic alterations (Boyd et al, 2012;
Nyquist and Dehm, 2013), and epigenetic modifica-
tions (Okino et al., 2007; Goering et al., 2012). Ef-
forts have been made to achieve a deep understanding
of these factors and consequently improve diagnosis
and management of patients. However, the study of
the trigger events for PCa initiation and development

is compromised by the small number of PCa cell lines
available for in vitro studies, the majority of which are
derived from metastatic and advanced cancers (Peehl,
2005).

Most tumors are androgen-dependent initially.
However, as they develop they eventually become
androgen-independent and progress to a hormone-
refractory disease. This progression step is followed
by metastasis formation (Heinlein and Chang, 2004).

PCa has an incredible propensity to metastasize,
a consequence of several molecular mechanisms.
Overall, these processes lead to local invasion, mi-
gration and site-specific establishment of metastases
at secondary sites, usually in the bone, lung, or liver
(Bubendorf et al., 2000). Early steps of cancer pro-
gression include a down-regulation of cell-cell and
cell-matrix characteristics. Malignant cells become
motile and acquire the ability to destroy the extra-
cellular matrix through degradative enzymes. In
primary PCa, the expression of epithelial cadherin
(E-cadherin), a transmembrane glycoprotein that is a
key regulator of cell-cell binding and which is critical
for epithelial to mesenchymal transition (EMT), was
shown to be reduced. The down-regulation of E-
cadherin enables EMT and consequently compro-
mises cell-cell binding, so PCa can progress and me-
tastasize. There is also evidence that abnormal sig-
naling of B-catenin, a protein usually found com-
plexed with cadherins, influences PCa progression
due to dysfunction of the cadherin-catenin complex,
an important early step in metastasis formation. Next,
Ras and other GTP-binding proteins promote malig-
nant cell motility and migration. As a solid tumor
grows, malignant cells enter the circulation and rap-
idly bind to endothelial surfaces at secondary sites
where they undergo transendothelial migration. In
this process, several adhesive interactions occur in-
volving selectin, integrin, platelet-endothelial cell
adhesion molecule 1 (PECAM-1), vascular cell ad-
hesion molecule 1 (VCAM-1), and other molecules.
Once in a secondary site, tumor cells perturb the
normal microenvironment and establish metastases
(Clarke et al., 2009).

2.3 Cell signaling pathways in prostate cancer

Cell signaling is essential for the normal func-
tion of the prostate gland. For instance, cell growth is
controlled by insulin-like growth factor-1 (IGF-1) and
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fibroblast growth factor (FGF). Transforming growth
factor-p (TGF-B) commands apoptosis, and vascular
endothelial growth factor (VEGF) is particularly
important for angiogenesis (Reynolds and Kyprianou,
20006). Several cell signaling pathways and crosstalks
between them have also been implicated in PCa
pathophysiology (Fig. 2). In this section, we briefly
describe those that are most prominent.

2.3.1 Androgens

The androgen receptor (AR) signaling pathway
is essential for the physiological development and
maintenance of the prostate gland. In normal prostate
cells, testosterone (T) or dihydrotestosterone (DHT),
the more potent androgen, binds to AR, a nuclear
receptor that in the absence of ligand is located in the
cytoplasm. While no ligand binds to the AR, it re-
mains in the cytoplasm complexed with heat shock
proteins, cytoskeletal proteins, and chaperones that
negatively regulate its nuclear translocation, tran-
scriptional activity, and androgen dependence. Upon
androgen binding, AR is translocated to the nucleus
where it binds to androgen response elements in the
promoter regions of target genes, regulating their
expression (Fig. 2). Overall, it promotes cell prolif-
eration, differentiation, apoptosis, and secretion
(Nieto et al., 2007; Lonergan and Tindall, 2011). AR
activity is modulated by the action of co-receptors and
by phosphorylation of both AR and AR co-receptors
(Heinlein and Chang, 2004). Co-receptors can be
either co-activators or co-repressors of AR activity.
They include: proteins involved in the splicing
process, RNA metabolism, DNA repair, endocytosis,
and apoptosis; components of the chromatin remod-
eling complex, ubiquitin/proteasome pathway, and
sumoylation pathway; histone modifier enzymes;
chaperones and co-chaperones; proteins of the cyto-
skeleton; signal integrators and transducers; scaffolds
and adaptors; cell cycle regulators; viral oncoproteins;
nuclear receptor co-regulators; and kinases and
phosphatases (Heemers and Tindall, 2007).

Most PCas remain responsive to androgen
stimulation for their initial growth and so the block-
ade of the AR pathway might be sufficient to induce
tumor regression (Yang ef al., 2005). In the early steps
of malignant transformation, AR signaling changes
from paracrine to autocrine and patients normally
exhibit low levels of serum T and high expression

levels of AR (Gao et al., 2001; Vander Griend et al.,
2010). This could be caused by amplification or gain
of function mutations in the AR genes, AR proteolytic
processing to a constitutively active form, deregula-
tion of AR co-factors, intratumoral androgen produc-
tion, or crosslinks with other cell signals, such as
growth factors, receptor tyrosine kinases, or protein
kinase B (Akt) (Craft et al., 1999; Buchanan et al.,
2001; Feldman and Feldman, 2001; Kang et al., 2001;
Meyer et al., 2004). In contrast, a number of tumor
cells present loss of AR expression. This phenomenon
has been attributed to silencing by methylation, loss
of the X chromosome, or a decrease in AR protein
stability. Nevertheless, the real cause is still unclear
(Heinlein and Chang, 2004). Notwithstanding, while
PCa progresses, it eventually becomes refractory to
androgens via diverse cell signaling pathway cross-
talks that culminate in abnormal AR signaling (Nieto
et al.,2007).

