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Abstract:    The aim of this study is to explore the potential of various plant ramifications as concept generators for creating a 
brand topology optimization solution for stiffness design of continuum structures under harmonic force excitations. Firstly, a 
mathematical model is built to identify analytical laws that underlie the optimality of the effective but individual design rules of 
existing leaf venation morphogenesis. Then, a new evolutionary algorithm is developed to find the optimal topology of stiffened 
structures under harmonic force excitations. Candidate stiffeners are treated as being alive, growing at locations with a maxi-
mum displacement response gradient along the structural surface. Since the scale of the candidate stiffeners can be adaptively 
expanded or reduced during the simulation, computational resources could be saved, thereby enhancing the flexibility of topolo-
gy optimization. Finally, the suggested approach is applied to a case study in which the displacement amplitude at specified 
locations is defined as the objective and the volume of added stiffeners as the constraint. The simulation process shows how the 
stiffness design of continuum structures can be conducted automatically using this bionic approach. 
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1  Introduction 
 

Vibration is inevitable in working mechanical 
structures and has distinctly negative effect on their 
performances, which raises the issue of structural 
vibration control. Common approaches to vibration 
control usually involve developed structures, apply-
ing passively or actively controlled friction dampers 
(Gaul and Becker, 2014; Zhang et al., 2014) or 
changing the working parameters of machines 
(Meehan, 2002; Bhogal et al., 2015). Some studies 

have focused on reliability computation (Viadero et 
al., 1994) and chatter reliability prediction of me-
chanical systems by taking the uncertainty of system 
parameters into account (Graham et al., 2013; Liu et 
al., 2016). However, in such approaches, the materi-
al of the mechanical structures is not fully exploited 
for reducing the dynamic response of structures. At a 
more fundamental level, the dynamic performance 
could be taken into account at a very early stage of 
the development of mechanical structures, namely 
the structural design stage. 

An alternative approach for structural dynamic 
performance design is to improve structural natural 
frequencies (Senba et al., 2013; Rashid et al., 2014; 
Wetherhold and Padliya, 2014) so that the excitation 
frequency can be avoided and the structural dynamic 
response can be indirectly reduced. However, in 
practical engineering environments, there is always 
more than one excitation source with different  
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excitation frequencies, and it is usually difficult to 
avoid all the excitation frequencies. On the other 
hand, design approaches aiming to decrease directly 
the structural response are much more straightfor-
ward and have drawn the attention of researchers. 
Palmer and Paez (2011) studied the peak response 
probability distribution of optics under the random 
excitation of the housing, which could provide guid-
ance for the design of optomechanical sub-assemblies. 
Li et al. (2011) used the Riccati transfer matrix 
method to develop a dynamic model to predict the 
natural frequencies and structural responses of large-
scale rotary machines subject to axial excitation. By 
considering the displacement and acceleration re-
sponses, Li et al. (2013) studied the effectiveness of 
the market-based control (MBC) strategy for vibra-
tion control of a large-scale engineering structure. 

Stiffened shell/plate structures are widely used 
in mechanical structures because of their advantage 
in improving structural static and dynamic perfor-
mance with low material consumption. The layout of 
stiffeners greatly influences structural mechanical 
performance. In various structural design methods, 
topology optimization is featured by allowing for 
increasingly efficient designs with a minimal priori 
knowledge about the structural configuration. A kind 
of widely used topology optimization method for 
stiffened shell/plate structure design is continuum 
topology optimization. With this method, holes or 
voids are introduced into the continuum structure to 
find the optimal material distribution. By utilizing 
the polynomial interpolation scheme (PIS), Liu et al. 
(2013; 2015) proposed an efficient topology optimi-
zation method to minimize the displacement re-
sponse for structures subjected to low- and high-
frequency harmonic excitations. Tsai and Cheng 
(2013) proposed a topology optimization technique 
to design a structure with maximal fundamental ei-
genfrequency and desired eigenmode shapes by us-
ing the solid isotropic method with penalization 
(SIMP) method. 

