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Abstract:    Establishing an accurate in situ stress field is important for analyzing the rock-mass stability of the underground 
cavern at the Huangdeng hydropower station in China. Because of the complexity and importance of the in situ stress field, ex-
isting back analysis methods do not provide the necessary accuracy or sufficiently recognize nonlinear relations between the 
distribution of the in situ stress field and its formative factors. Those factors are related to the geological structures of high com-
pressive tectonic stress regimes, including geological faults and tuff interlayers. The new two-stage optimization algorithm pro-
posed in this paper is a combination of stepwise regression (SR), difference evolution (DE), support vector machine (SVM), and 
numerical analysis techniques. Stepwise regression is used to find the set of unknown parameters that best match the modeling 
prediction and determine the range of parameters to be recognized. Difference evolution is used to determine the optimum pa-
rameters of the SVM. The SVM is used to create the DE-SVM nonlinear reflection model to obtain the optimal values of the 
parameters from measured stress data. We compare the new two-stage optimization algorithm to other two popular methods, a 
multiple linear regression (MLR) analysis method and an artificial neural network (ANN) method, to estimate the in situ stress 
field for the actual underground cavern at the Huangdeng hydropower station. The two-stage optimization algorithm produces a 
more realistic estimate of the stress distribution within the investigated area. Thus, this technique may have practical applica-
tions in realistic scenarios requiring efficient and accurate estimations of the in situ stress in a rock-mass. 
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1  Introduction 
 

The in situ stress field is widely known to be a 
fundamental factor for not only the analysis, design 
calculation, and stability assessment of rock engi-
neering projects, but also the study of rock-mass de-

formation and failure (Guo et al., 1983; Gong et al., 
2010). The accuracy of the in situ stress field ob-
tained by numerical simulation directly influences 
the final results, especially for excavations in high 
level tectonic stress areas (González de Vallejo and 
Hijazo, 2008). Therefore, it is essential to know the 
magnitude and direction of in situ stress for any un-
derground project before construction, requiring ex-
tensive measurements and calculations. 

The in situ stress field results from a highly 
complicated process and is affected by many factors, 
including topography, geological history, the behav-
ioral evolution of rocks, tectonic evolution, the geo-
thermal field, and groundwater. In situ measurement 
is the most direct approach for determining the  
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geo-stress field (Liu et al., 2014). However, such 
field tests are often costly and time-consuming. Fur-
thermore, due to the complexity brought by the for-
mation of in situ stress and the excessive working 
impact, the measured results are only a reflection of 
the local stress field. Thus, based on the measure-
ment results and geological structure conditions, it is 
crucial to derive a reasonable stress field with wide 
applicability using a convenient and efficient back 
analysis approach coupled with an advanced numeri-
cal simulation method (Mckinnon, 2001; Saati and 
Mortazavi, 2011).  

In numerical simulations, the in situ stress fields 
are generally acquired by a number of methods using 
limited measurement and topography data used for 
design and construction at various engineering sites 
(Zhang et al., 2006; Guo et al., 2008; Qin et al., 2008). 
These methods include multiple linear regression 
(MLR) analysis, artificial neural network (ANN) 
methods (Kartam et al., 1997; Xu, 2000; Li et al., 
2012; Samui et al., 2015), and genetic algorithm op-
timization approaches, which have been adopted ex-
tensively within stress boundary conditions and dis-
placement boundary conditions in particular. However, 
these methods have unique limitations, specifically 
in terms of shortcomings in the speed and accuracy 
of the inverse analysis of the in situ stress field. 

Under uniform lithology and relatively simple 
geological conditions, the MLR analysis method for 
in situ stress estimation has been applied in many 
construction sites to assess the regional in situ stress 
because of its speed and convenience. However, the 
interaction of the main factors affecting the in situ 
stress field is ignored by the substantial assumptions 
about linearity and continuity. Moreover, the rela-
tionship between the in situ stress field and the main 
factors is too complicated to express by a sub-
harmonic multivariate function. Therefore, the MLR 
analysis method usually lacks conformity with the 
practical situation and eventually leads to significant 
inaccuracy. As a typical surrogate direct inversion, 
the ANN approach attempts to use machine learning 
to map the nonlinear inverse relationship between 
the stress measurements and the boundary conditions 
(Grossberg, 1988; Kartam et al., 1997) but often has 
difficulty traversing the typically non-convex opti-
mization search space because of its inherent limita-
tions, including non-uniqueness, non-existence, and 

instability. Moreover, it relies mostly on a specifical-
ly designed algorithm and a high-accuracy digital 
computer to ensure satisfactory results, often at the 
expense of convergence speed. Alternatively, the 
genetic algorithm is a well-known optimization-
based approach used to solve the inverse problem to 
determine the distribution of the in situ stress field. 
However, this method is prone to problems of prem-
ature convergence. In other words, it easily converg-
es to a local optimal solution and requires a large 
number of forward analyses to estimate a solution. 
This means that it is typically computationally ex-
pensive with unnecessary time costs. Moreover, its 
solution accuracy depends strongly on the selection 
of the initial population. Given the limitations of 
these methods, one logical approach is to combine 
stepwise regression (SR), difference evolution (DE), 
support vector machine (SVM), and numerical anal-
ysis techniques to solve the inverse problem and es-
timate a stress field that more effectively addresses 
the need for both accuracy and computational effi-
ciency (Grossberg, 1988; Kartam et al., 1997). 

This paper presents the details of a particularly 
promising approach incorporating linear regression, 
SVM, and DE, and applies this approach to the prob-
lem of inversely obtaining the in situ stress field in 
underground projects. In the following section, con-
sidering the effect of the unloading of land surface 
denudation, we determine a series of parameters to 
be estimated related to the formation of the rock-
mass in situ stress field. First, we provide an outline 
and the technological process of a two-stage optimi-
zation algorithm and its incorporation into an inverse 
solution method, namely the SR-DE-SVM algorithm, 
for estimating the in situ stress in a rock-mass. Then, 
we use this method to estimate a set of unknown 
parameters at the underground caverns at the 
Huangdeng hydropower station, using a numerical 
analysis to assess the efficacy of the SR-DE-SVM 
approach. Finally, we present validation tests. 

 
 

2  Land surface denudation theory for the 
magnitude of in situ stress 

2.1  Denudation effect of unloading 

In the long term, the geological history and  
behavioral evolution of rocks may significantly  
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influence the state of in situ stress fields. Some re-
search has shown that the distribution of the rock-
mass in an in situ stress field is strongly influenced 
by the land surface denudation effects of unloading 
resulting from an intense geological process when 
the geological environment is complicated (Hijazo 
and González de Vallejo, 2012). Consequently, the 
unloading geological behaviors stemming from land 
surface denudation must be considered to obtain a 
reasonable assessment of the in situ stress. The in 
situ stress field in high-mountain gorge areas is the 
inevitable result of various unloading geological be-
haviors, including land surface erosion and valley 
denudation, which disequilibrate the state of rock-
mass stress before the formation of a valley, leading 
to a new balanced state through the simultaneous 
adjustment of its stress and strain.  