The mechanisms underlying the development
of androgen-independence have been extensively
investigated. Splice variants of AR were identified
and shown to be important for the development of
androgen-independence. The characterizations of
ARj and ARg in hormone insensitive PCa cells have
been of particularly interest (Guo et al., 2009; Yang et
al., 2011). AR; is constitutively active and is an
androgen-independent transcription factor. It was
shown to be expressed at higher levels in androgen-
independent cells compared to androgen-sensitive
cells, resulting in the promotion of cancer cell pro-
liferation (Guo et al., 2009). ARg is a less abundant
AR splice variant that localizes in the plasma mem-
brane and acts mainly through non-genomic mecha-
nisms, by associating with epidermal growth factor
receptor (EGFR). It also enhances Scr activation, AR
tyrosine phosphorylation, and the association be-
tween AR and EGFR. Overall, ARg potentiates
AR-mediated proliferative and survival responses to
hormones and growth factors (Yang et al, 2011).
Moreover, it was recently shown that truncated forms
of AR with intact NH,-terminal and DNA binding
domains are constitutively active and able to main-
tain androgen-independent transcriptional activation
of endogenous AR target genes, thus supporting
androgen-independent growth of PCa cells (Chan et
al.,2012). The expression of these forms is associated
with a poor prognosis and they have been recognized
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Fig. 2 Essential cell signaling pathways for prostate cancer (PCa) development and crosstalks between them
The interaction of circulating androgens (T/DHT) with AR is critical for PCa growth. Also, estrogens (E) and their corre-
sponding receptors (ER) have a prominent role in prostate carcinogenesis, either by genomic or non-genomic actions. In
advanced PCa, when the amount of available androgens is limited, other cytokines and growth factors promote synergic
activities of AR. These molecules include TGF-B/BMPs, IL-6, EGF, IGF-1, VEGF, and FGF. Thus, androgen-responsive
genes continue to be produced, although target genes differ between androgen-dependent and androgen-independent cells.
In addition to their effects on the androgen pathway, these cell signals retain the ability to promote PCa overall survival,
growth, and dissemination through alternative molecular targets. Grey arrows represent the androgen signaling in androgen-
dependent PCa. Black arrows represent the prominent activated pathways in androgen-independent PCa. Dashed black
arrows denote the crosslinks between cell signaling pathways. Black triangles symbolize up/down-regulation of molecules
in PCa. Akt, protein kinase B; AR, androgen receptor; ARASS, androgen receptor associated protein 55; ARE, androgen
response elements; BAGIL, Bcl-2-associated athanogene 1 long isoform; BMPs, bone morphogenetic proteins; BMPR,
bone morphogenetic protein receptor; DDT, D-dopachrome tautomerase; DHT, dihydrotestosterone; D52, tumor protein
D52; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; FGF, fibroblast growth factor; FGFR, fi-
broblast growth factor receptor; FOXO1, forkhead box protein O1; GSTT2, glutathione S-transferase 0 2; HIF1 A, hypoxia-
inducible factor 1-o; HSP, heat shock proteins; IGF-1, insulin-like growth factor 1; IGFBP, IGF binding proteins; IGFR,
insulin-like growth factor receptor; IL-6, interleukin 6; IL6R, interleukin 6 receptor; JAK, Janus kinase; KLK?2, kallikrein-
related peptidase 2; MAPK, mitogen-activated protein kinase; MEK, upstream kinases of mitogen-activated protein ki-
nases; OAT, ornithine aminotransferase; PKC-9, protein kinase C 8; P13K, phosphatidylinositol 3 kinase; PPPs, phos-
phoprotein phosphatases; PSA, prostate-specific antigen; PYCRI, pyrroline-5-carboxylate reductase 1; STAT3, signal
transducer and activator of transcription 3; T, testosterone; TGF-B, transforming growth factor-f; TPR, transforming
growth factor-f receptors; TMPRSS2, transmembrane protease serine 2; TRPV3, transient receptor potential cation
channel subfamily V member 3; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor
receptor
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as potential therapeutical targets to treat androgen-
independent PCa (Hornberg et al., 2011).

Modern techniques, such as chromatin im-
munoprecipitation display and microarrays, have
been applied to unveil the AR target genes involved in
transcriptional regulation in PCa. Genes are ex-

pressed differently in normal prostate and PCa tissues.

Transmembrane protease serine 2 (TMPRSS2) and its
fusions with E-twenty six (ETS) transcription factor
family members, mainly v-ets erythroblastosis virus
E26 oncogene homolog (ERG) or its variant 1
(ETV1), kallikrein-related peptidase 2 (KLK2), and
tumor protein D52, are among the genes expressed by
androgen-sensitive cells when stimulated by andro-
gens (Lonergan and Tindall, 2011; Marques et al.,
2011). Genes identified in androgen-independent PCa
cells include D-dopachrome tautomerase, protein
kinase C 6, glutathione S-transferase 6 2, transient
receptor potential cation channel subfamily V mem-
ber 3, pyrroline-5-carboxylate reductase 1, and orni-
thine aminotransferase (Jariwala et al., 2007). De-
spite the advances in this field, much remains to be
clarified.

