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Abstract:    The vertical vibration of a large diameter pile embedded in inhomogeneous soil with hysteretic type damping is 
investigated based on the 3D axisymmetric model. Firstly, the pile is assumed to be a Rayleigh-Love rod with the consideration of 
its transverse inertia effect. Following this assumption, the pile-soil system is divided into several segments according to the 
stratification of the surrounding soil, and the dynamic interactions of the adjacent soil layers are simulated using the distributed 
Voigt model. Meanwhile, the surrounding soil is discretized into finite annular vertical zones to consider its radial inhomogeneity, 
and the force equilibrium and displacement coordination are satisfied at the interfaces of the adjacent soil zones and the interface of 
the pile-soil. Then, the analytical solution in the frequency domain and the semi-analytical solution in the time domain are obtained 
by solving the vibration governing equations of pile-soil system. Based on the solutions, a parametric analysis is conducted to 
investigate the influence of the transverse inertia effect on the dynamic response of the large diameter pile and its relationship with 
the pile parameters and the radial inhomogeneity of the surrounding soil. Finally, a comparison with the measured result and two 
other calculated results is presented to verify the effectiveness of the present solution. 
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1  Introduction 

 
The pile vibration theory, which takes the dy-

namic response of a pile subjected to a dynamic 
loading as the research object, can provide valuable 
references for the aseismic design and integrity de-
tection of the pile. In light of this, much attention has 
been attracted to the study of the dynamic response of 
piles and various kinds of pile-soil dynamic interac-
tion models have been put forward in the past dec-

ades, such as the Kelvin-Voigt model (Nogami and 
Konagai, 1988; Yesilce and Catal, 2008a; 2008b; 
2008c; Ding et al., 2011; Wu et al., 2012; Li et al., 
2015), plane-strain model (El Naggar and Novak, 
1994; Han and Sabin, 1995; Militano and Rajapakse, 
1999; Wang et al., 2013), and 3D axisymmetric model 
(Nogami and Novák, 1976; Zhou et al., 2009; Wu et 
al., 2013; 2014; Lü et al., 2014; 2015). In the  
Kelvin-Voigt model, the interaction at the pile-soil 
interface is simulated by a linear spring and a dashpot 
connected in parallel, which is far from accurate when 
simulating the radial inhomogeneity of the soil as the 
parameters are assigned based on the experience. In 
the plane-strain model, the surrounding soil is  
assumed to consist of a series of infinite thin layers 
and the stress gradient is neglected. In the 3D  
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axisymmetric model, the wave effect of the sur-
rounding soil is considered, in addition, the introduc-
tion of the fictitious soil pile model makes it possible 
to consider more complicated conditions of pile end 
soil (Wu et al., 2014; Lü et al., 2015), which makes 
the model more accurate than the other two types. 

At present, large diameter piles are widely used 
to provide greater bearing capacity. For this type of 
pile, the pile vibration theory developed on the basis 
of the 1D wave theory is not applicable because of its 
small slenderness ratio and obvious 3D effect of wave 
propagation. Previous studies have shown that the 1D 
solution from the numerical analysis for the large 
diameter pile is unsatisfactory in the comparison with 
the measured result because of the wave dispersion 
effect (Liao and Roesset, 1997; Chow et al., 2003; 
Seidel and Tan, 2004; Chai et al., 2010; 2011). 

Given this, the Rayleigh-Love rod model was 
proposed by some researchers to simulate the large 
diameter pile and satisfactory results have been 
gained. In this model, the transverse inertia effect of 
the pile is considered to approximately take account 
of the 3D effect of the wave propagation. By means of 
the saturated soil theory presented by Biot and the 
Rayleigh-Love rod theory, Li et al. (2005) investi-
gated the longitudinal vibration of a large diameter 
end-bearing pile embedded in homogeneous saturated 
soil and pointed out that the calculated result which 
allows for the transverse inertia effect of the pile is in 
a better agreement with the field pile dynamic test 
result. Assuming the rock-socketed large diameter 
pile to be a Rayleigh-Love rode, Yu et al. (2013) an-
alyzed the influence of the sediment on the dynamic 
impedance at the pile head. Lü et al. (2014) used this 
model to investigate the dynamic response of a pile 
embedded in multilayered soil and compared the 
influence of the transverse inertia effect on the 
longitudinal vibration of the intact pile and the 
defective pile. Lü et al. (2015) also studied the 
relationship between the transverse inertia effect and 
the pile end soil by introducing the fictitious soil pile 
model into the solution. Yang and Tang (2013) used 
this model to investigate the dynamic response of 
large diameter piles. The solution proposed by Li et al. 
(2005) only deals with the homogeneous soil, which 
is not applicable in most practical engineering given 
the complicated engineering geological conditions. 
Some progress was made by Yang and Tang (2013), 

Yu et al. (2013), and Lü et al. (2014; 2015),  as the 
layered properties of the surrounding soil were 
considered, but the pile-soil interaction model by  
Yang and Tang (2013) and Yu et al. (2013) was too 
simple. 

