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Abstract:    The pressurized reservoir is a closed hydraulic tank which plays a significant role in enhancing the capabilities of 
hydraulic driven robotics. The spring pressurized reservoir adopted in this paper requires comprehensive performance, such as 
weight, size, fluid volume, and pressure, which is hard to balance. A novel interactive multi-objective optimization approach, the 
feasible space tightening method, is proposed, which is efficient in solving complicated engineering design problems where 
multiple objectives are determined by multiple design variables. This method provides sufficient information to the designer by 
visualizing the performance trends within the feasible space as well as its relationship with the design variables. A step towards 
the final solution could be made by raising the threshold on performance indicators interactively, so that the feasible space is 
reduced and the remaining solutions are more preferred by the designer. With the help of this new method, the preferred solution 
of a spring pressurized reservoir is found. Practicability and efficiency are demonstrated in the optimal design process, where the 
solution is determined within four rounds of interaction between the designer and the optimization program. Tests on the de-
signed prototype show good results. 
 
Key words:  Hydraulic driven robots, Multi-objective optimal design, Interactive decision-making, Pressurized reservoir 
http://dx.doi.org/10.1631/jzus.A1600034                                          CLC number:  TH137.5; TP242.3 
 
 

1  Introduction 
 

Hydraulic systems have advantages of high 
power-weight ratio and large force output; therefore, 
they are widely applied to robotics as well as other 
locomotion machinery, such as wheel loaders and 
cranes. Hydraulic driven robots can be found in 
many applications, such as the exoskeleton robots, 
e.g., BLEEX (Amundson et al., 2006; Zoss et al., 
2006) and XOS (Jacobsen, 2007), and the quadruped 

robots (Yang and Pan, 2015), e.g., BigDog (Raibert 
et al., 2008) and HyQ (Semini et al., 2011). 

For these robots, high power density and com-
pact size are important requirements, which can be 
improved by using high speed pumps (up to 
10 000 r/min). For a high speed pump, its inlet pres-
sure should be maintained at the rated value (Totten 
and Bishop, 1999), so that fluid can be sucked into 
the pump steadily. Furthermore, air and contami-
nants should be prevented from entering the hydrau-
lic circuit. Therefore, in the hydraulic robot with a 
high speed pump, the reservoir should be a close and 
pressurized one. The reservoir chamber is isolated 
from the atmosphere and accommodates changes in 
fluid volume. The pressurization reduces cavitation 
which can cause damage to pumps and valves (Vac-
ca et al., 2010). In addition, it can prevent air and 
contaminants being mixed into the fluid, increase the 
bulk modulus of the fluid, and improve the stiffness 
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and response speed of the hydraulic system (Yang et 
al., 2011). 

The bootstrap is a typical closed type reservoir 
widely used in aircraft hydraulic systems. It is inte-
grated with a slim actuator connected to the high 
pressure circuit, and self-pressurizes when the sys-
tem is working. However, the bootstrap is not suita-
ble for locomotion robotics, because its structure is 
complicated. Alternatively, a spring pressurized res-
ervoir can be used in hydraulic robotics. In the 
spring pressurized reservoir a piston is pushed by a 
helical spring, so that the volume can be accommo-
dated and the fluid is pressurized.  

Components of the robotic systems are required 
to have a good balance of function, size, weight, 
strength, power ratio, etc. Usually those require-
ments, also known as the objectives, are in conflict 
with each other. The reservoir requires pressuriza-
tion, installation, and stability, whilst remaining 
compact. Therefore, the design of a spring pressur-
ized reservoir is a multi-objective optimization 
(MOO) problem.  

The mathematical solution to an MOO problem 
is not a unique solution to a single-objective optimi-
zation problem but a set of optimal solutions named 
the Pareto front. A solution x1 to an MOO problem is 
said to dominate another one x2, only if no objective 
function value of x1 is worse than that of x2, and 
there is at least one objective value of x1 which is 
better than x2. A non-dominate solution, or Pareto 
optimal, is one that is not dominated by any other; 
the subset of all non-dominate solutions is named the 
Pareto front or Pareto set. Without further infor-
mation, it is impossible to compare two solutions on 
the Pareto front. Therefore, the solution to a practical 
MOO design problem demands two stages, as the 
sketch in Fig. 1 illustrates: (1) a search for the Pareto 
front and (2) picking one solution on the Pareto front 
based on the designer’s knowledge of the practical 
situation and its trade-offs. 

Multi-objective evolutionary algorithms (MOEAs) 
are popular tools for solving the first stage (Fig. 1) of 
MOO design problems; they include the strength 
Pareto evolutionary algorithm (SPEA) (Zitzler and 
Thiele, 1998) and the non-dominated sorting genetic 
algorithm-II (NSGA-II) (Deb et al., 2002). They are 
population-based, and multiple Pareto-optimal solu-

tions can be produced after one run of MOEAs. 
However, there is a large gap between the evolution-
ary algorithms and a designer. The solution of the 
multi-objective optimization problem, which the 
MOEAs are designed to accomplish, is essentially 
one for finding the Pareto front, whereas the design-
er needs to choose one most preferred solution with-
in the Pareto front. With a large number of Pareto-
optimal solutions available, the designer may still 
find it hard to choose one among them. An effective 
method that bridges between the designer and the 
evolutionary algorithms, corresponding to stage (2) 
in Fig. 1, is greatly needed. 