To express the effect of land surface denudation, 
several reasonable and necessary assumptions should 
be made, namely, that the land was sufficiently even 
in ancient times and, based on geological mechanics 
analysis, that the in situ stress comes mainly from 
gravity and the geological tectonic stress field (Guo, 
et al., 2008) applied in ancient times. The formation 
of a rock-mass in situ stress field involves many re-
lated factors, such as topography, lithology, geologi-
cal and structural anisotropies, sedimentary loads, 
tectonic evolution, thermal conditions, and ground-
water. However, the thermal stress is equal to only 
1/9 of the gravity stress. Thus, the thermal stress ef-
fect on the rock-mass in situ stress field is negligible 
for common underground projects. Conversely, 
groundwater has an intricate mechanism of influence 
on the in situ stress. Specifically, an increase in pore 
pressure can reduce the shear strength of the rock in 
the potential structural plane. Moreover, seepage 
pressures usually change the in situ stress field in 
underground projects. The thermal conditions and 
groundwater are usually ignored in analyses because 
of their comparatively small influence and difficult 
quantification. The last assumption is that the esti-
mated in situ stress field is created by land denuda-
tion and erosion in the context of an ancient in situ 
stress field. 

2.2  Land surface denudation simulation  

Six types of displacement boundary conditions 
were considered in the simulation analysis to repre-

sent the different effects of land surface denudation 
and river erosion (Fig. 1) (Jiang et al., 2008), reflect-
ing the distribution of the in situ stress field under 
different effects of unloading in underground  
projects. 

 
 

3  Two-stage optimization algorithm for es-
timating inverse in situ stress 

 
The two-stage optimization algorithm is a non-

linear global optimization method that combines SR 
and SVM with DE. It has been shown to be capable 
of effectively solving global optimization problems 
with relatively low use of computational resources 
(Jiang et al., 2013). SR can ascertain the set of un-
known parameters that best matches the modeling 
prediction and determine the range of parameters to 
be recognized. DE is applied to determine the opti-
mum parameters of the SVM. The SVM is used to 
create the DE-SVM nonlinear reflection model that 
maintains the global search capabilities over the 
whole search space to efficiently determine an opti-
mal solution interval. 

3.1  Methodology of the stepwise regression 

As a prominent multivariate function, the SR 
method uses its specific and available efficiency to 
determine the importance of numerous influencing 
parameters to obtain the best combination of varia-
bles to establish functional relations, especially in a 
complex system. The selection of the initial parame-
ters strongly influences the evolution velocity of the 
SVM. Improper parameter selection may lead to 
generation stagnancy or premature phenomena, fail-
ing to satisfy the analysis request. The proposed 
method introduces SR into the in situ stress field 
inversion analysis to define the causes of the for-
mation of the in situ stress more clearly and to pro-
vide an important basis for underground cavern de-
sign and stability analysis. 

Simulation of a tectonic stress field is usually 
conducted by applying normal or tangential dis-
placement or stress boundary conditions, whose con-
sistency relative to each other is ignored. However, 
the entry of one factor will lead to degradation of the 
others. Thus, after calculation and comparison, SR is 
used to exclude those factors that do not play a  
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dominant role in the region of interest. The SR filters 
and inspects each tectonic stress factor that may be 
influential and that is consistent with the existing 
structural features to obtain an optimized solution 
matching the engineering geological investigation 
data. 

The in situ stress value can be represented by 
the following equation: 

 

 0
0

1

,
n

i
jk i jk

i

C C  


    
(1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where σjk
0 is the calculated initial geo-stress value of 

stress component j on point k, C0 is a constant coef-
ficient, Ci represents a stress component caused by 
each movement pattern, including gravity movement 
and sub-tectonic movement patterns, σjk

i is the calcu-
lated geo-stress value of stress component j under 
gravity and sub-tectonic movement on point k, and ε 
is the model error. 

First, we assume that H0: C0=C1=C2=…=Cn−1 

=Cn=0 and check H0 using test data as a statistical 
sample. If H0 is rejected, the linear regression is  

Fig. 1  Schematic diagram of the displacement boundary conditions 
(a) Tectonic movement boundary in the x direction, Ux; (b) Tectonic movement boundary in the y direction, Uy; (c) Shear tec-
tonic movement boundary in the xy plane, Uxy; (d) Shear tectonic movement boundary in the xz plane, Uxz; (e) Shear tectonic 
movement boundary in the yz plane, Uyz; (f) Boundary condition under a gravity function. γ is the unit weight of the rock mass;
H is the depth of its location 
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significant, which indicates that a linear relationship 
exists between the independent and dependent varia-
bles. If not, the regression is not significant, which 
indicates that the regression model does not work. 

The core concept of SR is to introduce impact 
factors one by one under the condition that the factor 
has an obvious sum of squares of partial regression. 
The previous factors are then inspected individually 
after adding new factors to exclude those without 
obvious relationships, ensuring that the optimal sub-
set of variables can be obtained in several steps. The 
method is simple and fast because there is no need to 
determine the partial correlation coefficients.  

The least square SR method is adopted to con-
duct a statistical analysis of the effect of different 
parameters to be estimated on target parameters. The 
F-test is applied to check whether the regression is 
significant, where the statistical magnitude of F has 
the computational formula shown in Eq. (2). Fur-
thermore, the ratio of the regression sum of squares 
and the residual sum of squares obeys the distribu-
tion F, whose degree of freedom is m and n−m−1: 
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squares, which is the sum of squares of the differ-
ence between the regression value ŷk and the average 
value y , m is the number of variables, n is the sam-

ple number, and  
2

1
ˆ

n

k kk
Q y y


   is the residual 

sum of squares, namely, the sum of squares of the 
difference between the measured value yk and the 
regression value ŷk.  

The F statistic can be used to quantify the over-
all effect of the regression; the larger the F value is, 
the better the regression equation is. For the given 
confidence level λ (λ=95% is commonly adopted), 
the F statistic should satisfy 
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If Eq. (3) does not hold, the assumption fails.  
The procedure for SR is as follows: 
1. Independent variables are adopted to conduct 

the linear regression statistics for dependent varia-

bles and to check the F value. 
2. The effect on the dependent variables of the 

independent variables that are sequentially added to 
the regression equation is observed. The effect can 
be determined by both the coefficient of partial cor-
relation between the two variables and the F value 
regressed by them. 

3. If the independent variables introduced earli-
er become less significant due to the introduction of 
latter variables, the earlier variables are eliminated. 

4. Steps 2 and 3 are repeated until no additional 
insignificant variables are present in the equation 
and no additional significant variables are added into 
the equation. Each time that steps 2 and 3 are repeat-
ed, the F value is checked to confirm the signifi-
cance of the effect of the independent variables on 
the dependent variables. 