2.3.2 Estrogens

Circulating levels of estrogens in males tend to
increase during aging. Besides, testosterone can also
be continuously converted to 17p-estradiol by aro-
matase within the prostate stroma. With aging, there
are decomposition of androgens and a predominance
of estrogens, which can regulate prostate growth ei-
ther directly or indirectly via regulation of other
hormones, such as prolactin and luteinizing hormone
(Huggins and Hodges, 1972; Lee ef al., 1981; Marino
et al., 2006; Carruba, 2007). Thus, the estrogen re-
ceptor (ER) signaling pathway has been receiving
increasing attention as an intervenient in PCa car-
cinogenesis (Carruba, 2007).

ERs belong to a family of nuclear transcription
factors which are ubiquitously expressed. Different
genes encode two ER subtypes, ERa and ERp, which
exhibit several isoforms (Kuiper et al., 1996; Fixemer
et al., 2003). In the absence of ligand, ER is found in
the nucleus complexed with inhibitory proteins. Upon
ligand binding, ER is activated and binds to estrogen
response elements in the promoter region of target
genes (Fig. 2). In addition to this “genomic action”,
ER also exhibits a “non-genomic action” via activation

of other cell signaling pathways: phospholipase C/
protein kinase C, Ras/Raf/mitogen-activated protein
kinase (MAPK), phosphatidyl inositol 3 kinase
(PI3K)/Akt, and cyclic-adenosine monophosphate
(cAMP)/protein kinase A (PKA) (Marino et al., 2006;
Carruba, 2007). There is also evidence that ER acti-
vation can occur in a ligand-independent manner via
MAPK and cAMP/PKA (Coleman and Smith, 2001).

Estrogens and associated signaling pathways
appear to play a critical role in PCa development and
progression. Metabolic activation of estrogens to
genotoxic metabolites, such as 2- and 4-hydroxyl
catechol estrogens, induces DNA damage, oxidative
stress, and the formation of high levels of reactive
oxygen species (Yager, 2000; Cavalieri and Rogan,
2006; Singh et al., 2008). Concerning the ERs, ERp is
progressively lost during human prostate carcino-
genesis. ERP isoforms influence the human prostate
in different ways depending on the spliced variants
expressed and the use of alternative promoters
(Horvath et al., 2001; Fixemer et al., 2003; Leung et
al., 2010b). For instance, ERB1 inhibits the prolifer-
ation of prostate epithelial cells and EMT, whereas
ERP2/5 promotes metastasis formation (Leung et al.,
2010a; Mak et al., 2010; McPherson et al., 2010). In
contrast, there is a gradual increase in the expression
of ERa. from PIN to metastatic lesions. Also, evidence
suggests that during PIN, ERa is expressed in both
stromal and luminal cells (Ricke et al, 2008). In
combination with AR, this receptor stimulates pro-
liferation and differentiation of PCa cells (Bonkhoff
et al., 1999). Also, it was found that the enzyme that
catalyzes estradiol production from testosterone,
aromatase (CYP19), is altered in PCa tissues (Ellem
et al.,2004).

2.3.3 TGF-B

TGF-B belongs to the TGF-f superfamily of
cytokines that also includes activins and bone mor-
phogenetic proteins (BMPs). Members of this protein
family are involved in the regulation of several
physiological processes, such as cell proliferation,
differentiation, apoptosis, adhesion, chemotaxis, or-
ganogenesis, and angiogenesis (Korrodi-Gregorio et
al., 2012).

In this signaling pathway, ligands bind to the
TGF-p receptor II (TPRII), a transmembrane receptor,
which in turns recruits the TGF-f receptor I (TBRI) to



Felgueiras et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2014 15(1):16-42 23

form a heteromeric complex. TPRIs are also referred
to as activin receptor-like kinases (ALKs) and they
show different affinities for ligands (Derynck and
Feng, 1997). TPRII phosphorylates and activates
TPRI and the intracellular signaling proceeds due to
phosphorylation of Smads. Smads are classified into
three groups: (1) receptor-associated Smads (R-
Smads)—Smad-1, -2, -3, -5, -8; (2) common Smad
(Co-Smad)—Smad-4; and (3) inhibitory Smads
(I-Smad)—Smad-6, -7. TPRI phosphorylates and
activates R-Smads which bind with high affinity to
Co-Smad. The heteromeric complex formed translo-
cates into the nucleus where it binds to transcription
promoters or co-factors, enabling DNA transcription.
I-Smads provide a mechanism for negative feedback
by preventing the interaction between R-Smads and
TPRI or Co-Smad (Bello-DeOcampo and Tindall,
2003; Korrodi-Gregorio et al., 2012).

Components of the TGF-f signaling pathway
have been implicated in PCa regulation, with either
tumor suppressor or tumor promoter activities being
attributed to it. More specifically, TGF-B signaling
exhibits growth inhibitory effects in the early stages
of PCa and promotes malignancy in later stages.
Disruption of TGF-f signaling is referred to as a
metastasis promoter (Tu et al., 2003). The loss or
reduction of sensitivity to the TGF-f inhibitory effect
and the acquired ability to express higher levels of
TGF-P are in part explained by the ability of cells to
overwhelm the down-regulatory effects of androgens.
These phenomena appear to be associated with the
transformation of a prostate tumor from benign to
malignant (Saez et al., 1998; Lee et al., 1999).