 
 
 
 
 
 
 
 
 
 
A conventional way, known as an a priori 

scheme, requires the designer preference to be pro-
vided in various ways (such as the utility function, 
the preference ranking, the assumed goal, and fuzzy 
logic) along with the problem (Coello, 2000; Rach-
mawati and Srinivasan, 2006). When a group of Pa-
reto solutions are generated, the preference infor-
mation is used to pick the most preferred solution, as 
illustrated in Fig. 2a. However, in many cases it is 
hard to express or model the preference information 
mathematically because it often involves complex 
trade-offs between various aspects of performance. It 
is a common situation where the designer knows the 
requirements of the problem, but has no idea about 
the relative importance of one objective relative to 
another. Moreover, in many cases the relative im-
portance of an objective is not constant. For example, 
in the MOO design of a joint controller in a robot, 
the control frequency has a high but declining weight 
in the region adjacent to the required frequency, and 
a small weight in the higher region. 

Interactive schemes, instead, require the de-
signer to evaluate a set of Pareto solutions generated 
by the Pareto front search algorithm. The information 

Fig. 1  Stages of MOO design problem solution 



Ouyang et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2016 17(6):454-467 456

is fed back to the algorithm so that the solutions in 
the next interaction will be preferable. This scheme 
is concluded in Fig. 2b. However, many current in-
teractive methods still depend on the preference 
model, which is used to identify the region of inter-
est (Chaudhuri and Deb, 2010; Sinha et al., 2014) or 
refine the approximation of the Pareto front (Klam-
roth and Miettinen, 2008). Other studies built de-
signer preference interactively by query to the de-
signer (Pedro and Takahashi, 2013) or comparison of 
pairwise solutions by the designer (Branke et al., 
2015; 2016); in these schemes the designer is pro-
vided with only fractional information, instead of a 
big picture of the optimization potential in the cur-
rent situation. The visualization of Pareto-optimal 
solutions is also often studied in specialized topics so 
that the designer can make decisions based on that 
visual information (Kollat and Reed, 2007; Blasco et 
al., 2008). Current graphical studies are mostly fo-
cused on objective space display of the Pareto front, 
and the relationship between the objective and the 
solution distribution is omitted.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this paper, a new interactive optimal design 

method is presented to optimize a spring pressurized 
reservoir which is integrated in a hydraulic robot. 
Instead of demanding the preference model or pre-
senting abstract data to the designer, this method 
solves a complicated engineering design problem in 
a designer-friendly manner: the method visualizes 
the performance with respect to the design variables, 
and helps the designer by excluding the solutions 
that fail to meet the performance thresholds. 

2  Spring pressurized reservoir 
 

The spring pressurized reservoir is expected to 
work in an integrated hydraulic power unit for an 
exoskeleton robot, where a piston pump is driven by 
a combustion engine. The hydraulic circuit of the 
power unit is presented in Fig. 3. The pressurization 
is required to be no less than 0.15 MPa to prevent 
cavitation since the rotation speed of the engine may 
be as much as 10 000 r/min. The volume demand is 
350 ml. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4 demonstrates a typical spring pressurized 

reservoir. It mainly consists of a helical spring, a 
piston, two end caps (one is used to hold the helical 
spring and the other has inlet and outlet on it), and a 
housing which usually takes the form of a cylinder. 

When the reservoir is in working condition, hy-
draulic fluid is contained in the chamber enclosed by 
the piston, the housing, and the end cap without air. 
The spring contracts or extends in response to the 
volume change when the fluid flows into or out of 
the reservoir. Meanwhile, the spring creates fluid 
pressure by its force. 

The term design variable (DV) of the reservoir 
is used to address the reservoir properties which are 
controllable in the view of the designer. The major 
DVs of the reservoir consist of the DVs of the hous-
ing and the helical spring: 

1. DVs of the housing: the inside diameter dr of 
the cylinder and the length lr. 

2. DVs of the helical spring: the free length ls, 
the coil diameter dc, the wire diameter dw, and the 
active coil number na. The total coil number is as-
sumed to be (2+na). 

The wall thickness of the cylinder, and the 
thicknesses of the piston and the material are regard-
ed as constants.  