3.2  Nonlinear model based on DE-SVM 

The SVM is a preeminent machine learning tool 
that minimizes an upper bound on its expected error. 
It attempts to convert low-dimensional nonlinear 
problems into high-dimensional linear problems and 
then replace inner product computation with a kernel 
function. More specifically, given data points x1, 
x2, …, xn and class labels y1, y2, …, yn, the SVM has 
the form: 
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Let w be the weighted vector and xi ,d  

yi .  Furthermore, let i and i
* be the support 

vectors, on which all of the classifications performed 
by the SVM solely depend. Finally, b* represents the 
classification threshold. Thus, an identical SVM 
would result from a training set that omits all of the 
remaining examples. The data representation in this 
feature space need not be explicitly calculated if there 
is an appropriate Mercer kernel operator for which 
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A radial basis function is adopted as the typical 

Mercer kernel operator due to its excellent perfor-
mance, meaning that the data that are not linearly 
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separable in the original space may become separa-
ble in this feature space. For data sets that are non-
separable, slack variables ξi and ξi

* are introduced to 
relax the constraint as 

 

2 *
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1
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n

i i
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w                   (6) 

 
subject to ξi≥0, ξi

*≥0, and c≥0, representing a con-
stant called the penalty parameter. An optimal model 
can usually be achieved by seeking the best values of 
c and k, which play an important role in its predic-
tion accuracy. However, the SVM never provides 
systematic theoretical approaches for the two  
parameters. 

A DE algorithm is designed to fulfill user re-
quirements, as its control variables are robust and 
easy to select and it has good convergence to the 
global minimum in consecutive independent trials 
(Xing et al., 2015). In this study, we used the ad-
vantages of the DE algorithm to explore the best pa-
rameters of c and k in SVM modeling due to its sim-
ple but efficient global optimization performance 
(Cheng et al., 2013). The improved DE-SVM algo-
rithm includes the following steps: 

1. Initializing of the DE-SVM parameters, 
which entails randomly generating Np bivectors 
about c and k in SVM modeling that should be satis-
fied to restrain the upper and lower bound independ-
ent variables. Because the DE algorithm is designed 
to be a stochastic real parameter optimization algo-
rithm, its formula is as follows:  
 

L U Lrand( ),ij ij ij ij  x x x x                  (7) 

 

subject to i=1, 2, …, Np, where Np represents the 
population size, j=1, 2 is the dimension of the vec-
tors, xij

U and xij
L are the upper and lower bound in-

dependent variables, respectively, and the function 
rand is random and rand[0, 1]. 

2. In mutation, the difference between two in-
dependent vectors is minimized and then merged 
with a third independent vector in its population, 
forming a new variation vector. For the target vector 
xij, the mutant vector is obtained according to 
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where r1, r2, r3[1, n], which are random indexes. r1, 
r2, and r3 are chosen to be different from the running 
index i; thus, n≥4 to allow for this condition. 
F[0, 2], where F determines the amplification of 

the differential variation 
2 3

( ) ( ),r j r jG Gx x  and G 

stands for generation. 
3. Crossover increases the diversity of the per-

turbed parameter vectors. Each vector in the current 
population is combined with a mutant to produce a 
trial population in this step (Jiang et al., 2013). The 
trial vectors are expressed as  
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where j=1, 2, …, n; rj is a random number between 0 
and 1; CR[0, 1], called a crossover constant, is de-
termined by the user, and rni[1, n], which ensures 
that uji,G+1 obtains at least one vector parameter from 
νji,G+1. 

4. Selection is then performed to determine 
whether the target or trial vector survives to become 
a member of the next generation. If the trial vector 
uji,G+1 yields a smaller cost function value than the 
target vector xji,G, then the target vector xji,G can re-
place the trial vector uji,G+1. That is, the target vector 
xji,G 

 is not itself replaced.  
5. Loop iteration is conducted, repeating steps 2 

to 4, until the end condition for the optimization pro-
cess is reached. This end condition is set as a maxi-
mum generation Gmax or maximum number of func-
tion evaluations, which can be specified by the user 
to avoid over-fitting. Therefore, the optimal parame-
ters will be obtained when the process reaches the 
convergence stage, indicating that the optimum pa-
rameters are provided for the SVM, allowing it to 
create an excellent model. 

3.3  SR-DE-SVM algorithm 

To describe the SR-DE-SVM algorithm as spe-
cifically implemented here for the in situ stress in-
verse problem, in which the boundary conditions are 
set to be unknown parameters and the objective 
function minimizes the error between the measured 
stress and the calculated stress at several measure-
ment points, a nonlinear model based on the SVM is 
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defined as follows: 
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where Y is the measured stress of the engineering 
site, X is the estimated boundary condition, and m 
and n are the numbers of input variables and output 
variables, respectively. 

Thus, this constrained optimization problem can 
be expressed as  
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where SVMi represents the stress predicted by the 
SVM algorithm, and xi

a and xi
b are the upper and 

lower bounds of xi, respectively. 
Therefore, the objective of the algorithm is to 

minimize the function min E(X). Fig. 2 shows an 
overview of the SR-DE-SVM algorithm. The recog-
nition process of the boundary conditions is summa-
rized briefly in the following steps: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 2  Flow chart of the SR-DE-SVM algorithm
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Step 1: The stepwise regression algorithm at-
tempts to determine the range of parameters to be 
recognized and the genetic parameters (Feng et al., 
2000). This avoids the blindness of the sample gen-
eration based on Eq. (1). 

Step 2: Inversion parameter samples are created 
based on uniform design. 

Step 3: The 3D geological mechanics model of 
the engineering site is established completely. After 
the numerical calculation of each combination of 
boundary conditions, the corresponding calculated 
stress is obtained at several measurement points. 
Each combination of boundary conditions with its 
corresponding calculated stress comprises a so-
called learning sample. 

Step 4: Based on the object function, Eqs. (5) 
and (6), the DE approach is typically used to discov-
er optimal parameters for SVM modeling. 

Step 5: A nonlinear model based on DE-SVM is 
created to describe the relationship between the 
boundary conditions to be estimated and the actual 
measured stress. 

Step 6: Based on the object function, Eq. (11), 
the SR-DE-SVM algorithm is used to refine the 
search using the input-output information generated 
by the random search. Using the optimal inversion 
parameters, the distribution of the in situ stress field 
can then be obtained for the engineering site by 
computerized simulation. 
 
 
4  Application to the Huangdeng hydropower 
station 

4.1  On-site in situ stress measurement in under-
ground cavern zones 

4.1.1  Brief description of geological features 

The Huangdeng hydropower station is located 
in Lanping County, Nujiang, Yunnan Province, Chi-
na. It is part of the fifth stage of a reservoir with sev-
en stations planned along the Lantsang River, and 
connects the Toba hydropower station upstream to 
the Dahuaqiao station downstream. Its power gen-
eration system is located on the left bank of the sta-
tion hydropower complex, consisting of the power 
house, auxiliary plant, transformer chamber, tailrace 
surge chamber, overhaul gate chamber, pressure tun-
nels, tailrace branch tunnels, and tailrace tunnels, 

with large-scale caverns arranged in a crisscross  
pattern. 