The adult prostate gland expresses mostly
TGF-B1 when compared to TGF-f2 and TGF-33
isoforms (Bello-DeOcampo and Tindall, 2003).
TGF-B1 acts as a tumor suppressor in normal prostate
epithelial cells. During progression to metastatic PCa,
TGF-B1 overexpression, due to androgen withdrawal,
enhances oncogenesis (Merz et al., 1994; Zhu and
Kyprianou, 2008). In contrast, AR expression directly
down-regulates or inhibits the transcriptional activity
of TGF-PB1 signaling and reduces its growth effects
(when DHT is absent) (Zhu and Kyprianou, 2008).
PCa cells are able to produce the bioactive form of
TGF-B1 by themselves. Instead of the growth inhib-
itory effect that TGF-B1 exhibits in the normal pros-
tate gland, in PCa cells it enhances prostate tumor

growth, angiogenesis, immunosuppression, remod-
eling of the extracellular matrix, and metastasis
formation (Barrack, 1997; Festuccia et al., 1999).
However, recent data also show that TGF-B1 de-
creases cell viability and induces apoptosis in inva-
sive tumor cells via activation of p38 MAPK and
c-Jun N-terminal kinases (JNK), which in turn pro-
mote the expressions of the cleaved caspases-8, -9,
and -3 (Al-Azayzih et al., 2012). The roles of TGF-2
and -B3 remain unclear.

Regarding the TGF-B receptors, there is a de-
crease in both TPRI and TPRII receptors with PCa
progression (Guo et al., 1997; Kim et al., 1998). This
decrease implicates a reduction in the TGF-§ growth
inhibitory response in tumor cells. Endoglin, an aux-
iliary receptor of the TGF-f} signaling whose expres-
sion is lost during PCa progression, was shown to
suppress PCa cell motility through activation of the
ALK?2/Smad-1 pathway (Craft et al., 2007).

BMPs are bone inductive factors of the TGF-3
superfamily that have been implicated in bone me-
tastasis formation (Ye et al., 2007a). BMP-6 expres-
sion is absent in patients with benign prostatic hy-
perplasia (BPH), but its expression has been reported
in malignant prostatic epithelial cells, mainly in pri-
mary PCa with established secondary skeletal me-
tastases (Hamdy et al., 1997). High levels of BMP-6
signaling, a consequence of its increased expression
and the decreased expression of its inhibitors, might
promote the development of PCa metastases (Yuen et
al., 2008). This growth factor may have a direct in-
ductive role in PCa-associated bone metastases (Dai
et al., 2005). The increased metastatic potential
promoted by BMP-6 is at least in part because of the
increase in metaloproteinases and Id-1 (Darby et al.,
2008), a downstream BMP target that was previously
shown to be indicative of a worse prognosis in early-
stage cervical cancer and epithelial ovarian tumors
(Schindl et al., 2001; 2003). In contrast, BMP-9 and
BMP-10 may function as tumor suppressors and
apoptosis regulators in PCa. Their expression is de-
creased or even absent in PCa. It was demonstrated
that their overexpression in PCa cells prevented in
vitro growth, cell-matrix adhesion, invasion, and
migration of cells (Ye et al., 2008; 2009). BMP-9 up-
regulates and activates prostate apoptosis response-4
through a Smad-dependent pathway, thus promoting
apoptosis of PCa cells (Ye et al., 2008). BMP-10
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acts, at least in part, through the Smad-independent
pathway X-chromosome-linked inhibitor of apopto-
sis protein/transforming growth factor-p-activated
kinase-1/extracellular regulated kinase (XIAP-TAK1-
ERK) (Ye et al., 2009). Another BMP predominantly
expressed in normal prostate tissue is BMP-7, whose
expression is androgen-dependent (Masuda et al.,
2004). It is important for controlling noggin and fol-
listatin expression, antagonists of the BMP signaling
pathway, and therefore the regulation of the invasion,
motility, and adhesion of PCa cells (Ye et al., 2007b).
The loss of endogenous BMP-7 during PCa progres-
sion is associated with increased invasiveness and
motility (Ye et al., 2007b). The expression of BMP-2
also decreases with the progression to malignancy
and the decrease correlates with an increasing
Gleason score (Horvath et al., 2004). Its function is
dependent on androgens: in the presence of androgens
it inhibits the growth of PCa cells, while in the
absence of androgens it stimulates cell growth
(Langenfeld and Langenfeld, 2004).

Nodal, another member of the TGF-p superfam-
ily, is also expressed in some PCa cell lines. It inhibits
proliferation and induces migration depending on the
stage in cancer progression and the cell microenvi-
ronment (Vo and Khan, 2011).

Several studies also revealed an up-regulation in
the expressions of Smad-2, -3, -4, -6, and -7 after
androgen deprivation, while the expressions of Smad-1,
-5, and -8 are down-regulated in advanced PCa
(Romero et al., 2010; Lakshman et al., 2011). The
activity of Smad intracellular signaling in PCa has
been explored at length. Smad-7 is an effector in
TGF-B1-induced apoptosis and its overexpression in
PCa cells induces apoptosis (Brodin et al., 1999;
Landstrom et al., 2000). More specifically, Smad-7
acts as a scaffolding protein and facilitates the acti-
vation of the p38 MAPK pathway mediated by
TGF-B-activated kinase 1 and MAPK-3 (Edlund et al.,
2003). Then, p38 modulates the increased adhesion
of metastatic PCa cells through phosphorylation and
activation of Smad-3 (Hayes et al., 2003). It was
also shown that Smad-7 interacts with growth arrest
and DNA damage protein (GADD34), a regulatory/
targeting subunit of phospho-protein phosphatase
1 (PPP1). The catalytic subunit of PPP1 is then
recruited to the TPRI-Smad7-GADD34 complex
and dephosphorylates TPRI, establishing a negative

feedback of the TGF-p pathway (Shi et al., 2004).
Overexpression of Smad-7 may also be the reason for
the decreased levels of phosphorylated Smad-2 ob-
served in PCa. However, this decrease implicates a
reduction in the nuclear Smad-4. Smad-4 (either de-
pendent on or independent of Smad-3) interacts with
the DNA-binding and the ligand-binding domains of
AR, and apparently modulates DHT-induced AR
transactivation (Zhu and Kyprianou, 2008). Loss of
nuclear Smad-8 during PCa progression has also been
reported (Horvath et al., 2004; Perttu et al., 2006).