Fig. 2  The a priori (a) and interactive (b) methods 

Fig. 3  Hydraulic circuit of the robotic power unit inte-
grated with the spring pressurized reservoir 
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The performance of the spring pressurized res-

ervoir is indicated by its performance variables 
(PVs). In robotic applications, such as exoskeletons, 
there are many component PVs. In case of the spring 
pressurized reservoir, the major PVs are given as 
follows:  

1. The initial pressure pi is the pressure of the 
fluid flowing into the empty reservoir, as demon-
strated in Fig. 5a. It can be calculated by Eq. (1), 
where lp is the axial piston length and ks is the stiff-
ness of the helical spring given by Eq. (2). The initial 
pressure indicates the minimum pressure established 
by the pressurized reservoir, and is expected to be 
high. 
 

i s s r p( ),p k l l l                              (1) 
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where G is the shear modulus of the helical spring. 
2. The pressure increment pv is the pressure in-

crement from the initial pressure pi to the level when 
the volume reaches a nominal value vn, as Fig. 5a 
illustrates. Ignoring the friction between the piston 
and the housing, the pressure increment can be de-
rived by Eq. (3). Ideally the pressure increment 
should be zero, indicating that the reservoir provides 
a constant tank pressure despite the change in fluid 
volume. However, in practice the spring force in-
creases with the fluid volume.  
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where ar is the cross-sectional area of the piston. 

3. The spatial occupation vr is the cubic space 
that the reservoir occupies. The nominal spatial oc-
cupation defined in Eq. (4) is used for simplicity, 
where the thicknesses of housing and end caps are 
ignored. 
 

2
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4. The mass of the reservoir mr is the total mass 

of the reservoir, which includes the mass of the 
housing mh, the piston mp, the spring ms, and the two 
end caps mc. The mass can be calculated by  
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where lw is the thickness of the housing and the end 
caps, lt is the average thickness of the piston, and ρ 
denotes the material density of the parts, distin-
guished by the subscripts. 

5. The maximum volume vm is the maximum 
volume which the reservoir could hold and is as-
sumed to be the volume when the spring is pushed to 
the maximum, as in the situation shown in Fig. 5b. 
The maximum volume can be calculated by 
 

m r r p w a[ (2 )].v a l l d n                      (6) 

 
6. The assembling force fa is the force on the 

end cap from the helical spring when the end cap is 
assembled on the cylinder (Fig. 5c). Normally the 
smaller the assembling force is, the safer and simpler 
the assembly process will be. If the assembling force 
is too large, a special instrument has to be used. The 
assembling force is given by  
 

a i r .f p a                                 (7) 

 
The design of the pressurized reservoir requires 

the determination of each DV, so that the PVs are  

Fig. 4  Structure of a spring pressurized reservoir 
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balanced and satisfactory, according to the design-
er’s understanding of the practical situation. The 
difficulties of the design problem lie in the following 
aspects: 

1. The DVs and PVs are coupled in a compli-
cated manner. There are many such PVs and each 
one is determined by multiple DVs. 

2. It is hard to mathematically model the prefer-
ence of each PV. As mentioned previously, the 
weight of a PV is not essentially constant; for exam-
ple, the demand for pi is high when pi is less than the 
specified value, and much lower when pi reaches the 
specified value. On the other hand, the trade-offs for 
a particular PV vary; for example, to reduce the mass 
of the reservoir from 800 g to 600 g requires much 
more sacrifice on other PVs than to reduce from 
1200 g to 1000 g. In addition, different practical ap-
plications have unique requirements.  

3. The designer needs an overview of the prob-
lem. It is common in engineering design problems 
that some minor requirements are hard to be quan-
tized and integrated into the MOO models. To make 
a comprehensive decision, the designer needs not 
only an intuitive picture of the Pareto front, but also 
limitation and trade-off information, as well as the 
corresponding relation between the designs and the 
optimal solutions. 
 
 
3  Feasible space tightening method 
 

In this section, a novel interactive method is 
proposed to work as a bridge that connects the de-
signers and the MOO solution algorithms. Generally 
speaking, the method involves generation of a series 
of 3D surface maps, named performance maps, so 

that the decision of the designer can be made based 
on the performance maps. The MOEA is adopted as 
the MOO solution algorithm owing to its advantages 
of computational efficiency as well as its reliability 
demonstrated in many areas of study. 

3.1  Formulation of the MOO problem in engi-
neering design 

A general MOO problem in engineering design 
can be formulated as  
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   (8) 

 
where x is the DV vector (also known as the solution, 
the solution vector or the decision vector), y is the 
objective vector, gi(x) is the restriction function, n, m, 
and r are the numbers of DVs, PVs, and restrictions, 
respectively. The set X in Eq. (8) can be named as 
the search space for an MOEA, and it is the set 
where the DV vectors are chosen in the calculation 
of MOEA. The jth element of the objective vector y 
is the multiple of PV yj and the direction unit varia-
ble sj. The direction unit could be either 1 or −1, in-
dicating that the PV yj is desired to be as small or 
large as possible. 