Tectonically, the Huangdeng hydropower sta-
tion is situated on the east side of overturned syn-
clines and on the west side of overturned anticlines 
in Kedengjian. The rock stratum runs perpendicular 
to the river at attitudes of N10°-20°E, NW∠75°-90°. 
Generally, the rock stratum in the power house, aux-
iliary plant room, transformer chamber, maintenance 
chamber of the unit tail water, and the surge tank is 
composed of metamorphic volcanic breccias, a met-
amorphic volcanic granule conglomerate mixed with 
metamorphic tuff, whose rock quality designations 
(RQDs) are 75%–90% and 60%–75%, respectively, 
and in the corresponding Q-system for rock mass 
classification Q=10–40 and Q=1–10, respectively, in 
moderately weathered, slightly weathered, and fresh 
states. Fig. 3 shows the main faults crossed over by 
the Huangdeng underground cavern group at an ele-
vation of 1480 m, in which five main geological 
faults, F9, F230-1, F14, f20, and f230-1, and tuff interlay-
ers tp230-1 are a key focus of attention. The rock is 
relatively intact and slightly permeable, meaning that 
although the geological conditions are relatively 
complex in this region, the lithology is rather  
uniform. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Furthermore, the Huangdeng engineering area 
lies in the secondary tectonic units from the central 
part of the geosynclinal fold system in Tanggula, 

Fig. 3  Main faults crossed over by the Huangdeng un-
derground cavern group at an elevation of 1480 m 
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Lanping, and Simao, which is located in the south-
western part of the Sichuan-Yunnan rhombic block, 
and the northern parts of the Indochina and Yunnan-
Bruma blocks. The crustal blocks show the charac-
teristics of heterogeneous and asymmetrical uplifting 
in the whole engineering area. This means that, in 
general, the terrain is higher in the north and lower 
in the south. Note that it is part of active structure 
zones. The direction of fault structures is NNW or 
trending towards a NS direction, and the faults can 
be divided into two major types, the Early and Mid-
dle Pleistocene and the Quaternary faults. However, 
no Late Pleistocene faults are found in the under-
ground cavern group zone, and there are no fault 
structures in the region that might induce a strong 
destructive earthquake. Moreover, the Huangdeng 
project is located in the interior of active blocks, and 
no large or deep active faults cross over the region. 
Furthermore, it does not lie at the boundary of geo-
tectonic and neo-tectonic areas, and no moderate or 
intense earthquakes have been recorded. Therefore, 
on the whole, the Huangdeng engineering region 
belongs to an area with good structural stability. 

4.1.2  Test results and discussion 

To study the in situ stress distribution of the en-
gineering area, in situ stress measurements were 
made in the underground power house with high-
pressure branch pipes using the aperture deforming 
method with three boreholes. This approach can pro-
vide information for the design of the arrangement of 
the engineering structures, the selection of the exca-
vation methods, and the stability analysis and sup-
porting design of every building. For the disposed in 
situ stress, the aperture distortion needs to be meas-
ured, and the 3D in situ stress state of the measuring 
points is obtained according to the relationship be-
tween the pitch deformation and the intrinsic in situ 
stress. In the feasibility phase, this project sets four 
groups of testing points on the left bank of the 
PD230 exploration audit of the power house and its 
inferior branch, which are all located at an elevation 
of 1527.3 m. A sketch map of the in situ stress 
measuring points is shown in Fig. 4. Using the 
method of aperture deformation with three boreholes, 
four measured stresses could be obtained: σ230-1, σ230-2, 
σ230-3, and σ230-4. The results are shown in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both Fig. 4 and Table 1 show that, although the 

maximum, middle, and minimum principal stresses 
present significantly dispersed features, they still 
show a certain regularity. As observed from the 
maximum measured in situ stress, the σ1 values for 
all measured locations are actually in the pressure 
stress state, with magnitudes between 7.0 MPa and 
15.0 MPa. Furthermore, σ1 increases as the measur-
ing point depth increases. The values of σ2 for all 
measured locations ranged from 2.5 MPa to 7.5 MPa, 
and those of σ3 ranged from 1.5 MPa to 5.0 MPa. 
Moreover, the measured maximum principal stress 
σ1 was consistent in its direction, which was south-
north or east-west, with a dip angle of S15°-40°E 
with a positive gradient slope. Its dip angle was 
slightly smaller than its slope angle, which decreased 
as the point depth increased. 

Generally, the angle  between the direction of 
the measured maximum principal stress σ1 and the 
longitudinal axis of the power house should be kept 
within 15°–30°, according to statistical data from 
several in-built underground cavern projects in Chi-
na (Table 2). As Table 1 shows, the direction of the 
measured maximum principal stress σ1 is S39.7°E. 
Therefore, the direction of the longitudinal axis of 
the power house is determined as NW294.5°. Con-
sidering the influence of the geological conditions of 
the engineering area and the overall coordination of 
the project, this means that the angle  is equal to 
25.8°. We conclude that the angles between the di-
rection of the measured maximum principal stress σ1  

Fig. 4  Layout of the in situ stress measuring points in the 
underground cavern zones 
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and the longitudinal axis of the transformer chamber 
and the tailrace surge chamber are acute angles, 
which is beneficial to the stability of the whole un-
derground cavern group. 

Fig. 5 plots a large dataset of stress magnitudes 
versus depth based on national data from typical hy-
dropower projects in China, including the Huang-
deng hydropower station, and shows the minimum 
and maximum envelope lines reported by different 
researchers (Feng et al., 2000; Xue and Chen, 2006; 
Zhao et al., 2007; Zhang, 2011; Li et al., 2012; Liu 
et al., 2014). The K values have been calculated as 
defined by Brown and Hoek (1978), K=(σH+σh)/(2σV), 
to compare the envelope lines expressed by scatter 
points in Fig. 5, and σH and σh represent horizontal 
stresses in two directions of a particular plane, while 
σV represents the vertical stress. The four solid scat-
ter points represent the actual in situ stress measure-
ments of the Huangdeng hydropower station. Table 3 
shows the relationship among KH, Kh, and depth for 
the other main hydropower projects in China, defin-
ing KH=σH/σV and Kh=σh/σV. The maximum envelope 
lines are generally similar, with less data scatter for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
depths greater than 1000 m, with K tending toward 
1.0 with depth. The minimum envelope lines show 
greater discrepancies for depths below 500 m. These 
results show that at typical depths for most under-
ground excavations, K-depth relationships cannot be 
used in practice. 

Table 2  Statistical data from several in-built underground cavern projects in China 

Engineering project 
σ1 Orientation of longitudinal 

axis of power house 
 (°) 

Stress (MPa) Orientation 
Ertan 64.4 N23°E N6°W 29 
Xiaolangdi   5.0 N20°E N10°W 30 
Lubuge 19.0 N70°W N45°W 25 
Guangzhou Pumped Storage 12.2 Nearly EW N80°E Nearly parallel
Xiaowan 23.0 N64°W S140°E 24 
Nuozhadu     8.27 N50.1°-55.8°E N76°E 20.2–25.9 

Table 1  Principal stress results from in situ stress measurements in the underground cavern zones 

Test 
point 

Location 
σ1 σ2 σ3 

Stress 
(MPa) 

Orienta-
tion 

Dip 
angle (°)

Stress
(MPa)

Orienta-
tion 

Dip  
angle (°)

Stress 
(MPa) 

Orienta-
tion 

Dip  
angle (°)

σ230-1 
PD230: 