2.3.4 1GF-1 and PI3K/Akt

IGF-1 is produced by prostatic stromal cells in
response to androgen stimulation. This constitutes a
paracrine signaling, stimulating the surrounding
prostatic epithelial cells that increase cell prolifera-
tion. In normal cells, this pathway is repressed by IGF
binding proteins (IGFBPs), which bind with high
affinity to IGF-1 and prevent its interaction with the
receptor. Receptor substrates include PI3K and
Ras-MAPK pathways (Pollak, 2008).

The sustained activation of the IGF-1 signaling
pathway is responsible for the proliferation of PCa
cells. Moreover, a direct correlation was observed
between high plasma IGF-1 levels and PCa progres-
sion (Stattin et al, 2004). The IGF-1 receptor is
overexpressed in primary PCa, in part because of the
stimulation by early growth response-1 (EGR-1) (Ma
et al., 2012). In general, the effects of this pathway in
PCa are due to amplification of the Akt gene or its
upstream kinases, such as PI3K, or deletion/mutation
of negative regulators, such as PTEN, PPP1, and
phospho-protein phosphatase 2 (PPP2) (Li et al,
2005).

Upon phosphorylation, PI3K becomes active
and promotes cell proliferation and survival by regu-
lating downstream targets. One most prominent target
is Akt that belongs to the serine/threonine protein
kinase B family. PI3K mediates both G1 cell cycle
progression and cyclin expression by activating the
Akt/mammalian target of the rapamycin (mTOR)/p70
(S6K) signaling pathway in PCa cells (Gao et al.,
2003). When phosphorylated, the activated Akt (pAkt)
inhibits the glycogen synthase kinase 3f (GSK3p)
which normally increases the degradation of cyclin
D1, and consequently prevents the up-regulation of
cell proliferation. pAkt also induces the production of
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desmoplakin, vimetin, and metaloproteinases and
thus regulates EMT and cell invasion (Bellacosa and
Larue, 2010). A recent study revealed that the ex-
pression of E-cadherin is controlled by the human
metastasis-associated gene 1 (MTA1) through a pAkt-
dependent mechanism (Wang et al., 2012). Another
target of PI3K is the proapoptotic protein Bad, which
is inhibited upon phosphorylation, thereby blocking
apoptosis of PCa cells. The Rass/MAPK pathway has a
similar effect on the bad protein, leading to cell sur-
vival and proliferation (Moschos and Mantzoros,
2002).

2.3.5 Other cell signalings

Epidermal growth factor (EGF), its receptor
(EGFR), and the subsequent intervenients of this
pathway promote cell growth, proliferation, and dif-
ferentiation. Frequently, EGF and EGFR are up-
regulated in advanced PCa. Activation of this sig-
naling in PCa cells induces activation of the MAPK
pathway that in turn down-regulates AR. Also, AR
activates MAPK and EGFR. Moreover, EGF is able
to induce up-regulation of interleukin-6 (IL-6)
(Morgan et al., 2009).

The FGF protein family is involved in growth,
proliferation, development, and angiogenesis. Altered
expression in FGFs and respective receptors corre-
lates with PCa progression towards an androgen-
independent state. FGF-2 (or basic FGF, bFGF),
FGF-7, and FGF-8 are the growth factors with a more
established role in PCa. All three were shown to be
overexpressed in hyperplasic tissues.

FGF-2 is a mitogenic agent for prostatic stromal
cells, acting mainly in an autocrine manner. It con-
tributes to cell differentiation, migration, and angio-
genesis (Reynolds and Kyprianou, 2006). FGF-2
expression and release were shown to up-regulate
TPRII/Smad3, enabling the angiogenic and tumor
promoting effect observed in reactive stroma (Yang et
al., 2008). In contrast, FGF-7 acts as a mitogen for
prostatic epithelial cells, exerting its effect in a para-
crine manner (Reynolds and Kyprianou, 2006). The
function of FGF-8 remains to be elucidated. However,
its expression in PCa is at least in part regulated by
AR (Gnanapragasam et al., 2002). Recent studies
have implicated other members of the FGF super-
family in PCa pathogenesis. A case-control study
reported that the Gly-388Arg polymorphism of the

FGF receptor-4 (FGFR4) was a contributing factor to
PCa susceptibility (Liwei et al., 2011). Combined
with the expression of proteins that stabilize FGFR4,
this polymorphism endorses a more stable signal, thus
promoting PCa progression (Wang et al., 2008).
FGF-9 stimulates proliferation and invasion in PCa
cells (Teishima et al., 2012). FGF-19 is expressed in
primary and metastatic PCa tissues where it acts as an
autocrine growth factor (Feng et al., 2013).

VEGEF is a cytokine involved in cellular prolif-
eration, migration, and angiogenesis. VEGF levels
are higher in PCa compared to normal or benign hy-
perplasia (Ferrer et al., 1997) and represent the
strongest stimulus for angiogenesis in endothelial
PCa cells (Trojan et al., 2004). Moreover, the ex-
pressions of VEGF ligands and receptors (VEGFRs)
are higher in bone metastasis sites than in the primary
tumor. Through VEGF receptor-2 (VEGFR-2), VEGF
regulates the migratory responses of PCa cells to
fibronectin and bone sialoprotein, proteins of the
ECM (Chen et al., 2004). The type of VEGFR ex-
pressed in PCa cells influences cell growth, invasion,
and metastasis formation. For instance, Qi et al. (2003)
found that cell lines expressing NP-1 receptor had
lower levels of migration, with and without VEGF,
compared to those that did not express NP-1. On the
other hand, the increased expression levels of VEGF
isoform C and its receptor VEGFR-3 are associated
with lymph node metastasis formation. This isoform
also increases the expression of Bcl-2-associated
athanogene 1 long isoform (BAG-1L), an AR co-
activator that facilitates AR transactivation (Jennbacken
et al., 2005; Chetram et al., 2011).