In engineering design problems, there are usual-
ly some practical constraints to the DV vector, such 
as that a component must be spatially smaller than 
its container. In this paper the DV vector that satis-
fies all constraints is called a valid DV vector, as 
opposed to an invalid one. The set of all valid DV 
vectors is named the valid set X* or valid space, for-
mulated as 

 
* { | , ( ) 0},X h H h   x x                   (9) 

 
where h denotes a constraint function and H is the 
set of all constraints. 

The DV vector that satisfies every restriction 
gi(x)≥0 is named a feasible DV vector, and the set of 
feasible DV vectors is named the feasible set or fea-
sible space (Xf). The logical relationship of search 
space, valid space, and feasible space is illustrated in 
Fig. 6. From a mathematical point of view, the re-
striction g(x) comes from the MOO problem, whereas 

Fig. 5  Schematics of PVs: (a) pi and pv; (b) vm; (c) fa 
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the constraint h(x) describes the domain of the objec-
tive function y(x). Note that the search space is not 
necessarily a subset of the valid space. 

 
 
 
 
 
 
 
 
 
 
Another feature in engineering design is that the 

DVs are usually discrete, since the parameters are 
chosen from a priority number system. Otherwise, a 
dimension with many effective digits such as 
6.1813 mm would bring much trouble not only in 
manufacturing but also in measurement and exami-
nation. In the feasible space tightening method, dis-
crete values are assigned to the DVs rather than con-
tinuous ones. The infimum and supremum of a DV xi 
after discretization are indicated as xi

− and xi
+, re-

spectively; the discrete step is indicated as xi
h, by 

which the DV is discretized into di steps. 

3.2  Performance map 

Even with the latest technology, it is not easy to 
visualize information in a diagram with more than 
three dimensions, nor is it easy to grasp the complete 
information in a high dimensional diagram. In addi-
tion, it is difficult to display fully a high dimensional 
diagram as a static image without rotating or zoom-
ing. It is even harder to demonstrate a high dimen-
sional diagram on printed material, such as a design 
report. Therefore, a performance map, which can be 
easily displayed and understood, is adopted in the 
proposed method. 

The performance map is a 2D surface in 3D 
space, formulated as Eq. (10), and used to demon-
strate a PV in the 2D DV plane, or more precisely, 
the 2D search space named the search plane.  

 
D

,( , ) ,( , ) ( , ), ( , ) ,k i j k i j i j i j ijy y x x x x X         (10) 

 
where the superscript D in Xij

D indicates that the 
search plane is discretized. The subscript k,(i, j) de-
notes that the performance map reflects the kth PV 
on the xi-xj search plane Xij

D. 

An example of the performance map is shown 
in Fig. 7. The surface in the performance map is 
plotted with an array of discrete nodes. The location 
of a node P on the search space represents the dis-
crete DV values xi and xj of the node. When the loca-
tion of P is in the feasible space Xijf, the height of P 
represents its PV, otherwise the height is zero (or 
any predefined value), as is specified by  
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x

x
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where X*D and XD are the discretized valid space and 
search space, respectively. Eq. (11) could be treated 
as a projection of PV yk from a subspace located by 
xi and xj of P; in the eyes of the designer, yk,(i,j) can 
be understood as how well the PV yk would be 
achieved with xi and xj determined.  

Note that from Fig. 7 the effective part of the 
surface is where the nodes are located in the feasible 
space. If the feasible space can be tightened, the 
number of potential solutions can be reduced, mak-
ing it easier for the designer to make a decision. 

 
 
 
 
 
 
 
 
 
 
 
 
 
On the other hand, a solution with satisfactory 

performance in each aspect is expected. Conversely, 
a solution with one high PV and another poor PV 
may appear on the Pareto front, but it is clearly im-
possible to be considered as the solution to an engi-
neering design problem.  

A measure that can simultaneously tighten the 
feasible space and guarantee acceptable performance 
is to set the threshold ykth to performance variable yk, 

Fig. 6  Logical relationship of the search space, valid 
space, and feasible space (xi and xj are two DVs) 

Fig. 7  Example of a performance map 
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which is the key of the feasible space tightening 
method. Since the feasible space is bounded by the 
search space, the valid space, and the constraints, the 
only way to tighten the feasible space is to manipu-
late the constraints, as is given by 
 

th( ) [ ( )] 0, 1, 2, , .k k k kg s y y k m    x x      (12) 

 
With the help of performance maps as well as 

the thresholds introduced, the MOO problem defined 
in Eq. (8) can be further divided into several sub-
problems by each node P(xi

P, xj
P) on a performance 

map yk,(i,j), expressed in Eq. (13), where the first m 
restrictions denote the thresholds on each of the PVs, 
and the rest are the original r restrictions that come 
with the MOO problem.  
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       (13) 