105.0–129.5 m; 
depth: 320 m 

  6.97 S36.4°E 39.7 2.49 N35°E    21.0 1.77 S76°E −42.9 

σ230-2 
PD230: 

198.7–217.0 m; 
depth: 240 m 

11.88 S12.6°E 34.3 6.17 N58.2°E    25.7 3.28 S60.2°E −44.7 

σ230-3 
PD230: 

307.0–324.0 m; 
depth: 190 m 

14.63 S39.7°E 18.2 5.02 N86.3°E −60.7 1.82 N42.6°E    22.1 

σ230-4 
Inferior branch 

of PD230; 
depth: 280 m 

13.25 S40.5°E 22.7 7.24 S81.5°E −61.0 4.81 N42.1°E    17.1 

Fig. 5  K-depth relationships based on national data for 
China 
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4.2  Numerical calculation model 

Having comprehensively considered many fac-
tors, such as the characteristics of topography and 
geomorphology, an elaborate numerical simulation 
model was built based on the characteristics of the 

layout and structure of the actual engineering pro-
ject. Particular attention was paid to the modeling 
range, affected zones, and boundary constraint con-
ditions of the Huangdeng underground cavern group. 
The scope of the computational model was 478 m in 
the x-direction, 450 m in the y-direction, and 596 m 
from the isolated rock-mass, to eliminate the effect 
of artificial boundary errors on the structure of the 
underground caverns (Fig. 6). There are more than 
104 583 nodes and 618 027 quadrilateral elements in 
this numerical calculation model, including five 
main geological faults, F9, F230-1, F14, f20, and f230-1, 
and tuff interlayers tp230-1 located in the underground 
cavern area.  

The Mohr-Coulomb model was adopted in the 
Abaqus analysis. In the inversion of the in situ stress 
field, the simulation of land surface denudation 
mainly entails taking the highest point of the calcu-
lated region as a baseline, which is necessary to 
choose an appropriate region. Gravity stress revises 
the coefficient parameter of the volume-weight to 
serve as an influence parameter that is expected to be 
output; tectonic stress is created by applying the dis-
placement boundary in the computing area. A gradu-
al elastoplastic excavation simulation is adopted to 
record the denudation effect of unloading. Because 
roller boundary conditions are reasonable for the 
pre-excavation process of the in situ stress field in-
version (Zhao et al., 2012), the bottom edge con-
straint is applied for normal constraints, while the 
outer boundary of the rock formation is considered 
to be a free boundary (Zhang and Yin, 2014). The  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  K-depth relationships for typical hydropower 
projects in China 

Typical 
engineering 

project 
KH

 
 Kh

 
 K  

Depth 
(m) 

Three 
Gorges 

(Feng et al., 
2000) 

2.50 2.11 2.31 106.0

1.42 1.10 1.26 235.0

0.70 0.55 0.63 490.0

0.52 0.52 0.52 1090.0

Nuozhadu 
0.81 0.30 0.55 187.4

1.77 1.00 1.39 232.8

Longtan 
1.35 1.20 1.28 67.5

2.88 0.74 1.81 177.0

Xiluodu 

2.09 1.17 1.63 210.0

1.41 0.44 0.92 324.0

1.57 0.69 1.13 445.0

Jinping I 
(Gong et 
al., 2010) 

0.84 0.63 0.74 910.0

1.22 0.79 1.01 1310.0

1.58 0.93 1.26 1670.0

Xiaolangdi 

1.05 1.01 1.03 85.0

1.07 0.42 0.75 100.0

1.03 0.83 0.93 149.0

Rasiva 

1.48 0.31 0.90 90.0

2.04 1.39 1.72 115.0

1.22 0.77 1.00 200.0

0.89 0.58 0.74 310.0

1.30 0.88 1.09 410.0

Dagang-
shan 

1.85 0.98 1.42 390.0

1.43 0.62 1.03 450.0

1.06 0.22 0.64 500.0

Baihetan 

1.95 0.99 1.47 290.0

1.57 1.42 1.49 320.0

1.72 1.22 1.47 442.0

1.37 1.17 1.27 513.0

1.76 1.24 1.50 591.5

Pubugou 
(Xue and 

Chen, 
2006) 

1.76 0.83 1.29 215.0

1.87 0.93 1.40 267.0

1.36 1.04 1.20 312.0

1.39 0.97 1.18 57.3

1.71 1.84 1.78 125.0

1.72 1.38 1.55 228.0

1.40 1.15 1.27 300.0

Fig. 6  Numerical simulation model of the Huangdeng 
underground cavern group 
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physical and mechanical properties of the rock-mass 
used in the numerical experiment, which are taken 
mainly from the results of previous laboratory tests, 
are given in Table 4. In other words, the whole pro-
cess of numerical simulation follows the principle of 
geometry simulation, constitutive simulation, and 
stress state simulation. 

4.3  Recognition of the boundary conditions to be 
determined 

4.3.1  Process of undetermined parameter recognition 

Based on the coordinate system of the numeri-
cal simulation model, the principal stress results 
from the in situ stress measurements were converted 
into stress components (Table 5). The SR-DE-SVM 
method is proposed to obtain optimal values of pa-
rameters that best match the modeling prediction 
with the measured stress data. Specifically, the ap-
propriate boundary conditions for the numerical cal-
culation model, such as the gravity correction coeffi-
cient and various tectonic movement patterns, are 
recognized. SR is used to search for the best parame-
ter system, having a decisive role in the formation 
process of the in situ stress field, which is expressed 
using the C# programing language. Based on the 
results of SR analysis, the shear structure factors τxy 
and τyz were regarded as unsatisfactory results under  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the boundary conditions. In other words, five unde-
termined parameters were defined in the inversion 
analysis, including the gravity correction coefficient 
g* and other shear structure factors τxx, τyy, τyx,  
and τxz. Furthermore, the ranges of identification pa-
rameters were determined as follows: g*[7.85, 
17.66] m/s2, τxx[0.10, 0.25] m, τyy[0.00, 0.15] m,

 
τyx[0.25, 0.45] m, and τxz[0.10, 0.25] m. Finally, 
35 training and test samples with the calculated 
stress components at measured points and undeter-
mined parameters of boundary conditions were cre-
ated by uniform design U35(353). 