Another main difference between the large di-
ameter pile and the slender pile is the construction 
disturbance effect, which makes the surrounding soil 
inhomogeneous in the radial direction (Elkasabgy and 
El Naggar, 2013; Jardine et al., 2013; Zhou et al., 
2013; 2015). This phenomenon not only affects the 
bearing capacity of the pile (El Naggar and Wei, 2000; 
Liu et al., 2010; Gong et al., 2012; He et al., 2015), 
but also has an impact on the dynamic behavior of the 
pile (Han, 1997; El Naggar, 2000; Yang and Tang, 
2013; Tian et al., 2015). 

It can be seen that the radial inhomogeneity of 
the surrounding soil caused by the construction dis-
turbance effect is an important factor that should be 
considered in the dynamic response analysis of the 
large diameter pile. However, the earlier works men-
tioned above can only deal with the homogeneous or 
horizontally layer-wise homogeneous soil. This lim-
itation makes them unable to fully simulate the actual 
engineering condition as the radial inhomogeneity of 
the soil is not considered. In light of this, an improved 
solution is proposed in this paper to investigate the 
vertical vibration of a large diameter pile embedded in 
inhomogeneous soil. The Rayleigh-Love rod model is 
used to consider the transverse inertia effect of the 
pile, a 3D axisymmetric model which only considers 
the vertical displacement field of the surrounding soil 
is adopted to build a pile-soil interaction model, and 
the shear complex stiffness transfer method is em-
ployed to simulate the radial inhomogeneity of the 
surrounding soil. Then, based on the parametric 
analysis, the influence of the inertia effect on the 
dynamic response of the pile, and its relationship with 
pile parameters and the radial inhomogeneity of the 
soil, are revealed. 

 
 

2  Calculation model and governing  
equations 

2.1  Calculation model 

As shown in Fig. 1, the pile-soil system is di-
vided into n segments in the vertical direction and the 
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surrounding soil is discretized into m vertical annu-
lar zones in the radial direction to consider the ver-
tical and radial inhomogeneity of soil, respectively. l 
and q(t) are the pile length and the vertical harmonic 
force acting on the pile head, respectively. li and hi 
are the thickness and the depth of the upper interface 
of the ith pile segment, respectively. ri,k denotes the 
inner radius of the kth soil zone within the ith layer. 
The contact traction acting on the kth soil zone 
within the ith layer due to the adjacent soil layers is 
denoted by disturbed Voigt model, where ki+1,k and 
ki,k denote the spring constants, and δi+1,k and δi,k 
represent the damping coefficients. The pile end soil 
is simulated by a single Voigt model with a spring 
constant of kb and a damping coefficient of δb.  
According to Randolph and Deeks (1992), 

   s s s s s
b b b b b b b8 π 1 , 3.2 π 1 ,k G d G v             

where s
b ,  s

b ,v  s s s 2
b b b( ) ,G v  and s

b  represent 

Poisson’s ratio, shear wave velocity, shear modulus, 
and mass density of the pile end soil, respectively, 
whereas d is the diameter of the pile. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2  Assumptions 

1. The pile is viscoelastic, circular in cross sec-
tion, and is simulated by the Rayleigh-Love rod 
model. 

2. The outmost soil zone is infinite in the radial 

direction. The soil medium of the same annular zone 
within the same layer is homogeneous, but may vary 
from zone to zone or layer to layer. The shear stress 
equilibrium and the displacement continuity are sat-
isfied at the interfaces of the adjacent soil annular 
zones. 

3. The free top surface of the surrounding soil 
has no normal or shear stress. Only the vertical dis-
placement of the soil is considered. 

4. The soil-pile system is subjected to small de-
formations and strains and has a perfect contact dur-
ing the vibration. 