Interleukins, especially IL-6, have been shown
to play an important role in PCa development and
progression. Levels of IL-6 are increased in PCa and
correlate with worse progression scenarios (Azevedo
et al., 2011). IL-6 binds to its receptor and activates
Janus kinase (JAK) cell signaling, but also MAPK
and PI3K pathways, depending on the cell type.
Subsequent to JAK activation, the signal transducer
and activator of transcription 3 (STAT3) is phos-
phorylated and translocated into the nucleus. STAT3
phosphorylates the AR at serine-772, a process es-
sential for its transcriptional activity (Aaronson ef al.,
2007). Increasing evidence suggests a role for STAT3
in the metastatic behavior of PCa cells (Abdulghani et
al.,2008; Gu et al., 2010).
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2.3.6 Phosphatases: essential regulators of cell signaling

Many cellular processes are controlled by
phosphorylation/dephosphorylation of structural or
regulatory proteins. The reversible phosphorylation
system encompasses kinases that add a negatively
charged phosphate group mainly to serine, threonine
or tyrosine residues, and phosphatases that remove
those phosphate groups (Fardilha et al., 2011). In
cancer, imbalances in protein phosphorylation sys-
tems appear to be an important pathophysiologic
mechanism. Since the activation of several kinases
results in stimulation of cell signaling pathways that
potentiate cell growth and proliferation, it is not sur-
prising that tumor suppressive functions have been
attributed to phosphatases (Fardilha et al., 2010).

In PCa the tumor suppressor gene that encodes
PTEN is often lost. PTEN is a lipid phosphatase
that negatively regulates PI3K/Akt signaling by
dephosphorylation of phosphatidylinositol 3,4,5-
phosphate (PIP3). Thus, mutations of PTEN are fre-
quently associated with cancer development (Sal-
mena et al.,, 2008). Another element that directly
suppresses PTEN expression in PCa cells is the
microRNA miR-153 (Wu et al., 2012). Abnormalities
in PTEN are observed not only in PCa but also in
several cases of PIN, suggesting that PTEN and Akt
might be critical for early PCa development (Squire,
2009). PTEN loss enhances the activation of several
signaling pathways which are normally deregulated
during PCa, including PI3K/Akt and MAPK path-
ways (Goc et al., 2011). The PTEN/PI3K/Akt path-
way was shown to be essential for the maintenance of
PCa stem-like cells, being important to their survival
and proliferation (Dubrovska et al., 2009). In the
absence of PTEN, cells also present high levels of
mTOR activity which results in uncontrolled growth
(Majumder and Sellers, 2005). Moreover, loss of
PTEN seems to mediate bone tropism in PCa metas-
tases, at least through Racl, a small GTPase that is a
PTEN effector (Wu et al., 2007). Overall, patients
with PCa that exhibit a PTEN mutation have a higher
Gleason score, a poorer prognosis, and a greater rate
of metastases (Pourmand et al., 2007). Together with
VEGF receptor-2, PTEN regulates PCa proliferation
and cell adhesion to fibronectin (Chen et al., 2004).

In addition to PTEN, PPP1 and PPP2 modulate
PCa progression by interacting with key proteins. In

PCa, both phosphatases seem to act as tumor sup-
pressors. PPP1 and PPP2 activities were previously
shown to be needed to maintain endothelial cells in a
resting state (Gabel et al., 1999). Inhibition of both
phosphatases by caveolin-1 led to increased activities
of PDK1, Akt, and ERK1/2. This, in turn, promoted
tumor cell survival (Li et al., 2003). Recently, the
activation of phospho-protein phosphatase 5 (PPP5)
by caveolin-1 was also confirmed (Taira and Hi-
gashimoto, 2013). The complex formed between
PPP1 and its nuclear inhibitor was recently described
as a regulator of PCa direct cell migration via up-
regulation of Cdc42 (Martin-Granados et al., 2012).
PPP1 also interacts with AR, regulating its stability
and nuclear localization through dephosphorylation
at Ser650. PPP1 inhibition enhances proteasome-
mediated AR degradation, while PPP1 overexpres-
sion increases AR expression and markedly enhances
AR transcriptional activity in PCa cells (Chen et al.,
2009). The activation of PPP1 in malignant cells is
potentiated by the down-regulation of Fer, a tyrosine
kinase. PPP1 also affects TGF-B signaling in PCa
cells through the complex formed with GADD34 and
Smad-7, as mentioned above. PPP1 dephosphorylates
and activates phosphorylated retinoblastoma protein
(Rb), leading to its growth suppressive state and
cell-cycle arrest in malignant cells (Pasder et al.,
2006). The expression of the catalytic subunit of
PPP2 and its activity were shown to be down-
regulated in androgen-independent PCa cells com-
pared to androgen-dependent cells. This is particularly
interesting as PPP2 is able to sustain the growth of
androgen-dependent cells under androgen-deprivation
by relieving the androgen deprivation-induced cell-
cycle arrest and preventing apoptosis (Bhardwaj et al.,
2011).