 
The solutions of the MOO problem in Eq. (13) 

become finite after discretization of the search space. 
However, the number of solutions is still too large 
for the solutions to be fully searched when the di-
mension of the MOO problem is high. With the help 
of MOEA, it is easy to solve the optimization de-
fined in Eq. (13), to obtain a performance map. Ac-
cording to the above information, a program generat-
ing the performance maps would have a structure 
similar to the diagram in Fig. 8. The main program 
works as a search engine that traverses the nodes on 
the search plane, as the pseudo code shows in the left 
column in Fig. 8. Each node is treated as an individ-
ual optimization program and is calculated by the 
MOEA. The calculation related to the specific prob-
lem is concentrated in the problem abstract module 
(PAM), with the DV generation for MOEA popula-
tion as well as the calculation of PV and the con-
straint violation (CV) shown in the right box in 
Fig. 8, and called by the MOEA. The program first 
reads configurations, such as the search plane xi-xj, 
the search space X, and the discrete step length of 
each DV. Then the nodes on the search plane are 
enumerated, and the MOEA is run for each node. At 
the end of the MOEA, the most desired value of each 

PV is recorded. After the calculation for each node 
on the search plane Xij, the data of each PV are de-
rived and used to plot the m performance maps. 

 
 
 
 
 
 
 
 
 
 
 
 
Suppose that the generation number of MOEA 

in the worst condition is g, and the complexity of the 
MOEA on an evolutionary generation is O[ω(p, m)], 
where p denotes the population size of the MOEA. 
The computational complexity of generating the per-
formance maps on a specific search plane is there-
fore O[didjgω(p, m)] in the worst case. 

3.3  Designer decision based on the performance 
map 

On a performance map of PV yk, the feasible 
plane Xijf could be understood as the feasible space 
Xf projected on the 2D plane xi-xj, and the surface on 
the feasible space could be understood as the surface 
of the best PV yk under the premise that all other PVs 
reached the thresholds. 

At the beginning of the MOO design relatively 
low threshold values are chosen for each PV, since 
there is normally a margin for each performance cri-
terion, and a larger feasible space can bring a better 
overview of the performance trends. As the designer 
raises the thresholds, the feasible space Xf would 
naturally contract in some dimensions. That is the 
core idea of the feasible space tightening method. 

With the current thresholds, the designer knows 
which PV needs to improve most; after the corre-
sponding threshold being raised, the tightening of 
feasible space means the decrease of candidate solu-
tions, and is therefore a step toward the final deci-
sion. When the feasible space Xf is small enough, 
such that there are only 2 to 3 discrete feasible val-
ues on each DV dimension or the discrete solutions 

Fig. 8  Structure for a program generating the perfor-
mance maps 
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could be enumerated, the designer will find it easy to 
make the decision by picking one solution from Xf. 

Fig. 9 shows the flow chart of the feasible space 
tightening method. Although it is expected that the 
designer will raise the thresholds of some PVs to 
tighten the feasible space, there are other possible 
situations requiring different choices, based on the 
generated performance maps:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. The feasible area is empty on the search 

plane, which happens when the thresholds are raised 
too high and there is no possible solution. The de-
signer could lower the threshold in one or several 
PVs, try to refine the discrete step, or adjust the 
search space. It may be repeated several times that 
the designer is not satisfied and raises the threshold, 
only to find the subsequent feasible space empty. In 
the process of trial and error, the limitation to the 
MOO problem can be better understood. The prob-
lem can be solved either by picking a less satisfacto-
ry but acceptable solution, or by improving the de-
sign and redefining the MOO model.  

2. The designer finds that all thresholds are sat-
isfactory, but the feasible space still contains too 
many solutions. The potential solutions could be 
unleashed by searching in the space of all DVs, it is 
not surprising that many more feasible solutions 

could be found compared with the conventional cas-
cade design method. When the designer is content 
with all the PV thresholds, adding some minor PVs 
and corresponding thresholds is an alternative choice 
other than raising the threshold of the most demand-
ing PV. Additionally, the designer could make a de-
cision based on some requirements not related to the 
design method.  

It can be concluded that the work flow is design 
thinking oriented. The designer is not required to 
know much about multi-objective optimization or 
MOEA. Instead, the designer sets thresholds to every 
PV as the problem demands, and picks the solution 
within a reduced set of feasible space by adjusting 
the thresholds. 

3.4  Some application considerations 

Some issues should be addressed when apply-
ing the feasible space tightening method. 

The first one is about the interpretation of the 
nodes with the same location on different perfor-
mance maps. For example, on the search plane xi-xj, 
there is a node P1

*(xi
*, xj

*) on the performance map 
of PV y1 whose height is y1

*, meanwhile there is an-
other node P2

*(xi
*, xj

*) on the performance map of 
PV y2 with the same location as P1

* and height being 
y2

*, as can be found in Fig. 10, which does not mean 
a solution x* satisfying y1(x