 
 

3  Governing equations and solutions 

3.1  Governing equation of the soil and its solution 

Based on the 3D axisymmetric model, which 
only considers the vertical displacement of soil, the 
dynamic vibration equation of soil proposed by 
Nogami and Novák (1976) is adopted herein: 
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   (1) 

 

where s
, ( , , ),i ku r z t  s s s s s

, , , , ,/ [(1 )(1 2 )],i k i k i k i k i kE       

and s s s 2
, , ,( )i k i k i kG v  represent the vertical displace-

ment, Lame’s elastic constant, and shear modulus of 
the kth soil zone within the ith layer, respectively; 

s s s 2
, , ,( ) ,i k i k i kE c  s

, ,i k  s
, ,i k  s

,i kc , and s
,i kv  are the 

elastic modulus, Poisson’s ratio, mass density, longi-
tudinal wave velocity, and shear wave velocity of the 

kth soil zone within the ith layer, respectively; ,i k  

and ,i kG  are the viscosity coefficients of the Lame’s 

elastic constant and shear modulus, respectively; 

i 1.   

According to Yang et al. (2013), the equation of 
the soil zones can be solved from the outer to inner 
zone, and the vertical displacement of the kth soil 

1,i kk  1,i k 

,i kk
,i k

bk b1,kk 1,k 1,kk 1,k

ih

il

Fig. 1  Schematic of pile-soil model 
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zone within the ith layer can be obtained as 
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where s s
, , ( , , )i k i kU U r z s  is the Laplace transform of 

s
, ( , , )i ku r z t with respect to time t; ;iz z h    

 0 ,i kjI r  and  0 ,i kjK r  denote the modified Bessel 

functions of order zero of the first and second kinds, 
respectively; Ai,kj, Bi,kj, and Ci,kj are constants which 
can be determined by boundary conditions; 
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and s
v , , ,/i k i k i k    are the hysteretic-type damping 

for any frequency; ω is the circular frequency; 
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sionless complex stiffness at the bottom and the top of 
the kth soil zone within the ith layer, respectively. 

The shear stress of the interface between the kth 
and the (k−1)th soil zones can be given as 
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(3) 

where  1 , ,i kj i kI r  and  1 , ,i kj i kK r  are the modified 

Bessel functions of order one of the first and second 
kinds, respectively; according to Yang et al. (2013), 
the ratio of ,i kjB  to , ,i kjC  which is denoted by ,i kjM  in 

this study, can be obtained based on the continuity of 
the displacements and stresses at the interfaces of 
adjacent soil zones.  

3.2  Governing equation of the pile and its solution 

From the energetic standpoint, Rayleigh and 
Love deduced a governing equation (referred as the 
Rayleigh-Love equation), to approximately take ac-
count of the 3D effect of the wave propagation 
(Achenbach, 1973). From the Rayleigh-Love equa-
tion, the relationship between the wave velocity when 
considering the transverse inertia effect and that of the 
1D theory can be obtained and approximately ex-

pressed as p p 2
0[1 ( ) ] / 4,c c r    where c and c0 

denote the wave velocity when considering the 
transverse inertia effect and that of the 1D theory; μp, 
rp, and   represent Poisson’s ratio, radius, and cir-

cular wavenumber, respectively. It can be seen that 
the wave velocity decreases compared with that of the 
1D theory, which means the time lag of the reflected 
signals for the same pile length. This phenomenon 
will be discussed in Section 4. Based on the  
Rayleigh-Love rod theory, and taking the material 
damping of pile and the reaction of soil into account, 
the vertical vibration of the ith pile segment can be 
obtained as 
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is the frictional force acting on the surface of the ith 

pile segment, s
,1i  is the shear stress of the pile-soil 

interface, p p p 2( ) ,i i iE c  p p 2π( ) ,i iA r  p ,ic  p ,i  and 
p
i  denote the elastic modulus, cross sectional area, 

longitudinal wave velocity, material damping, and 
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Poisson’s ratio of the ith pile segment, respectively. 
p ( , )iu z t  is the vertical displacement of the ith pile 

segment. 
Allowing for the continuity conditions of the 

vertical displacement and axial force at the interface 
of the pile segment, boundary conditions at the top 
and bottom of the ith pile segment can be given as 
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where p
iz and p

1iz   represent the displacement im-

pedance functions at the top and bottom of the ith pile 

segment, and their Laplace transforms are p
iZ and 

p
1iZ  , respectively. 

Based on the continuity conditions of the dis-
placement and stress at the ith pile-soil interface, one 
obtains: 
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Substituting Eqs. (3) and (8) into Eq. (4) and 

reducing it gives 
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where p p ( , )i iU U z s  represents the Laplace trans-

form of p ( , )iu z t  with respect to time t. 