3 Conventional diagnosis and monitoring of
prostate cancer

Currently, the screening for PCa essentially in-
volves digital rectal examination (DRE), determination
of serum concentrations of PSA, and transrectal ul-
trasonography (TRUS). Table 1 describes the main
advantages and disadvantages of these techniques.

Definitive diagnosis of PCa always requires the
presence of adenocarcinoma in prostate biopsies or
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Table 1 Presentation of the three principal methods used for the current screening and diagnosis of prostate cancer:
digital rectal examination (DRE), prostate-specific antigen (PSA) measurements, and transrectal ultrasonography

(TRUS)
Method Advantage Disadvantage Reference
DRE Safe exam; Most palpable cancers are not early cancers; Okotie et al., 2007
(physical exam)  May detect PCa in men with ~ Cancers can be located in distant regions of the
normal PSA levels and gland, and so are not palpable;
small tumors; Conclusion from the exam is highly dependent
Relatively inexpensive on the interpretation of the examiner;
Its sensitivity and specificity are low and de-
pendent on tumor stage
PSA measurement  Safe exam; Low specificity, thus leading to high number of ~ Stamey et al., 2002;

(biochemical test) Used for screening, early
detection, and prognosis;
Good sensitivity;

Relatively inexpensive

TRUS
(imagiologic exam)

Enables early diagnosis;
Useful to guide biopsies;
High sensitivity

false positives;

Detection rate of PCa when using PSA levels
combined with DRE depends on both the
PSA threshold used on biopsy and the
patient’s age;

Correlation between grade and progression has
been referred to as feeble in some ranges of
detection

Invasive procedure;
Poor specificity;
Time-consuming technique

Bickers and Aukim-
Hastie, 2009;

Shteynshlyuger and
Andriole, 2010

Shteynshlyuger and
Andriole, 2010

operative specimens. Prostate biopsy is an essential
procedure for PCa diagnosis, presenting 100% speci-
ficity and virtually no false positives. Although major
complications have not been associated with this
procedure, it is an invasive technique and so its clin-
ical application in daily screening is conditioned
(Raaijmakers et al., 2002). Moreover, the number of
false negative cases is still higher than desirable (Haas
et al., 2007). Histopathological examination of prostate
specimen enables both grading and determination of
tumor extent. The Gleason score is the standard system
used by clinicians to rate PCa. This system classifies
the biopsy specimen from 1 to 5, with 5 being the most
aggressive with no glands being recognized. The final
Gleason score is a sum of the most common primary
and secondary grades. Sometimes a tertiary grade can
also be given (Borley and Feneley, 2008).

4 Emerging biomarkers: new tools to improve
prostate cancer diagnosis and management

A biomarker, as defined by the National Cancer
Institute, is “a biological molecule found in blood,
other body fluids, or tissues that is a sign of a normal
or abnormal process or of a condition or disease”
(http://www.cancer.gov/dictionary?cdrid=45618). These
molecules are useful tools in supporting several

steps of a patient’s management: prevention, screen-
ing, diagnosis, prognosis, prediction of treatment
effectiveness, and monitoring responses to treatment.
The establishment of a specific panel of biomarkers,
in either tissue or body fluids, might complement the
routinely applied diagnostic techniques to achieve
earlier and more accurate diagnoses. This is a major
challenge as PCa is a silencing disease in the early
stages, hence not presenting symptoms until it be-
comes locally advanced or metastasizes (Smith ef al.,
2003). In addition, to enable the evaluation of the
course of the disease, prognostic biomarkers might
support treatment decisions. Predictive biomarkers
are helpful in choosing the treatment type. Bi-
omarkers can also aid drug development, and the
advantage of their use in clinical trials has been
widely explored (Rolan, 1997; Alaoui-Jamali and Xu,
2006; Committee on Developing Biomarker-Based
Tools for Cancer Screening, Diagnosis, and Treat-
ment, 2007).

Nowadays, only two biomarkers are approved
by the FDA for use in PCa management: total PSA
(tPSA) and free PSA (fPSA) (Rhea and Molinaro,
2011). Increased levels of serum tPSA are associated
with PCa. tPSA has been widely used for screening,
diagnosis, and monitoring of the disease, especially
for the detection of recurrent disease after treatment
(Makarov et al., 2009). However, as previously noted,
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it lacks specificity as conditions such as prostate
infection, irritation, benign prostatic hypertrophy,
recent ejaculation, or medical interventions can also
cause an upsurge in tPSA levels (Makarov et al., 2009;
Rhea and Molinaro, 2011). fPSA corresponds to the
portion of secreted PSA that does not form complexes
with serum antiproteases. Patients with PCa present a
lower proportion of fPSA to tPSA (%fPSA), and so
this percentage can be used to reduce unnecessary
biopsies and to follow the progression of the disease.
The %fPSA is, nevertheless, modulated by prostate
volume, patient age, tPSA levels, and prostatic ma-
nipulation (Makarov et al., 2009).

Prior to PSA, prostatic acid phosphatase (PAP)
was extensively used as a serum prognostic bi-
omarker for PCa. Higher levels of expression and
activity of PAP are associated with PCa with estab-
lished metastases on bone. Also, post-treatment PAP
levels are predictive of the clinical outcome.

Efforts have been made to discover new tissue
biomarkers and molecules measurable in body fluids
with high sensitivity and specificity. Table 2 summa-
rizes some of the most relevant molecular markers
that can be used in the context of PCa.