4.3.2  Process of undetermined parameter recognition 

In this section, the results of the proposed DE-
SVM method are verified against the data generated 
in Section 4.3.1. Taking 30 schemes as training sam-
ples and five schemes as test samples, the DE-SVM 
algorithm can be used to obtain the best parameters 
of c and k in SVM modeling. After conducting learn-
ing and training using the corresponding parameters 
input from the training samples, a nonlinear mapping 
model was established between the measured stress 
of the engineering site and the boundary conditions 
to be estimated. Fig. 7 shows the forecast effect tests 
of SVM for five test samples. The tendency is for the 
predictions by SVM to be close to the stress values  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Physical properties of the rock-mass applied in the numerical model 

Lithology 
Unit weight 

(kN/m3) 
Elastic  

modulus (GPa)
Poisson’s 

ratio 
Cohesion 

strength (MPa) 
Fiction  

angle (°) 
Dilatancy 
angle (°)

Moderately weathered zone 26.3 12.0 0.27 1.1 47.8 28.8 

Slightly weathered zone 26.5 13.0 0.26 1.2 50.2 33.5 

Tuff interlayers tp230-1 25.5   8.0 0.29 0.9 42.0 15.0 

Fault F9 25.0   2.0 0.30 0.2 35.0 8.3 

Fault f20 25.5   6.0 0.28 0.3 42.0 10.4 

Fault F230-1 25.0   2.0 0.30 0.1 26.6 6.6 

Fault F14 25.0   2.0 0.30 0.2 32.0 7.5 

Fault f230-10 25.5   6.0 0.28 0.3 38.7 9.7 

Table 5  Stress components of in situ stress measurement in the underground cavern zone 

Test point Location 
Stress component (MPa) 

σx σy σz  τxy τxz τyz 

σ230-1 PD230: 105.0–129.5 m; depth: 320 m   −4.14 −3.11 −3.98 1.20 2.28 −1.01

σ230-2 PD230: 198.7–217.0 m; depth: 240 m   −6.14 −8.64 −6.56 1.74 3.04 −2.25

σ230-3 PD230: 307.0–324.0 m; depth: 190 m −11.79 −4.18 −5.50 4.21 2.22 −2.30

σ230-4 Inferior branch of PD230; depth: 280 m −11.24 −6.14 −7.93 2.60 1.73 −1.55
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of the testing samples, meaning that the nonlinear 
relationship between the measured stress and un-
known boundary conditions can be reflected by a 
nonlinear model based on DE-SVM. 

4.3.3  Definition of boundary conditions 

In this section, the optimal values of the param-
eters from the measured stress data obtained using 
the SR-DE-SVM nonlinear reflection model are 

compared with those obtained by an MLR analysis 
method and an ANN method to estimate the in situ 
stress field for the actual underground cavern at the 
Huangdeng hydropower station. Fig. 8 shows the 
three algorithms used to explore the boundary  
conditions. 
 
 
 
 
 
 
 

 
 

 
 
 
First, a nonlinear model based on DE-SVM was 

introduced to the objective function, Eq. (12), to ex-
plore the best matched values of the boundary condi-
tions. Based on the results of SR, the initial values of 
five optimization variables were set as follows: g*= 
11.78 m/s2, τxx=0.18 m, τyy=0.08 m, τyx=0.35 m, and 
τxz=0.15 m. The population size Np was 20, and the 
maximum number of iterations Gmax was 500. The 
value of the scaling factor F strongly influences the 
rate of convergence and the crossover constant CR in 
the optimized recognition process, both of which are 
determined by the user. Fortunately, the convergence 
value tends to be stable, which means that there  
is almost no difference for different values of F and 
CR. When the DE curve became astringed, the  
optimal undetermined parameters were obtained 
(Table 6). The inversion results of the MLR and 
ANN methods are also presented for comparison. 

Because of the limited number of measuring 
points, the MLR and ANN methods, which are wide-
ly applied, were selected to provide a reasonable 
comparison with the SR-DE-SVM algorithm. The 
procedure used in this study showed superior accu-
racy and efficiency in the inversion analysis of the in 
situ stress field. To verify the rationality of the iden-
tification parameters, the obtained boundary condi-
tions of different algorithms were input into a nu-
merical calculation model for elastic-plastic finite 
element analysis. Tables 7 and 8 show the computa-
tional stress components at four monitoring points.  
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Fig. 7  Forecast effect tests of measured points by SVM 
(a) σ230-1; (b) σ230-2; (c) σ230-3; (d) σ230-4 

Fig. 8  Various algorithms used for boundary condition 
exploration 
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Table 6  Stress components of the in situ stress measurement in the underground cavern zone 

Algorithm 
Parameter to be recognized  

τxx (mm) τyy (mm) τxy (mm) τyx (mm) τxz (mm) τyz (mm) g* (m/s2) 

MLR 23.4 15.0 −9.3 25.6 −15.0 16.8 14.7 

ANN 19.2 13.6 −9.8 36.2 −6.0 14.3 13.5 

SR-DE-SVM 24.5 12.4 38.2 18.6 15.9 

Table 7  Computational stress components at four monitoring points 

Test point Algorithm 
Stress component (MPa) 

 σx  σy σz τxy τxz τyz 

σ230-1 

Monitored −4.14 −3.11 −3.98 1.20 2.28 −1.01 

MLR −6.03 −4.49 −3.67 1.02 1.92 −0.24 

ANN −4.89 −3.72 −3.87 1.09 1.99 −0.57 

SR-DE-SVM −4.47 −2.93 −4.08 1.32 1.98 −0.99 

σ230-2 

Monitored −6.14 −8.64 −6.56 1.74 3.04 −2.25 

MLR −9.53 −11.02 −6.30 1.56 2.87 −2.92 

ANN −8.35 −10.00 −6.48 1.69 3.09 −2.56 

SR-DE-SVM −6.02 −8.89 −6.21 1.42 3.36 −2.47 

σ230-3 

Monitored −11.79 −4.18 −5.50 4.21 2.22 −2.30 

MLR −13.43 −5.57 −7.98 2.10 2.95 −2.47 

ANN −12.58 −4.66 −6.65 3.20 2.56 −2.44 

SR-DE-SVM −12.05 −3.91 −6.00 4.49 2.42 −2.63 

σ230-4 

Monitored −11.24 −6.14 −7.93 2.60 1.73 −1.55 

MLR −10.05 −7.33 −6.65 0.35 2.40 −1.35 

ANN −10.60 −6.90 −7.45 3.33 1.08 −1.52 

SR-DE-SVM −11.49 −6.49 −7.96 2.03 1.92 −1.38 

Table 8  Computational stress components at selected nodes 

No. 
Nodes 
number 

Algorithm 
Stress component (MPa) 

σx σy σz τxy τxz τyz 

A 103 052 

MLR −7.74 −8.48 −4.73 −0.17 3.73 −1.80 

ANN −8.81 −9.05 −7.00 −0.31 3.58 −2.20 

SR-DE-SVM −8.10 −8.32 −5.37 −0.25 3.21 −1.93 

B 102 432 

MLR −4.62 −6.10 −4.34 1.71 1.61 −0.59 

ANN −5.45 −7.49 −4.82 1.86 1.69 −0.32 

SR-DE-SVM −4.82 −7.20 −4.79 1.81 1.65 −0.60 

C 25 786 

MLR −14.08 −9.28 −10.47 4.65 2.39 −3.06 

ANN −14.53 −10.22 −10.47 4.85 2.36 −3.16 

SR-DE-SVM −14.20 −8.71 −10.44 4.76 2.38 −3.07 

D 31 435 

MLR −10.49 −7.88 −8.27 0.46 2.57 −1.66 

ANN −10.56 −7.94 −8.27 0.44 2.51 −1.66 

SR-DE-SVM −10.95 −7.83 −8.28 0.49 2.56 −1.74 

E 102 811 

MLR −15.07 −10.25 −11.64 8.84 1.82 −3.01 

ANN −16.88 −10.68 −13.82 8.94 1.57 −5.25 

SR-DE-SVM −15.58 −10.68 −12.56 8.31 1.82 −4.44 

F 102 338 

MLR −10.55 −8.44 −9.51 0.45 −0.45 0.17 

ANN −12.68 −9.47 −10.75 0.30 −0.42 0.16 

SR-DE-SVM −11.63 −9.35 −10.3 0.33 −0.37 0.15 
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Fig. 9 compares the normal stress at each of the 
four monitoring points with three different results 
respectively, while Fig. 10 compares the normal 
stress at each of the six selected nodes A–F, which 
were chosen on Pile No. K0+070 m cross section in 
the x-direction (Fig. 11).  