*)=y1
* and y2(x

*)=y2
* must 

exist. Because y1
* is from the projection of a node 

with the most desirable PV y1 among many nodes in 
a subspace located by xi=xi

* and xj=xj
*, and so is y2

*. 
One can only be sure that in the subspace located by 
xi=xi

* and xj=xj
*, there is a solution whose PV y1 can 

be y1
*, and there is another solution, which may be 

the previous one or different from it, whose PV y2 is 
y2

*. 
Other issues arise in the practical implementa-

tion of the performance map-generating program 
based on the MOEA. It has been mentioned previ-
ously that the search space may not be a subset of 
the valid space. Therefore, in the MOEA initializa-
tion stage, individuals with invalid DV vectors could 
be generated, which need special treatment before 
calculation of PVs. The same problem may occur in 
the crossover or mutation routine, where the DV 
vectors of child individuals may be invalid. A simple 
solution to this problem is to generate a new DV 
vector randomly when an invalid DV vector is  

Fig. 9  Flowchart of the feasible space tightening method



Ouyang et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2016 17(6):454-467 462

detected in the PAM. Another potential issue is that 
the feasible space may be an empty set in the search 
sub-space determined by the search node, which 
means no valid DV vector can be found. The MOEA 
and PAM have to be modified to detect this situation 
and exit from trying to generate DV vectors. 

The performance map for a real engineering de-
sign problem is usually not a smooth surface as 
shown in Fig. 7 or Fig. 10. There may be lots of 
peaks or valleys, like the node B in Fig. 7. If a node 
is too prominent than its adjacent nodes, such as the 
node A in Fig. 7, it can be referred to as an aberrant 
node. An aberrant node implies that the best perfor-
mance of this node is probably not found. When the 
traversal on the search plane is completed, a quick 
check can be carried out to find aberrant nodes, and 
an additional MOEA calculation can be performed 
on those nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
4  Optimization of the pressurized reservoir 
 

The reservoir optimization problem is a 6-DV 
6-PV optimal design problem with the DV vector 
x=(dr, lr, ls, dc, dw, na) and the PV vector y=(pi, pv, vr, 
mr, vm, fa) as mentioned previously. The NSGA-II is 
chosen to be the MOEA in the proposed method, 
because of its advantages of less computational 
complexity which is O(mp2), and a better spread of 
solutions. The maximum generation number is 60 
and the population number is 120. The performance 
map data are generated by a program written in the C 
language. The execution time of the program varies 
from 1 min to 8 min. The constant parameters for the 
design problem are given in Table 1, the search 
space and discrete step of DVs in Table 2, and the 
parameters for PVs in Table 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since there are C(6, 2)=15 possible combina-

tions to choose for the search plane, the total number 
of performance maps is 6C(6, 2)=90. Only the ones 
on the prime DVs and which reveal information on 
performance trends are used by the designer. In this 
case three search planes are used, namely the hous-
ing exterior plane (dr-lr), the spring exterior plane (ls-
dc), and the spring intrinsic parameter plane (dw-na). 
The first two describe the shape of the housing and 
spring, respectively, and the third one determines the 
intrinsic parameters of the spring.  

In Fig. 11, five performance maps on the  
dr-lr search plane demonstrate the best possible  

Table 1  Constant parameters for the design problem

Constant parameter Value

Shear modulus of the helical spring, G (MPa) 79 000

Density of the end cap and the spring, ρc and ρs 
(g/cm3) 

7.85 

Density of the housing and the piston, ρh and ρp 
(g/cm3) 

2.78 

Thickness of housing wall, lw (mm) 3.0 

Thickness of end cap, lc (mm) 3.0 

Length of piston, lp (mm) 15.0 

Average thickness of piston, lt (mm) 6.0 

Nominal volume, vn (ml) 350 

Table 2  Parameters on DVs 

Parameter 
Value 

Search space Discrete step

DVs of reservoir   

Diameter, dr (mm) 60–90   2.0 

Length, lr (mm) 140–200   5.0 

DVs of spring   

Free length, ls (mm) 180–400 10.0 

Coil diameter, dc (mm) 30–84   2.5 

Wire diameter, dw (mm) 2.5–8.5   0.5 

Active number, na 8–25   1.0 

Table 3  Parameters on PVs 

Parameter 
Threshold 

value 
Direction 

unit 

Initial pressure, pi (MPa) 0.1 −1 

Pressure increment, pv (MPa) 0.5 1 

Spatial occupation, vr (ml) 1200 1 

Total mass, mr (g) 1000 1 

Maximum volume, vm (ml) 200 −1 

Assembling force, fa (N) 1000 1 

Fig. 10  Nodes with the same location on different per-
formance maps 
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performance for different housing sizes. In the worst 
case, the minimum pi is 0.15 MPa, the maximum pv 
is 0.1 MPa, mr is 839 g, and fa is 652 N. There is a 
notable margin between the worst case pv, fa and the 
corresponding thresholds, indicating the optimiza-
tion potential of those PVs. It can be seen from 
Fig. 11 that the PV of the initial pressure and assem-
bly force are insensitive to the housing length. When 
the performance map of the assembly force is viewed 
on the lr axis direction, as Fig. 11f shows, the surface 
in the feasible space is overlapped and appears to be 
a curve. The pressure increment can be smaller for a 
short and wide housing; meanwhile, the volume and 
mass can be smaller for a short and slim one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another four performance maps are shown in 

Fig. 12 with respect to the helical spring parameter ls 
and dc. In Fig. 12b, the pressure increment falls from 
a high value as the spring free length increases from 
the boundary of the search space. Besides, the per-
formance trends indicate that a long but slim helical 
spring is preferable (marked in Fig. 12a). However, 

such a helical compression spring tends to buckle 
and may not be stable (Shigley et al., 1989). There-
fore, a new PV, named the dimension ratio rs, given 
in Eq. (14) could be adopted as a qualification of the 
helical spring design, and should be a small value. 