Although continuum topology optimization ap-
proaches can provide reasonable structural topology 
for reference by designers, most have the drawbacks 
of a huge number of design variables and a vague 
material distribution result. Additional post-
processing has to be performed to distinguish the 
stiffener layout from the vague material distribution. 

Apart from the additional computation cost, the 
structural mechanical performance would be reduced 
due to the elimination of key structural features if the 
post-processing is not performed appropriately 
(Zhou and Rozvany, 1991; Haber et al., 1996). 

As we rack our brains to overcome the above 
obstacles in stiffener layout design with topology 
optimization, nature may provide us with some ideas 
as it has done in other disciplines (Benz et al., 2012; 
Li et al., 2012; Díaz-Tena et al., 2014). Branching 
configurations are a very common kind of structural 
pattern in both the biological and non-biological 
worlds, and are usually formed through a gradual 
growth process adaptive to the surrounding envi-
ronment. Among various branching configurations in 
nature, leaf venation of plants could be the most sim-
ilar to the stiffeners of mechanical structures in both 
structural and functional aspects. When considered 
from a mechanics viewpoint, leaf venation and stiff-
eners are both embedded into a base plate to 
strengthen it to bear dynamic load while consuming 
as little material as possible. Both leaf venation and 
stiffeners have distinct layout patterns. By mimick-
ing the configuration of plant leaf venation, Liu et al. 
(2009) proposed an adaptive structural design meth-
od for a blade working in a random wind field. By 
simulating the branching systems in nature, Ding and 
Yamazaki (2004) developed a simple growth tech-
nique for stiffener layout design by modifying the 
well-known ground structure method, which has 
been applied successfully in both static and dynamic 
scenarios. Such a growth-based concept was later 
extended by the authors (Li et al., 2013a; 2013b) to 
solve minimum compliance problems under single 
and multi-loading conditions. The literature on bio-
inspired topology optimization and the technologies 
that underpin it are growing fast. However, design 
problems related to dynamic responses have been 
relatively less well addressed than those related to 
fundamental frequencies in spite of their potential 
significance. The work described in this paper was a 
natural expansion of the authors’ previous work, 
from static to more complex dynamic scenarios. The 
mathematical model is further developed to cater for 
stiffener layout design aiming for optimal structural 
dynamic displacement response at low material ex-
pense. The simulation algorithm is also planned 
more elaborately in terms of the growth competition 
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step that is decoupled into two sub-steps: competi-
tion for growth orientation and then competition for 
growth volume. As a consequence, growth material 
in each growth iteration is fully utilized and allocat-
ed only to the most suitable growth orientations, 
which more closely resembles the growth of leaf 
venation in nature. Possible applications of the pro-
posed approach could be the vibration-proof design 
of stiffened structures in machine tools (Whalley et 
al., 2011), rib layout of flexible thin walls (Herranz 
et al., 2005; Campa et al., 2011), or cable structures 
in engineering structures (Li et al., 2013).  

The excitation force of most mechanical struc-
tures can be simplified as a cyclic force which can be 
converted into the superimposition of multiple har-
monic forces through Fourier expansion. Therefore, 
the impact factors of structural displacement re-
sponse under harmonic force are analyzed first to 
identify which factors should be considered in stiff-
ener layout design. Then, a mathematical growth 
model is built and the criterion for optimal growth is 
developed. Based on this, an algorithm is developed 
for the adaptive growth of stiffeners under harmonic 
force. Finally, numerical examples are described to 
validate the effectiveness of the approach proposed 
in this study.  
 