The results of each algorithm are in good 
agreement with the monitored in situ stresses, espe-
cially for the ANN and SR-DE-SVM methods. Fur-
thermore, note that for each of the six selected 
points, the results of all the algorithms are very con-
sistent. Thus, the efficiency and error comparison of 
MLR, ANN, and SR-DE-SVM in Table 9 shows that 
the three methods have a similar time cost for model  
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
building. However, the computing analysis time of 
the SR-DE-SVM algorithm was only 4489 s, com-
pared with 6236 s for MLR and 5816 s for ANN due 
to the reduction in the parameters of boundary condi-
tions to be applied greatly improving efficiency. 
More importantly, the model performance of SR-
DE-SVM appears to provide the best match, with a 
maximum absolute error of only 1.50 MPa and a 
maximum relative error of only 9.09%. 

4.4  Distribution analysis of the in situ stress field 

The distribution of the in situ stress field at the 
Huangdeng engineering site was successfully ob-
tained after optimal boundary conditions from the 
SR-DE-SVM algorithm were input into a numerical 

Fig. 9  Comparison of normal stress at each of the four 
monitoring points: (a) σx; (b) σy; (c) σz  
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Fig. 10  Comparison of normal stress at each selected 
node: (a) σx; (b) σy; (c) σz  
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calculation model for elastic-plastic finite element 
analysis. 

4.4.1  Characteristics of vertical subsidence and hor-
izontal displacement 

Based on the power house excavation from step 
1 through step 6, the curves of vertical subsidence 
(Fig. 12) and horizontal displacements (Fig. 13) in 
different excavation stages are shown to facilitate the 
comparative study under different stress fields, in-
cluding an ideal gravity stress field and the estimated 
and practical in situ stress field. 

In the ideal gravity stress field, the subsidence 
curves of the selected analysis baseline in the 
Huangdeng numerical calculation model are smooth 
and symmetrical (Fig. 12a). With increasing excava-
tion depth, the subsidence increases markedly, and 
the maximum subsiding center migrates slowly to 
the longitudinal axis of the power house. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the estimated and practical in situ stress field, 
the subsidence curves of the selected analysis base-
line show different characteristics at different exca-
vation stages (Fig. 12b). In the initial stage of single-
level excavation, although the subsidence curves are 
similar, the maximum subsidence value is only 
72.8% of those in the gravity stress field. In the sub-
sequent excavation steps, the maximum subsiding 
center gradually migrates from the primary longitu-
dinal axis to the upstream side of the power house 
(the left side of the coordinate) with excavation 
depth during the excavation process. Moreover, the 
subsidence values are all larger than those of each 
excavation step in the ideal gravity stress field. This 
means that the migration rate is larger in the esti-
mated and practical in situ stress field than in the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12  Curves of subsidence induced by excavation in an 
ideal gravity stress field (a) and the estimated and practi-
cal in situ stress field (b)  
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Fig. 11  Selected nodes on Pile No. K0+070 m cross sec-
tion in the x-direction 

Table 9  Model efficiency and error comparison in the recognition of boundary conditions 

Algorithm 
Efficiency (s) Error 

Build Train Test Computing analysis Max. absolute error (MPa) Max. relative error (%)

MLR 360 6.62 0.01 6236 3.39 55 

ANN 410 0.92 0.02 5816 2.21 36 

SR-DE-SVM 384 0.90 0.19 4489 0.50 9.1 
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gravity stress field, and the maximum subsidence 
increases 21.7% compared with the latter. Thus, the 
tectonic stress field is closely linked to the dis-
placement field as well as the stability of the sur-
rounding rock-mass in the engineering site, which 
appears to be non-negligible. 

The horizontal displacements changed at differ-
ent stages of excavation in different stress fields 
(Fig. 13). In general, the horizontal displacements of 
the downstream side of the power house (the right 
side of the coordinate) were much larger than those 
of the upstream side in the ideal gravity stress field. 
Furthermore, the maximum horizontal displacement 
of the downstream side of the power house was 2.24 
times that of the upstream side in the gravity stress 
field (Fig. 13a). In contrast, the maximum horizon-
tal displacement of the downstream side of the pow-
er house was only 1.59 times that of the upstream 
side in Fig. 13b, but the horizontal displacement and 
its distribution range expanded prominently because 
of the occurrence of the practical tectonic stress 
field. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4.2  Characteristics of in situ stress in the area of 
the power house along its depth 

Taking the power house as an example, Fig. 14 
shows the distribution curves of the normal stresses 
σH, σh, and σV of the selected analysis baseline (the 
longitudinal axis of the power house) along its depth. 
With increasing rock-mass depth, the normal stresses 
σH, σh, and σV increase linearly in the area of the un-
derground rock-mass without geological faults as 
well as in those with tuff interlayers incised. In de-
tail, σH ranges from 10.5 MPa to 15.1 MPa in the 
buried depth range of the Huangdeng underground 
cavern group, while σh is between 7.45 MPa and 
11.3 MPa, and σV is between 7.36 MPa and 
12.0 MPa. Thus, the change rate of the vertical stress 
σV seems to be more sensitive to the increase in the 
rock-mass depth. Around the surface area of the 
rock-mass, the in situ stress follows the size relation-
ship of each normal stress σV<σh<σH, but when the 
buried depth exceeds a certain value of 200 m, the 
relationship changes to σh<σV<σH.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Furthermore, Fig. 15 shows the distribution 

curves of KH and Kh of the selected analysis baseline 
(the longitudinal axis of the power house) along its 
depth. KH and Kh decrease gradually with increasing 
rock-mass depth, with a particularly sharp decrease 
near the surface of the rock-mass. The decrease rates 
of KH and Kh are relatively stable in the buried depth 
range of the Huangdeng underground cavern group, 
with KH(1.26, 1.43), and Kh(0.94, 1.01). 