By solving Eq. (10), one obtains: 
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According to Eq. (7), 
 

   

 

 

,1 0 ,1 ,1 ,1 0 ,1 ,1
1

,1 ,1

,1 ,1
1

 cos

  = cos sin

  + cos .

i j i j i i j i j i
j

i j i j

i i
i i

i i

ij i j i j
j

B I r C K r

z

D z D z
l l

N z

 

 

 

  









  

 

          
   







           (12) 

 
From Eqs. (11) and (12), together with the or-

thogonality of the eigenfunction  ,1 ,1cos i j i jz    

(j=1, 2, …) on the interval  0, ,il  the displacement of 

the ith pile segment can be obtained: 
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+ sin cos ,i
i ij i j i j
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,i it   ,1 ,1 ,i j i j il   ,1 ,1 ,i j i j il   s s p
,1 ,1 / ,i i iv v c  

s s p
,1 ,1 / ,i i i    and p p /i i ir r l  are all dimensionless 

parameters; ti is the propagation time of the elastic 
wave in the ith pile segment. 

Combining with the boundary conditions Eqs. (5) 
and (6), and together with the impedance function 

transfer method, the impedance function at the pile 
head (i=n) can be expressed as 
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where

   

 

   

 

p
1

,1 ,1p p
1

p 2
p p 2

p

,1 ,1 ,1
1

p
1

,1p p

= sin cos

i
           + 1

          sin sin

        cos cos

n n n
n nj n j n j

jn n n

n
n n n

n

n n nj n j n j n j
j

n n
n nj n j

n n

D Z l

D E A

r
E

Z l

E A

   

 
 

     

   












         
 
  

 
     
 

  





 

 

   

,1
1

p 2
p p 2

p

,1 ,1 ,1
1

i
           + 1

         sin sin .

n j
j

n
n n n

n

n n nj n j n j n j
j

r
E

 
 

     









  
  
  
 
  

 
     
 





 

 
Such that the frequency response function of the 

velocity at the pile head can be written as  
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which denotes the dimensionless frequency response 
function of the velocity. 
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In the nondestructive testing of pile, the excita-
tion force is a half-sine pulse which can be expressed 

as max( ) sin(π / )q t Q t T  ( (0, )),t T  where Qmax and 

T represent the amplitude and the impulse width of 
the excitation force, respectively, then the semi- 
analytical velocity response at the pile head can be 
obtained as 

 

max
p p p

( ) ( ),
n n n

Q
v t v t

A c
                             (16) 

 

where i iv
2 2 2

1
( ) (1 e ) e d

2 π
t tH T

v t
T

  


 




  

  denotes 

the dimensionless velocity response at the pile head. 
 
 

4  Parametric study 
 
Based on Eqs. (15) and (16), a parametric study 

is conducted to investigate the influence of the 
transverse inertia effect of the large diameter pile on 
the dynamic response at the pile head and its rela-
tionship with the pile parameters and the radial in-
homogeneity of the surrounding soil.  

Que and Wang (2007) and Lü et al. (2014) in-
dicated that even changing within a comparatively 
large range, the influence of the Voigt model param-
eters at the interface of the soil layers on the dynamic 
response of the pile is still insignificant. As a result, 
the corresponding spring constants and damping co-
efficients in the following analysis are given values of 
10 000 N/m3 and 10 000 N/m3·s, respectively. 

4.1  Relationship between the transverse inertia 
effect and the pile parameters 

To highlight the influence of the pile parameters, 
the soil is assumed to be homogeneous in this section. 
Pile-soil parameters are given in Table 1. 

 
 
 
 
 
 
 
 
 

4.1.1  Radius of the pile 
 

In the following analysis, the pile radius is set to 
be rp=0.25 m, 0.5 m, or 0.75 m. Poisson’s ratio of the 
pile is μp=0 or 0.2, where μp=0 means that the trans-
verse inertia effect of the pile is not considered. Other 
pile-soil parameters are given in Table 1. 