 

s s c/ .r l d                               (14) 

 
With the current performance index, the thresh-

old of mass is set to 800 g, maximum volume 350 ml, 
assembly force 800 N, and dimension ratio 7.0, be-
cause those PVs are currently the main concern. In 
addition, the threshold of initial pressure is set to 
0.15 MPa and the pressure increment to 0.2 MPa. 
After raising the thresholds, typical performance 
maps are obtained as shown in Fig. 13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is obvious that the feasible plane of the per-

formance maps in Figs. 13a–13c is much smaller 
than those in the corresponding maps in Figs. 11 and 
12, which is within the expectations of the feasible 
space tightening method. The feasible plane in 
Fig. 13d is at one boundary of the search plane, 
which implies that the search space is possibly inap-
propriate. Meanwhile, plate mounting is a good 
choice for the reservoir because of its compactness. 
However, a slim but long housing, as in the region 
marked in Fig. 13a, is not easily mounted firmly and 
reliably. This is because the mounting surface is on 

Fig. 12  Performance maps on ls-dc plane 
(a) Initial pressure; (b) Pressure variation; (c) Spatial occupa-
tion; (d) Total mass 

Fig. 11  Performance maps on dr-lr plane 
(a) Initial pressure; (b) Pressure variation; (c) Total mass; 
(d) Maximum volume; (e) Assemble force; (f) Assemble 
force (side view) 
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the end cap, and a slim but long housing will bring a 
large overturning force due to gravity or vibration. A 
simple way to avoid this situation is to add another 
PV, the dimension ratio of housing rh, and the corre-
sponding threshold to the design problem. The di-
mension ratio of housing is defined in Eq. (15), 
which is similar to Eq. (14). The PV rh is desired to 
be a small value. 
 

h r r/ .r l d                              (15) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The threshold of rh is set to be 2.4, the search 
space for na is modified to be 6.0–12.0 with search 
step of 0.5. A new group of performance maps are 
generated, which are shown in Fig. 14, with thresh-
old adjustment: vr≤1000 ml and vm≥450 ml. 

The increment of the initial pressure in Fig. 14a 
is small, which means the initial pressure is now in-
sensitive to the DVs on this search plane. Other PVs, 
such as mr, vm, and fa, show similar trends. The pres-
sure increment shows a clear trend: it decreases as 
spring length increases. On the dr-lr plane, the feasi-
ble region is reduced, as shown in Fig. 14c due to 
limitation of the housing dimension ratio. The feasi-
ble region on the dw-na plane is also small. 

The shape of the housing can be determined as 
dr=80 mm and lr=170 mm, so that the reservoir can 
have a maximum volume up to 598 ml; meanwhile, 
the other PVs are above thresholds. After this only 
four DVs of the helical spring remain. New perfor-

mance maps can be generated, given in Fig. 15, with 
dr and lr treated as constant values. 

The feasible nodes are marked by white circles 
in Fig. 15. Even though the thresholds are unchanged, 
the feasible region is becoming smaller, because the 
subspace of each node is greatly reduced with dr and 
lr determined. Next, the shape of the helical spring is 
determined as dc=48 mm and ls=310 mm, to achieve 
small pressure increments. After this, only one node 
on the dw-na search plane remains, which is dw= 
4.5 mm, na=6. Thus, the preliminary design of the 
spring pressurized reservoir is complete. The param-
eters are all determined, and the designer can move 
on to tasks, such as verification and detailed design. 
The parameters of the design are summarized in Ta-
ble 4, as well as the predicted performance. The de-
sign derived by the method is believed to accurately 
reflect the demands of the application, because each 
time the PV maps are presented to the designer, the 
PVs that cause most concern are improved by the 
designer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13  Performance maps after raising of thresholds 
(a) Initial pressure on dr-lr; (b) Pressure variation on dr-lr; 
(c) Initial pressure on ls-dc; (d) Maximum volume on dw-na 

Fig. 14  Performance maps on the second tightening 
(a) Initial pressure on ls-dc; (b) Pressure variation on ls-dc; 
(c) Maximum volume on dr-lr; (d) Reservoir mass on dw-na 

Fig. 15  Feasible space with dr and lr determined 
(a) Feasible region on ls-dc; (b) Feasible region on dw-na 
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5  Test of the reservoir prototype 
 

A spring pressurized reservoir prototype was 
manufactured according to the above optimization 
results, and was integrated into the hydraulic power 
unit for exoskeleton robots, as shown in Fig. 16. 