5 Current options and challenges in prostate
cancer treatment

PCa treatment must be adjusted according to:
(1) the tumor stage and grade, (2) PSA levels, and
(3) the estimated baseline for patient life expectancy
(Heidenreich et al., 2012). In terms of response to
treatment, four stages can be identified while the tumor
progresses: hormone-sensitive, androgen-independent,
symptomatic metastatic, and advanced metastatic or
anaplastic. Nowadays, treatment options are available
for each stage. However, the ideal therapy has not yet
been found and treatment effectiveness varies with
cancer progression (Oudard, 2013).

Localized tumors can be efficiently treated by
radical surgery or radiotherapy. However, this type of
treatment is associated with urinary, sexual, and
bowel dysfunction. The severity and frequency of
these adverse effects differ between treatments (Wilt
et al., 2008). When tumors disseminate, androgen
deprivation therapy is adopted, since cells will not
grow and survive without androgens. The standard

procedure of androgen deprivation (AD) by surgical
or chemical castration usually results in incomplete
tumor regression and the tumor eventually becomes
castration-independent. This can be explained, at
least in part, because AD induces a senescent-like
phenotype in a subset of androgen-sensitive cancer
cells (Ewald et al., 2013).

Recent advances in PCa treatment culminated in
the approval of Firmagon (degarelix), Jevtana (caba-
zitaxel), Provenge (sipuleucel-T), and Zytiga (abi-
raterone acetate) (US Food and Drug Administration,
2010; European Medicines Agency, 2009; 2011a;
2011b). Degarelix is a gonadotrophin-releasing hor-
mone antagonist, which reduces the amount of T, and
it is indicated for the hormone-sensitive stage of PCa
(European Medicines Agency, 2009; Oudard, 2013).
Sipuleucel-T has been a remarkable development as it
was the first FDA-approved vaccine for PCa treatment,
and it is currently used to treat androgen-independent
(non-metastatic or minimally metastatic) PCa (Ou-
dard, 2013). Despite the improved survival in patients
with metastatic castration-resistant PCa, sipuleucel-T
lacks accurate biomarkers to assess the response to
immunotherapy (Kim et al., 2012). In more advanced
symptomatic metastatic stages, cabazitaxel or abi-
raterone acetate is commonly applied (Oudard, 2013).
The optimism of patients is increasing with these new
products for PCa treatment. However, overall survival
remains relatively short (Antonarakis and Eisenberger,
2011).

Simultaneous with progress in the comprehen-
sion of PCa genetics and the molecular pathways
involved, new therapeutic targets have been investi-
gated, especially for advanced and metastatic cancers.
Manipulation of cell signaling pathways, targeting of
specific protein interaction genes, antisense therapy,
anti-angiogenic and pro-apoptotic therapies are now
challenges for biomedical research.

Several attempts have been made to eradicate
advanced metastatic and hormone-refractory PCa
mainly through targeting of AR signaling (Leibowitz-
Amit and Joshua, 2012). Apparently, AR targeting via
ASC-J9, an AR degradation inducer, leads to tumor
suppression through the induction of autophagy
(Jiang et al., 2012). Other studies have been focused
on the PI3K/Akt/mTOR pathway, testing inhibitors
for each kinase. Inhibitors of mTOR are most prom-
ising, and phases I and II clinical trials are already
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underway (Morgan et al., 2009). The verification that
loss of PTEN expression results in a down-regulation
of CXCR4-mediated events and in the subsequent
activation of PI3K/AKT and ERK1/2, also drew at-
tention to the promising antagonistic effect of this
receptor (Chetram et al., 2011).

Despite the attention given to kinases as thera-
peutic targets, efforts are now being made by phar-
maceutical companies to investigate the role of
phosphatases. Nevertheless, the only FDA-approved
drugs targeting a protein phosphatase are cyclospor-
ine A and FK506, immunosuppressors that inhibit
phospho-protein phosphatase 3 (PPP3) (or calcineu-
rin). Because of the numerous functions of PPP1 and
PPP2 catalytic subunits, the long-term usage of these
enzyme inhibitors is associated with nephrotoxicity
and hepatotoxicity. For this reason, a more satisfac-
tory option seems to be to target PPP1 interacting
proteins (PIPs) instead of protein phosphatases di-
rectly, as they are more event, tissue, and subcellular
compartment specific (Fardilha et al., 2010). Two
targeted PPP1-PIP complexes have already been
described: (1) the PPP1-GADD34 complex, which
is diminished in cells treated with salubrinal—a
small molecule that protects the cell from ER-
stress-induced apoptosis; and (2) PPP1 and histone
deacetylases (HDACs), an example of which is tri-
chostatin A, which disrupt the PPP1-HDAC6 com-
plex in glioblastoma and PCa cells (McConnell and
Wadzinski, 2009).

Other potential therapeutic agents are miRNAs.
Either by anti-sense oligonucleotide inactivation of
oncogenic miRNAs or by restoration of down-
regulated mRNAs, it is possible to inhibit tumor
growth, decrease lung metastases, and extend survival
in mice (Vandenboom Ii et al., 2008; Gordanpour et
al., 2012). A recent study proved that miR-185 could
function as a tumor suppressor gene by targeting AR
signaling (Qu et al., 2013).

6 Future directions

Despite the recent positive progress observed in
PCa incidence and mortality rates, efforts have to be
made to achieve a better understanding of PCa pre-
cancerous lesions and of the factors triggering PCa
development. This comprehension would enable a

more proactive action against PCa progression.
Emerging biomarkers need validation to improve PCa
management and to reduce population differences in
access to accurate diagnostic and prognostic proce-
dures. The exploration of molecular targets and in-
teractions for PCa treatment has been surprisingly
rewarding and promising, with several benefits
achieved in blocking progression and causing re-
gression of metastases.
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