The influences of the transverse inertia effect on 
the dynamic response at the pile head with different 
radiuses of the pile are shown in Fig. 2, where f and 

0
1

n

i
i

t t t


   denote the frequency and the dimen-

sionless time, respectively. As shown in Fig. 2a, the 
resonant frequencies of the velocity admittance de-
crease and the decrease rate increases as the fre-
quency and pile radius increase when the transverse 
inertia effect is considered. In the frequency domain, 
the length of the pile can be calculated based on the 

relation p / (2Δ ),l c f  where Δf is the frequency 

change between resonant peaks. As a result, the cal-
culated pile length is longer than its actual value, and 
the error becomes more apparent for higher frequen-
cies and larger pile radiuses. Fig. 2b shows that the 
amplitude decrease and width increase of the re-
flected signal from the pile tip can be observed when 
the transverse effect is taken into account. Meanwhile, 
the peak time of the reflected signal from the pile tip 
is delayed, making the calculated length of the pile 
longer than its actual value, which is consistent with 
the results reflected by Fig. 2a. In addition, the curve 
after the reflected signal is oscillating, while this 
phenomenon is imperceptible in the curve that ne-
glects the transverse inertia effect of the pile. It can 
also be seen that the associated influences mentioned 
above become increasingly apparent with the increase 
of the pile radius. 

4.1.2  Poisson’s ratio of the pile 

When investigating the influence of Poisson’s 
ratio of the pile, μp=0, 0.15, 0.2, or 0.25, and the other 
parameters are the same as shown in Table 1. 

Fig. 3 shows the influence of Poisson’s ratio of 
the pile on the dynamic response at the pile head. It 
can be seen from Fig. 3a that the resonant frequencies 
of the velocity admittance decrease with the increase 
of Poisson’s ratio of the pile, and the decreasing trend 
becomes more notable for higher frequencies. Fig. 3b 

Table 1  Pile-soil parameters for the parametric study 

Item 
Value 

Pile Soil 
Length (m) 10  
Radius (m) 0.5  
Density (kg/m3) 2500 1800
Longitudinal wave velocity (m/s) 3600  
Shear wave velocity (m/s)  150 
Poisson’s ratio 0.2 0.4 
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shows that as Poisson’s ratio of the pile increases, the 
peak time of the reflected signal from the pile tip is 
gradually delayed, and the amplitude of the signal 
decreases, whereas the oscillation after the reflected 
signal from the pile tip becomes more apparent. 

4.1.3  Concrete strength grade of the pile 

The concrete strength grades and elastic modu-
lus of the pile are given in Table 2 according to the 
national standard in China (MOHURD, 2010). In this 
section, the influence of the concrete strength grade is 
reflected by the longitudinal wave velocity calculated 

based on the relation p p p/ .c E   Other pile-soil 

parameters are shown in Table 1. 
The influences of the transverse inertia effect on 

the dynamic response at the pile head with different 
concrete strength grades of pile are shown in Fig. 4. It 
can be noted from Fig. 4a that when the transverse 
inertia effect is considered, the decrease of the reso-
nant frequencies becomes less notable for higher 
concrete strength grades of the pile. Fig. 4b shows 
that as the concrete strength grade of the pile in-
creases, the amplitude of the reflected signal from 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the pile tip increases, while the time lag of the re-
flected signal decreases. In conclusion, the influence 
of the transverse inertia effect weakens gradually as 
the concrete strength grade increases. 

4.2  Influence of the radial inhomogeneity of the 
pile surrounding soil 

4.2.1  Relationship between the transverse inertia 
effect and the radial inhomogeneity of the pile sur-
rounding soil 

The pile surrounding soil is radially inhomoge-
neous due to the construction disturbance effect. In 
this section, the relationship between the transverse 
inertia effect and the radial inhomogeneity of the pile 
surrounding soil is analyzed. The outer radius of the 
disturbed region is 0.5 m, the radial inhomogeneity of 
the surrounding soil is reflected by the change of the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Concrete strength grades and the elastic modulus 

Concrete 
strength grade

Elastic modulus 
(GPa) 

Elastic wave 
velocity (m/s) 

C20 25.5 3194 
C40 32.5 3606 
C60 36.0 3795 
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Fig. 3  Influence of Poisson’s ratio of the pile on the dy-
namic response at the pile head: (a) velocity admittance; 
(b) reflected wave signal 

0 1 2 3 4 5
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

 rp=0.25 m, p=0

 rp=0.50 m, p=0

 rp=0.75 m, p=0

v'

t
0

 rp=0.25 m, p=0.2

 rp=0.50 m, p=0.2

 rp=0.75 m, p=0.2

 

 