 
2  Structural displacement response under 
harmonic excitation 

 
The dynamic load of mechanical structures can 

be expressed as the superimposition of multiple 
harmonic forces through Fourier series. Therefore, a 
harmonic force is adopted to evaluate the influences 
of an exciting force on structural displacement re-
sponse. A model in the shape of a willow leaf is se-
lected as the analysis object. The amplitude, direc-
tion, acting position, and frequency of a harmonic 
force can be considered as key elements of the force. 
To study the influence of these four elements, modal 
analysis and dynamic analysis of a leaf model are 
first conducted. The material of the leaf model is 
assumed to be isotropic, with an elastic modulus of 
5.4 MPa, Poisson’s ratio of 0.33, and a density of 
1800 kg/m3. Omitting leaf venation, the willow leaf 
model can be simplified as a thin plate and discre-
tized by shell elements. In both modal analysis and 

dynamic analysis, all the degrees of freedom (DOFs) 
of the lower end of the model are constrained to 
simulate the function of the leaf petiole. The two 
order modal shapes of the leaf model are shown in 
Fig. 1. The first order modal shape is the z-
directional swing movement of the leaf with a natu-
ral frequency of 0.27898 Hz. The fourth order modal 
shape is the x-directional swing movement of the 
leaf with a natural frequency of 4.3819 Hz. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the dynamic analyses, a set of harmonic 

forces f(t)=9cos(2πft)×10−7 N are applied to the up-
per free end of the leaf model with the excitation 
frequency f changing from 0 to 10 Hz. The forces are 
applied along the vertical and horizontal directions, 
respectively. The amplitudes of the displacement 
responses in the DOF where the harmonic forces are 
applied are shown in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
For a leaf bearing a vertical force, the displace-

ment response amplitude peaks at an excitation fre-
quency of about 0.25 Hz, close to the first order  

Fig. 1  Finite element (FE) model and modal shapes of the 
leaf model  

Fig. 2  Displacement response amplitudes under the x- or 
z-directional excitation 
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natural frequency of the leaf, while for a horizontal 
force, the amplitude peaks at a frequency close to the 
fourth order natural frequency. Therefore, both the 
frequency and direction of the exciting force should 
be taken into account when formulating the mathe-
matical model directing the growth simulation. To 
study the influence of the four key elements of the 
exciting force quantitatively, the displacement re-
sponse of the leaf model is formulated through mode 
analysis method. The FE leaf model can be consid-
ered as a multi-DOF system, whose differential 
equations of motion under a harmonic exciting force 
are coupled with each other and can be expressed as 

 
( ) ( ) ( ) ( ),t t t t  Mx Cx Kx f                  (1) 

 
where M represents the mass matrix, C represents 
the damping matrix, K represents the stiffness ma-
trix, f(t)=FAcos(ω*t) is the vector of the exciting 
force, whose angular frequency is ω* and amplitude 
vector is FA, and x(t) is the vector of the structural 
displacement response.  

The displacement vectors satisfying Eq. (1) 
usually consist of two parts: the transient response 
and the steady-state response. As the steady-state 
response is caused by the exciting force and the tran-
sient response would diminish to zero with time due 
to damping, only the steady-state displacement re-
sponse is considered when solving Eq. (1) and con-
ducting the stiffener layout design.  

The motion differential equation of the free vi-
bration of the leaf model without damping is 

 
( ) ( ) .t t Mx Kx 0                         (2) 

 
The characteristic equation of the free vibration 

leaf without damping is 
 

2( ) , K ω M Φ 0                          (3) 

 
where Φ=[φ1, φ2, …, φn] is the modal matrix, φi is 
the ith order mode shape, n is the number of struc-
tural DOFs, and ω=[ω1, ω2, …, ωn] is the vector of 
the natural angular frequency of the leaf model.  

As the material of the leaf model is supposed to 
be isotropic, according to the mode analysis method, 

the displacement response can be expressed as 
 

( ) ( ),t tx Ψξ                              (4) 

 
where Ψ=[ψ1, ψ2, …, ψn] is the matrix of the regular 

modal, T
s s s sψ φ φ Mφ  is the sth order regular 

mode shape, and ξ(t) is the vector of the modal  
coordinate.  

Therefore, the matrix of the regular modal also 
satisfies 

 
2( ) . K ω M Ψ 0                          (5) 

 
The matrices of the mass, stiffness, and regular 

modal have the following relationship:  
 

T ,Ψ MΨ I                                     (6a) 
T diag[2 ],s s Ψ CΨ                     (6b)

 T 2diag[ ],sΨ KΨ                          (6c) 

 
where I is the identity matrix, and ζs is the sth order 
modal damping ratio of the leaf model. 