σH ranges from 10.5 MPa to 15.1 MPa in the 
buried depth range of the Huangdeng underground 

Fig. 14  Distribution of in situ stress in the area of the 
power house along its depth 
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Fig. 13  Curves of the horizontal displacement induced by 
excavation in an ideal gravity stress field (a) and the es-
timated and practical in situ stress field (b) 

-10

-8

-6

-4

-2

0

2

4

6

-200 -100 0 100 200

 Coordinate (m)

H
or

iz
on

ta
l d

is
p

la
ce

m
en

t (
m

m
)  Step 1    Step 2

 Step 3    Step 4
 Step 5    Step 6

(b)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

-200 -100 0 100 200

 Step 1    Step 2
 Step 3    Step 4
 Step 5    Step 6

 Coordinate (m)

H
o

riz
o

nt
al

 d
is

pl
a

ce
m

en
t 

(m
m

)

(a)



Zhang et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2016 17(10):782-802 799

cavern group, while σh and σV are between 7.45 MPa 
and 11.3 MPa, and between 7.36 MPa and 12.0 MPa, 
respectively. Thus, the change rate of the vertical 
stress σV seems to be more sensitive to the increase 
in the rock-mass depth. The influence mechanism of 
the tectonic movements to the in situ stress field is 
more complicated closer to the surface of the rock-
mass, which ultimately results in the instability of K. 
Therefore, prioritizing K for a rock-mass whose bur-
ied depth exceeds 200 m, the function of the opti-
mum regression curve is reasonably expressed by the 
formula K=105/H+0.80, which is highly consistent 
with the relevant results of Zhao et al. (2007). 
 
 
5 Validation tests: Nuozhadu underground 
cavern groups 
 

Validation tests were conducted by comparing 
the results produced by the SR-DE-SVM algorithm 
and the measured in situ stresses in the Nuozhadu 
underground cavern groups. The in situ measurements  
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

of the Nuozhadu underground cavern groups were 
made by the Hydro-China Kunming Engineering 
Corporation. As the measured in situ stresses show 
(Table 10), the stress level is low in general, because 
the buried depth of the underground cavern is not 
very deep. The magnitude and direction of in situ 
stress are influenced mainly by the geological struc-
ture, topography of the engineering area, and the 
gravity stress field. The numerical analysis was sim-
ulated using the SR-DE-SVM algorithm in the 
Abaqus codes. Table 10 compares the measured in 
situ stresses with results produced by the SR-DE-
SVM algorithm in the Nuozhadu underground cav-
ern group. Fig. 16 compares the normal stress at 
each of the four monitoring points in the Nuozhadu 
underground cavern group intuitively. The results 
demonstrate high precision of the in situ stress field 
in the Nuozhadu underground cavern area, which 
means that the in situ stress distribution within the 
engineering area can be estimated effectively using 
the SR-DE-SVM algorithm. 

 
 

6  Conclusions 
 

Due to the complexity and importance of the in 
situ stress field, it is necessary to learn about the 
magnitude and direction of an in situ stress field for 
any underground project according to its specific 
geological conditions. The SR-DE-SVM algorithm, 
which is a nonlinear global optimization method 
combining SR, DE, SVM, and numerical analysis 
techniques, was presented for estimating the in situ 
stress in the rock-mass. Through the example of the 
Huangdeng hydropower station, the SR-DE-SVM  
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 10  Comparison between the measured in situ stresses and results produced by the SR-DE-SVM algorithm 
in the Nuozhadu underground cavern group 

Test 
point 

Vertical 
depth (m) 

Algorithm 
Stress component (MPa) 

σx σy σz τxy τxz τyz 

σ204-302 232.8 Monitored −4.34 −7.72 −4.36 −1.61 −2.86 2.46 

SR-DE-SVM −4.25 −7.86 −4.31 −1.87 −2.53 2.04 
σ204−502 207.3 Monitored −0.93 −5.98 −3.95   2.35 −2.00 0.65 

SR-DE-SVM −0.78 −5.10 −4.30   3.22 −1.79 0.51 
σ412−215 187.4 Monitored −1.62 −4.37 −5.40   2.36 −2.93 2.57 

SR-DE-SVM −1.67 −4.46 −5.17   2.09 −2.13 2.34 
σ412−380 192.4 Monitored −0.52 −2.59 −6.89   0.84 −0.94 1.70 

SR-DE-SVM −0.49 −2.72 −7.01   0.86 −0.90 1.76 

Fig. 15  Distribution of K in the area of the power house 
along its depth 
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approach was shown to maintain a consistently high 
solution accuracy for in situ stress estimation, partic-
ularly compared with two contemporary approaches, 
namely, the MLR method and the ANN surrogate 
direct inversion approach.  

With increasing excavation depth, the subsid-
ence trough maintains a single subsiding center 
throughout excavation in the gravity stress field. 
However, in the high-level tectonic stress field, the 

maximum subsiding center migrates gradually from 
the primary longitudinal axis to the upstream side of 
the power house with excavation depth, and the hor-
izontal displacement and its distribution range ex-
pand markedly because of the occurrence of the 
practical tectonic stress field.  

In the Huangdeng underground cavern group, 
the in situ stress is moderate and originates mainly 
from gravity and the geological tectonic stress field. 
According to the finite element analysis, the catego-
ry of the surrounding rocks does not have a serious 
effect on the in situ stress field at the engineering 
site. With increasing rock-mass depth, the normal 
stresses increase linearly in the area of the under-
ground rock-mass without geological faults and tuff 
interlayers crossed over in areas. 

Validation tests were conducted by comparing 
the results produced by the SR-DE-SVM algorithm 
with the measured in situ stresses in the Nuozhadu 
underground cavern groups. The tests showed that 
the methodology described provides attractive tools 
to represent the nonlinear relations between bounda-
ry conditions and in situ stresses in the rock-mass 
and may be applied to other rock-masses to model 
the in situ stress field. This method can clarify the 
dominant cause of the formation of in situ stress spe-
cific to various practical projects to obtain an ap-
proximate solution that can provide in situ stress 
information for the design of dams and tunnels. 
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中文概要 
 
题 目：大型地下洞室群区域三维地应力场二次反演 

分析 

目 的：地下洞室群区域地应力分布繁杂多变，勘测点

因数量有限难以反映初始地应力场空间分布特

征。考虑工程区域内的地质构造、地形地貌及

河谷的发育演化史等因素，提出综合反映工程

区复杂地质条件及地层剥蚀过程的地应力场二

次反演方法，揭示工程所在区域的三维地应力

场分布特征，为地下工程的开挖加固设计提供

更加准确的基础资料。 

创新点：1. 基于地应力场反演基本理论，建立逐步回归-

差异进化-支持向量机模型（SR-DE-SVM）的二

次反演非线性模型；2. 通过 SR-DE-SVM 算法计

算流程，成功模拟工程区域地应力场分布。 

方 法：1. 通过工程勘测分析，推导出构造运动对工程

区域地应力场分布产生的影响（表 5 和图

13）；2. 基于智能反演方法，构建 SR-DE-SVM

的二次反演非线性模型（公式（10）），得到

SR-DE-SVM 算法的计算流程（图 2）；3. 通过

数值仿真模拟，结合地质历史的发展过程，验

证所提出的二次反演方法的可行性和有效性

（图 10 和 11）。 

结 论：1. 工程区域内初始地应力水平属中等，主要受

到岩体自重与构造运动的双重影响。2. SR-DE-

SVM 二次反演方法可更加清楚地明确初始地应

力形成的主导成因，且更加准确、高效和真实

地模拟工程区域三维地应力场的分布规律；

3. 围岩类别对黄登地下洞室群区域内的初始地

应力场影响不大，仅在断层带及 III、IV 类凝灰

岩夹层带切割部位有显著的应力释放效应。 

关键词：初始地应力；逐步回归；支持向量机；差异进

化；有限元；黄登地下洞室 

 
 