0 200 400 600 800 1000 1200
0.0

0.5

1.0

1.5

2.0

2.5

3.0

|H
' v|

f(Hz)

 rp=0.25 m, p=0

 rp=0.50 m, p=0

 rp=0.75 m, p=0

 rp=0.25 m, p=0.2

 rp=0.50 m, p=0.2

 rp=0.75 m, p=0.2

 

 

(a) 

(b) 

Fig. 2  Influence of the radius of the pile on the dynamic 
response at the pile head: (a) velocity admittance; (b) 
reflected wave signals 
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parameters in the disturbed region (i.e., density and 
shear wave velocity) of three different cases: case 1 is 
that the soil parameters remain the same in the radial 
direction, namely the soil is homogeneous; case 2 and 
case 3 represent the strengthening and weakening of 
the surrounding soil, respectively. In the three cases, 
soil parameters are given as  

 

Case 1: s 31800 kg/m ,k   s 150 m/s;kv   

Case 2:  s 31800 100( ) / ( 1)  kg/m ,k m k m      

 s 150 100( ) / ( 1)  m/s;kv m k m     

Case 3:  s 31800 100( ) / ( 1)  kg/m ,k m k m      

 s 150 100( ) / ( 1)  m/s.kv m k m     

 
Fig. 5 shows the influence of the transverse in-

ertia effect on the dynamic response at the pile head 
when the radial inhomogeneity of the surrounding 
soil is considered. It can be seen from Fig. 5a that 
compared with the result for the radially homogene-
ous case, the oscillation amplitude of the velocity 
admittance decreases and the decreasing trend of the 
resonant frequencies decreases for the radially 
strengthened soil. However, the result is opposite for 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the soil weakening case. Fig. 5b shows that the re-
flected signal from the pile tip delays and its ampli-
tude decreases for the soil strengthening case com-
pared with the radially homogeneous case; moreover, 
the oscillation that appears immediately after the 
reflected signal tends to be imperceptible. The oppo-
site phenomenon is observed for the weakened soil. 
Generally speaking, the radial inhomogeneity of the 
surrounding soil plays an important role in the dy-
namic characteristics of the pile as the influence of the 
transverse inertia effect can be weakened by the ra-
dially strengthening of the soil while strengthened by 
the weakening of the soil. 

4.2.2  Influence of the strengthening degree of the 
surrounding soil 

In this section, the soil parameters increase ra-
dially inwards from the outmost zone in three cases, 
viz. cases a, b, and c, in which the strengthening de-
gree of the soil increases. The outer radius of the 
disturbed region is 0.5 m. In the three cases, param-
eters of each soil zone are given as 

 

Case a:  s 31800 50( ) ( 1)  kg/m ,k m k m      

 s 150 50( ) / ( 1)  m/s;kv m k m     
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Fig. 4  Influence of the concrete strength grade of the pile 
on the dynamic response at the pile head: (a) velocity ad-
mittance; (b) reflected wave signal 
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Fig. 5  Relationship between the transverse inertia effect 
of the pile and the radial inhomogeneity of the surround-
ing soil: (a) velocity admittance; (b) reflected wave signal 
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Case b:  s 31800 100( ) / ( 1)  kg/m ,k m k m      

 s 150 100( ) / ( 1)  m/s;kv m k m     

Case c:  s 31800 150( ) / ( 1)  kg/m ,k m k m      

 s 150 150( ) / ( 1)  m/s.kv m k m     

 
Fig. 6 shows the influence of the transverse in-

ertia effect on the dynamic response at the pile head 
with different strengthening degrees of the sur-
rounding soil in the radial direction. It can be noted 
from Fig. 6a that with the increase of the strengthen-
ing degree of the surrounding soil, the oscillation 
amplitude of the velocity admittance decreases, and 
the decrease rate of the resonant frequencies becomes 
slightly less notable. Fig. 6b shows that the influence 
of the transverse inertia effect tends to be weakened 
gradually with the increase of the strengthening de-
gree of the surrounding soil. 

4.2.3  Influence of the weakening degree of the sur-
rounding soil 

In this section, the soil parameters decrease radi-
ally inwards from the outmost zone in three cases, viz. 
cases A, B, and C, in which the weakening degree of 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the soil increases. The outer radius of the disturbed 
region is 0.5 m. In the three cases, parameters of each 
soil zone are set as 

 

Case A:  s 31800 30( ) / ( 1)  kg/m ,k m k m      

  s 150 30( ) / ( 1)  m/s;kv m k m     

Case B:  s 31800 60( ) / ( 1)  kg/m ,k m k m      

 s 150 60( ) / ( 1)  m/s;kv m k m     

Case C:  s 31800 90( ) / ( 1)  kg/m ,k m k m      

 s 150 90( ) / ( 1)  m/s.kv m k m     

 
As shown in Fig. 7, as the weakening degree of 

the surrounding soil increases, both the decreasing 
trend of the resonant frequencies of the velocity ad-
mittance and the delay of the reflected signal from the 
pile tip become more apparent. 