Left multiplying Eq. (1) by ΨT and applying 
Eqs. (4) and (6a) to Eq. (6c), we can obtain 

 
2 Tdiag[2 ] diag[ ] ( ) ( ).s s s t t    ξ ξ ξ Ψ f R  

   
(7) 

 
Eq. (7) represents the motion differential equa-

tions of a set of a decoupled single DOF system 
whose frequency response function matrix is 
 

  12 2
d ( ) diag[ ] ( ) jdiag[2 ] ,i i i    

   ξH I
 

(8) 
 
where j is the imaginary unit. 

Therefore, the frequency response function ma-
trix of the leaf model is 

 

 

T
d d

12 2 T

T

2 2
1

( ) ( )

diag[ ] ( ) jdiag[2 ]

.
( ) j2

x

i i i

n
i i

i i i i
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    

    

 
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 




  


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H ΨH Ψ

Ψ I Ψ

ψ ψ

 

(9) 
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The displacement response vector of the leaf 
model is  

 

d

T

A2 2
1

( ) ( ) ( )

cos( ).
( ) j2

n
i i

i i i i

t t

t




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


 





 
 

xx H f

ψ ψ
F

    (10) 

 
When the exciting force acts only on the pth 

DOF, the displacement response of the lth DOF is 
 

A2 2
1

( ) cos( ),
( ) j2

n
il ipp p

l
i i i i

t F t
 


    


 



 
 x

  
(11) 

 
where ψil and ψip are the lth and pth elements of the 

regular modal ψi, respectively, and A
pF  is the ampli-

tude of the exciting force. 
The amplitude of the above displacement re-

sponse of the lth DOF is 
 

   
A2 22 21

.
( ) 2

n
il ip p

l
i

i i i

X F
 

     

 
 

        (12) 

 
From Eq. (12), a large displacement response 

appears only if the excitation frequency, ω*, is close 
to the sth order natural angular frequency, ωs, at 

which A
p

sl sp F   is larger than those at other natural 

angular frequencies. Structural vibration-proof de-
sign by improving lower order natural frequencies 
fails to include the impact of the direction of the ex-
citing force on the structural dynamic response. 
 
 
3  Stiffener layout design using an evolu-
tionary algorithm 

3.1  Growth simulation 

Since the growth of leaf venation should be 
adaptive to random wind in the environment, its 
growth mechanism could probably give us inspira-
tion for stiffener layout design for vibration-proof 
purposes. After observing the configurations of dif-
ferent types of leaf venation, we conclude that the 
growth of leaf venation can be considered as a pro-
cess of iteratively solving the following two prob-
lems. One is about growth: finding the growth direc-

tions and calculating the geometrical dimensions of 
leaf veins. The other is about branching: deciding 
whether and how to branch. To bridge the gap be-
tween inspiration and practical application, the 
growth mechanism of leaf venation is analyzed from 
the viewpoint of mathematical and optimal design. 
In our FE model (Fig. 3) the leaf lamina is represent-
ed by a base plate discretized into 4-node shell ele-
ments. Each shell element is reinforced by leaf veins, 
referred to as stiffeners, and divided by 2-node beam 
elements. The eight beam elements extending from 
each sprouting point denote different potential 
growth directions for stiffeners. The cross-sections 
of beam elements are rectangular, their heights are 
constant, and their widths (ti) are selected as varia-
bles in the growth simulation. In the initial growth 
stage, the stiffeners can be neglected since the 
widths of the beam elements are very small. 

The growth model of leaf venation can be de-
scribed as 

 

 T1 2

1 g s g
1

L U

find , , , ,
min ,

s.t. ( ) ( ) 0,

0 ,

N

l
N

i i
i

t t t
X

g W W h l t W




    

  



t

t t

t t t



     (13) 

 
where t is an N-dimensional design vector; N is the 
total number of stiffeners to grow; ti is the width of 
the ith stiffener; Xl is the growth objective function, 
i.e., the displacement response amplitude of the lth 
DOF of the leaf model; g1(t) is the constraint func-
tion; W(t) is the total weight of material allocated to 
stiffeners at one growth step; Wg is the upper limit of 
W(t); tL and tU are the lower and upper limits of t, 
respectively; ρ is the material density of stiffeners; hs 
and li are the constant height and length, respectively, 
of the ith stiffener. 