Fig. 17 shows the dynamic behavior of the res-
ervoir, when the hydraulic system of the exoskeleton 
robot is working. The movement of one actuator in 
the robot is given in Fig. 17a to represent the work-
ing cycle, with a frequency of 0.5 Hz; the system 
pressure is also presented. The dynamic behavior of 
the reservoir, shown in Fig. 17b, is characterized by 
the volume and pressure in the reservoir (i.e., the 
pressurization). The volume decrement is observed 
when the fluid fills the accumulator (Fig. 3) as the 
system pressure rises.  

It can be seen that the variation of pressuriza-
tion is not in proportion to the variation of volume, 
as is the static characteristic of the spring pressurized 
reservoir. This is the result of the friction between 
the piston and the housing as well as the inertia  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of the piston. Nevertheless, the reservoir is able to 
maintain the required pressure.  
 
 
6  Conclusions 
 

A new multi-objective optimal design method 
named the feasible space tightening method is pre-
sented to solve sophisticated engineering design 
problems with multiple design variables and multiple 
performance variables (objectives), where the utility 
function, cost, or relative importance of each objec-
tive is hard to model.  

The method visualizes the performance with re-
spect to the design variables by 3D surfaces entitled 
performance maps, with which the designer can re-
duce the feasible space based on the thresholds de-
termined interactively, and the design progress can 
become much easier. The method has advantages in 
that: 

1. There is a good distribution of Pareto solu-
tions. Every node on a performance map can be 
viewed as an individual optimization problem and is 
solved by MOEA in the subspace of the node. 

2. There is ability to solve high dimensional en-
gineering design problems. The high dimensional 
PV-DV space is projected on to several performance 
maps and displayed. Every PV would be acceptable 

Fig. 16  Hydraulic power unit with spring pressurized 
reservoir 

Fig. 17  Operating characteristics of the spring pressur-
ized reservoir 
(a) Movement of one actuator; (b) Dynamic behavior of the 
reservoir 

Table 4  Parameters and performance of the design 

Parameter 

dr  
(mm) 

lr 
(mm) 

ls  
(mm) 

dc 
(mm) 

dw  
(mm)

na 

80 170 310 48 4.5 6 

Major performance indicator 

pi  
(MPa) 

pv  
(MPa) 

vm  
(ml) 

mr  
(g) 

vr  
(ml) 

fa  
(N)

0.152 0.08 1088 796 598 763
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or satisfying, hence the overall performance of the 
design can be guaranteed. 

3. The visualization of PV-DV space is intuitive. 
With the help of performance maps, the designer can 
learn information on the feasible space and the 
trends of PVs on the chosen search space.  

4. The flow is designer-friendly. The work flow 
is design-thinking oriented. The designer is not re-
quired to know much about multi-objective optimi-
zation or MOEA. Instead, the designer sets thresh-
olds to each PV as the problem demands, and choos-
es the solution within a reduced set of feasible spac-
es by adjusting the thresholds.  

With this method, a spring pressurized reservoir 
is parametrically developed within four rounds of 
interaction between the designer and the optimiza-
tion program. In each round of interaction, the most 
crucial objective is addressed by the designer; 
meanwhile, less but more preferable solutions are 
generated by the program. Test results of the reser-
voir prototype show the expected good performance. 
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中文概要 
 
题 目：液压机器人增压油箱的多目标优化方法研究 

目 的：增压油箱是提高液压机器人动力源功率密度的

一个关键元件。高集成度的增压油箱设计涉及 6

个设计变量和 6 个性能指标，必须采用合适的

方法进行多目标优化。 

创新点：1. 提出一种在设计变量平面上投影性能曲面的

多目标优化方法，通过设定性能阈值缩小可行

解范围并获得决策；2. 将增压油箱应用于液压

机器人，提高液压机器人的功率密度和性能。 

方 法：1. 采用活塞-弹簧增压的原理来实现机器人液压

系统增压，分析增压油箱的容量、质量和增压

压力等性能，确定增压油箱设计为多目标优化

问题。2. 通过在设计变量平面上的投影曲面，

分析增压油箱性能指标与设计变量之间的关

系；将目标函数阈值引入设计限制条件，通过

控制待优化的指标缩小可行域，获得油箱设计

的最终解。3. 按优化设计参数加工油箱样机，

并在液压机器人动力源上进行测试。 

结 论：1. 增压油箱优化结果表明本文提出的设计方法

可帮助设计者获得所需的最优解；2. 增压油箱

样机的应用测试结果表明所研制的增压油箱在

液压机器人系统中运行可靠。 

关键词：液压机器人；多目标优化；交互式决策；增压

油箱 

 
 
 
 