4.2.4  Influence of the strengthening range of the 
surrounding soil 

In the following analysis, the mass density and 
shear wave velocity of the outer undisturbed soil zone 
are 1800 kg/m3 and 150 m/s, and increase linearly 
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Fig. 7  Influence of the weakening degree of the sur-
rounding soil on the dynamic response at the pile head: 
(a) velocity admittance; (b) reflected wave signal 
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Fig. 6  Influence of the strengthening degree of the sur-
rounding soil on the dynamic response at the pile head: 
(a) velocity admittance; (b) reflected wave signal 
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radially inwards to 1850 kg/m3 and 200 m/s, respec-
tively; the strengthening range of the surrounding soil 
is b=0 m, 0.25 m, or 0.5 m, in which b=0 m means that 
the soil is radially homogeneous. 

Fig. 8 shows the influence of the transverse in-
ertia effect on the dynamic response at the pile head 
with different strengthening ranges of the surrounding 
soil. It can be noted from Fig. 8a that as the 
strengthening range of the surrounding soil increases, 
the oscillation amplitude of the velocity admittance 
decreases. However, when the strengthening range 
reaches to 0.25 m, its further increase has little in-
fluence on the velocity admittance especially in the 
high frequency domain, which means that the soil 
adjacent to the pile has more influence on the dy-
namic characteristics of the pile than that of the 
far-field. This principle can also be supported by the 
decrease of the amplitude of the reflected signal 
shown in Fig. 8b. It can also be seen that the influence 
degree of the transverse inertia effect has a slight 
decrease with the increase of the strengthening range 
of the surrounding soil. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.5  Influence of the weakening range of the sur-
rounding soil 

 
In this section, the mass density and the shear 

wave velocity of the outer undisturbed soil zone are 
1800 kg/m3 and 150 m/s, and decrease linearly radi-
ally inwards to 1750 kg/m3 and 100 m/s, respectively; 
the weakening range of the surrounding soil is b=0 m, 
0.25 m, or 0.5 m. 

Fig. 9 also shows that it is the soil adjacent to the 
pile that greatly affects the dynamic characteristics of 
the pile rather than that of the far-field. In addition, 
the influence degree of the transverse inertia effect 
has a slight increase as the weakening range of the 
surrounding soil increases. 
 
 
5  Comparison with other solutions 

 
Li et al. (2005) conducted an in situ test by using 

the low strain reflected wave method to detect the 
length of a large diameter end-bearing pile. The 
equipment used for this test included a portable 
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Fig. 8  Influence of the strengthening range of the sur-
rounding soil on the dynamic response at the pile head: (a) 
velocity admittance; (b) reflected wave signal 
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Fig. 9  Influence of the weakening range of the surround-
ing soil on the dynamic response at the pile head: (a) ve-
locity admittance; (b) reflected wave signal 
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computer equipped with a data acquisition board and 
signal conditioning card, an accelerometer, and a 
small handheld hammer. Before the test, the pile head 
was cleaned and leveled. The schematic of the test is 
shown in Fig. 10. First, the accelerometer connected 
to the computer is placed on the pile head. Then, the 
handheld hammer is used to impact the pile head to 
produce a longitudinal low-strain stress wave that 
transmits along the pile shaft. Finally, the reflected 
signal containing the information of pile length and 
pile integrity is captured by the accelerometer and 
transmitted to the computer. Soil-pile parameters are 
shown as follows: length, diameter, longitudinal wave 
velocity, and Poisson’s ratio of the pile are 5.1 m, 1 m, 
3500 m/s, and 0.25, respectively; shear modulus and 
Poisson’s ratio of the surrounding soil are 42.9 MPa 
and 0.45, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The calculated curve is derived based on the 
solution proposed in this paper, and is compared with 
the measured curve and those obtained by other so-
lutions. As shown in Fig. 11, the peak times of the 
calculated reflected signals given in this paper and Li 
et al. (2005) are consistent, and agree well with the 
measured result, demonstrating that the time lag of 
the reflected signal (i.e., the decrease of the wave 
velocity) caused by the dispersion effect of the large 
diameter pile can be approximately reflected by con-
sidering its transverse inertia effect. It can also be 
seen that if the decrease of the wave velocity is not 
considered, the pile length calculated by the 