To find the optimal solution t*, the Lagrange 
function is employed, 

 
3

T

1

( , ) ( ) ( ) ( ) ( ),l l i i
i

L X X g


   t Λ t Λ g t t t     (14) 

 
where λi (i=1, 2, 3) are Lagrange multipliers, Λ=[λ1, 
λ2, λ3]

T, g2(t)=tL−t, g3(t)=t−tU, and g(t)=[g1(t), g2(t), 
g3(t)]

T. 
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According to the Kuhn-Tucker conditions, un-

der the circumstance of optimal solution t*, the fol-
lowing formulas must be satisfied: 

 
U
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L U
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W W
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t
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t

t t t t
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(15) 

 

When tL<ti<tU, multiplying ti by 1
1

l

i i

X g

t t


 


 
 

=0 leads to 
 

1
1

( )
.

( )
i l i

i i

t X t

t g t


  


 
                         (16) 

 
The partial derivative of the constraint function is 

 

g1
s

( )
, 1, 2, , .i

i i

W Wg
h l i N

t t


 
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 
       (17) 

 

Set it  as the generalized width of the ith stiff-

ener, which is the negative product of stiffener width 
and the sensitivity of the objective function with re-
spect to the width: 

 

.l
i i

i

X
t t

t


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
                            (18) 

 
 
 
 
 
 
 
 
 
 
 

 
 

Applying Eqs. (17) and (18) to Eq. (16), the 
Lagrange multiplier λ1 can be expressed as 

 

1
1

s 1 1 s

1 sum

s sum
s

1

.

i

i i
N

i
N i

N
N N

i i
i
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 





   
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

 

               
(19) 

 
The width of the ith stiffener can be obtained 

from 
 

sum
s sum

1
, 1, 2, , .i

i
i

t
t W i N

h l t
 
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 

           (20) 

 
Eq. (20) shows that the width of the ith stiffener 

is proportional to its generalized width. Therefore, 
stiffeners must grow along the direction with large 
generalized width to optimize structural dynamic 
performance. The larger the generalized width, the 
faster the stiffener grows in that direction. 

When iterating, Eq. (20) can be rewritten as 
 

( )

( 1) sum

s sum

, 1, 2, , .

k

k i
i

i

W t
t i N

h l t
  
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 

         (21) 

 

3.2  Design procedure 

After characterizing the optimality of leaf vena-
tion growth, an evolutionary algorithm is proposed 
to implement stiffener growth adaptive to the excit-
ing force. During growth, candidate stiffeners  

Fig. 3  FE model for growth simulation of plant leaves
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compete with each other for limited growth material 
and as a result some stiffeners grow wider than oth-
ers. According to the results of this competition, the 
stiffener layout is gradually configured. The design 
flow adopting the proposed algorithm includes three 
basic steps: initialization, competition, and reconfig-
uration (Fig. 4). 

3.2.1  Initialization 

The growth model for stiffener layout design is 
built and the sprouting point set {B} and candidate 
stiffener set {C} are initialized. Meanwhile, the pa-
rameters to control stiffener growth are specified, 
including tb and td (the threshold widths of branching 
and degenerating, respectively), Wg (the upper limit 
for the weight increment in one growth step), Wp (the 
weight of the base plate), and Wr (the upper limit for 
the total weight increment). 

3.2.2  Competition 

The candidate stiffeners are ready to grow and 
compete with each other for limited growth material 
(Wg). The competition strategy consists of two sub-
steps, i.e., competitions for growth orientation and 
growth volume (Fig. 5). 

Sub-step A: competition for growth orientation 
1. Set the widths of all candidate stiffeners as 

design variables in sub-step A (t1), t1=[t1, t2, …, tl]
T, 

and then obtain the optimal solution t1* by solving 
the constrained extremal problem Eq. (13) according 
to Eq. (21).  