peak-to-peak method will be longer than its actual 
value, and the error is about 0.2 m, which cannot be 
neglected for a 5.1-m long pile. As the material 
damping of the pile is not considered, the amplitude 
of the reflected signal in Li et al. (2005)’s calculated 
curve is much bigger and the oscillation following the 
reflected signal is much stronger than that for this 
paper and the measured result. In addition, such lim-
iting assumptions as homogeneous soil and a fixed 
pile tip made by Li et al. (2005) can be overcome by 
the solution proposed in this paper. 

The obvious oscillation of the measured curve 
can be observed now to be around t=0.5 ms while this 
phenomenon is not notable in the calculated curves. 
As the pile hole is artificially dug and the pile is quite 
short, the cross section of the pile shaft is less likely 
changed. As a result, the oscillation of the measured 
curve may be caused by the factors during the test, 
such as the materials of the handheld hammer and the 
position of the accelerometer. After all, it does not 
interfere with the detection of the pile length.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  Conclusions 
 
By utilizing the 3D axisymmetric model pre-

sented in this paper, the analytical solution in the 
frequency domain and the semi-analytical solution in 
the time domain of the vertical vibration of a large 
diameter pile embedded in inhomogeneous soil are 
obtained by considering its transverse inertia effect. A 
parametric analysis is conducted to investigate the 
influence of the transverse inertia effect on the dy-
namic response of the pile and its relationship with 
the pile parameters and the radial inhomogeneity of 
the surrounding soil.  

Fig. 10  Schematic of the field test 
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Fig. 11  Comparison of the calculated results and the 
measured result 
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When considering the transverse inertia effect, 
the decrease of the resonant frequencies of the veloc-
ity admittance is observed and becomes greater for 
higher frequencies. The influence on the dynamic 
response in the time domain is mainly shown in such 
aspects as the impulse width increase, the amplitude 
decrease, and the time lag of the reflected signal from 
the pile tip as well as the appearance of the oscillation 
after the reflected signal. It is worth noting that the 
delay of the reflected signal from the pile tip may lead 
to the overestimation of the pile length, which to some 
extent, interferes with the dynamic testing of the pile. 

The influence of the transverse inertia effect on 
the dynamic response at the pile head is affected by 
pile parameters and the radial inhomogeneity of the 
pile surrounding soil. To be specific, the influence 
degree increases with the increase of the pile radius, 
Poisson’s ratio, weakening range, and weakening 
degree of the pile surrounding soil, while it decreases 
with the increase of the concrete strength grade of the 
pile, the strengthening range and strengthening de-
gree of the pile surrounding soil. 

Comparison with the measured results and two 
other calculated results shows that the proposed 
model is effective to simulate the vertical vibration of 
a large diameter pile. 
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中文概要 
 

题 目：基于 Rayleigh-Love 杆理论的非均质土中大直径

桩纵向振动 

目 的：研究大直径桩横向惯性效应对其动力响应的影响

以及与土体径向非均质性的关系。 

创新点：1. 采用 Rayleigh-Love 杆模型模拟大直径桩，考

虑其横向惯性效应；2. 所建立的桩土相互作用模

型能同时考虑土体的竖向成层性和径向非均 

质性。 

方 法：1. 采用 Rayleigh-Love 杆模型模拟大直径桩，建

立桩土体系纵向振动控制方程（公式（1）和（4））；

2. 通过求解方程，得到桩顶纵向振动频域响应解 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

析解（公式（15））和时域响应半解析解（公式

（16））；3. 通过参数分析的方法，研究横向惯性

效应对桩顶响应的影响以及与桩身参数和桩周

土径向非均质性的关系（图 2~9）；4. 通过与工程

实例的对比，证明本文解的合理性（图 11）。 

结 论：1. 考虑横向惯性效应时，桩底反射信号后移，导

致桩的计算长度大于其实际值；2. 横向惯性效应

的影响程度随着桩身半径、泊松比、桩周土软化

范围和软化程度的增大而增强，随着桩身混凝土

强度等级、桩周土硬化范围和硬化程度的增大而

减弱；3. 考虑横向惯性效应时的计算曲线与实测

曲线更为吻合。 

关键词：大直径桩；纵向振动；横向惯性效应；

Rayleigh-Love 杆模型；非均质土 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