2. Select the optimal orientation from the solu-
tion set t1* based on the pre-determined threshold 
value (tb). If the width of a candidate stiffener is 
larger than tb, we consider it as a winner in the com-
petition for growth orientation, and the placing direc-
tion of this stiffener is regarded as the sprouting di-
rection for the following competition. 

Sub-step B: competition for growth volume 
1. Re-arrange the candidate stiffeners along the 

optimal growth orientation obtained in sub-step A. 
2. Set the widths of the remaining stiffeners as 

new design variables in sub-step B (t2), t2=[ti, …, 
tj, …, tk]

T (i<j<k<l), and then obtain the optimal so-
lution t2*, by solving the constrained extremal prob-
lem again according to Eq. (21). 

3. t2* stands for the optimal material allocation 
in the simulation of growth competition. 

3.2.3  Reconfiguration 

After the growth competition, candidate stiffen-
ers have been allocated different amounts of material. 
To concentrate growth material in the best growth 
directions, branching and degenerating operations 
are carried out. If the width of a candidate stiffener is 
no less than the threshold value for branching, tb, the 
stiffener survives and will branch. Its end nodes are 
added to the set {B} and the stiffeners around the 
new sprouting points to the set {C}. In contrast, if 
the stiffener width is no larger than the threshold 
value for degenerating, td, it will degenerate. Its end 
points and the relevant stiffeners are deleted from the 
sets.  

Competition and reconfiguration together make 
up one growth step and then iterate till the final 
weight increment ΔW reaches the upper limit Wr. 
Finally, an optimal stiffener layout can be obtained. 

Let 
1/22 * 2 2 * 2( ( ) ) (2 )s s s sD     


     . Ac-

cording to Eq. (12), the growth objective function 
can then be rewritten as  

 

A
1

.
n

p
l sl s sp

s

X D F 


                        (22) 

 
The sensitivity of the growth objective function 

with respect to the design variable ti is 
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.
n
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X D
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t t t t
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(23) 

 
The derivative of Ds with respect to the ith de-

sign variable is  
 

 
2

3 2 2 ( )
( ) (2 ) ,s s s

s s s s
i i i

D
D

t t t

 
        

         

          
(24) 

 

where  
2( )1

.
2

s s

i s it t

 


 
 

 
                       (25) 

 
By differentiating Eq. (5), we obtain 
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Left multiplying Eq. (26) by T
sψ , the derivation 

of the square of the natural angular frequencies can 
be obtained:  
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T 2( )

.s
s s s

i i it t t




   
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K M
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The derivative of the regular modals can be 
solved by employing the incomplete modal superpo-
sition solution (Alvin, 1997), in which the derivative 
can be expressed as the superposition of the first 
several regular modals. 

Fig. 5  Strategy for growth competition
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Fig. 4  Flowchart of stiffener layout design using the proposed algorithm 
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where the derivatives of the stiffness matrix and 
mass matrix are presented in Appendix A. 
 
 
4  Numerical example 
 

A cantilever beam is chosen as the design ob-
ject to validate the proposed evolutionary algorithm. 
The size of the cantilever beam is 120 mm×80 mm 
×0.3 mm with its left end fixed (Fig. 6a). The mate-
rial properties of the beam are as follows: the elastic 
modulus is set as 2.06×105 MPa, Poisson’s ratio is 
0.3, and the density is 7800 kg/m3. The first two or-
der natural frequencies of the beam are 3.60 kHz and 
10.7 kHz, respectively. The first order mode of the 
beam is the swing in the vertical direction (Fig. 6b), 
and the second order mode is the telescopic move-
ment in the horizontal direction (Fig. 6c). The stiff-
ener layout design is conducted with the proposed 
algorithm with a harmonic force applied to the mid-
dle point of the right end of the beam. Six cases are 
studied with the exciting force at frequencies of 0, 
1500, and 3000 Hz, applied along the horizontal (x) 
and vertical (y) directions. 

 
 
 
 
 
 
 
 
 
 
 

 

4.1  Stiffener layout design under vertical  
excitation 

A harmonic force, f(t)=cos(2πft) N, is applied 
along the vertical direction. The height of the candi-
date stiffeners is set as 0.9 mm. The initial width of 
stiffeners and the threshold value for degenerating, td, 
are 0.001 mm and the threshold value for branching, 
tb, is 6 mm. The upper limit for material consump-
tion by stiffeners, Wr, is 1.2 times the weight of the 
initial cantilever beam, Wp. Fig. 7 shows the growth 
processes of stiffeners under harmonic force at dif-
ferent frequencies in the vertical direction, the first 
order natural frequencies of the beams during the 
growth process, and the displacement amplitude of 
the force acting point. 

Since the movement of the cantilever beam is 
along the vertical direction in its first order mode, a 
vertical exciting force has the potential to cause res-
onance as its frequency approaches the beam’s first 
order natural frequency. Therefore, as the excitation 
frequency increases from 0 Hz to 3000 Hz, more 
growth material is allocated close to the fixed side of 
the beam to improve the corresponding natural  
frequency. 

The changes in the amplitude of the displace-
ment response of the initial and optimized cantilever 
beams with excitation frequency are shown in Fig. 8. 
Compared with the initial cantilever beam, the dis-
placement response amplitude of the optimized 
beams is clearly reduced. In addition, all optimized 
beams effectively avoid the appearance of resonance 
under their corresponding exciting forces. The effec-
tiveness of the proposed method is thus proved. 

4.2  Stiffener layout design under horizontal  
excitation 

The same harmonic force is applied in the hori-
zontal direction, and the parameters controlling the 
growth of stiffeners are the same as those in Section 
4.1. The growth processes of the stiffeners are shown 
in Fig. 9 (p.943). 

The stiffener growth processes under horizontal 
harmonic forces with different frequencies are al-
most the same. The relative difference in the second 
order natural frequencies among the optimized 
beams is very small. The main reason for this simi-
larity is that the frequencies of the exciting forces are  

(a)                              (b)                          (c) 

Fig. 6  Simulated cantilever beam: (a) mesh of the canti-
lever beam; (b) first order mode; (c) second order mode
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far lower than the second order natural frequency of 
the initial cantilever beam. The exciting forces could 
hardly cause resonance even if they are applied in 
the horizontal direction, the same direction as the 
motion in the beam’s second order mode. 

The changes in the amplitude of the displace-
ment response of the initial and optimized cantilever 
beams with excitation frequency are shown in 
Fig. 10. Similar to the design examples under verti-
cal excitation, the displacement response amplitude  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of optimized beams in resonance is reduced due to 
the support of stiffeners. But the increases in the 
second order natural frequencies of the optimized 
beams are not as great as those under vertical excita-
tion, as a result of there being less need to avoid ex-
citation frequencies. 
 

 
5  Conclusions 
 

In this study, we considered the stiffener layout 
design problem of stiffened plate/shell structures 
subjected to a harmonic exciting force. By using the 
adaptive growth mechanism of leaf venation, an evo-
lutionary algorithm was proposed with the objective 
to minimize the displacement response amplitude at 
specified locations. Based on the results presented in 
this paper, the following conclusions can be drawn: 

1. Both the direction and frequency of the  
exciting force influence the structural displacement 
response. Therefore, both factors should be consid-
ered in stiffener layout design for vibration-proof 
purposes.  

Fig. 8  Comparison of displacement amplitudes of the 
initial and optimized structures 

Fig. 7  Stiffener growth processes under a vertical harmonic force 
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2. The growth of leaf venation was analyzed 

from the perspective of optimization, and the equa-
tion governing the growth process was drawn, which 
showed that the growth of leaf veins/stiffeners is 
controlled by a group of variables termed general-
ized widths.  

3. In designing a cantilever beam under har-
monic excitation with the proposed approach, the 
growth of stiffeners shows great adaptiveness to the 
exciting force in terms of the direction and frequency  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of excitation, as expected. All the optimized cantile-
ver beams showed an obvious improvement in dy-
namic performance. Therefore, the proposed ap-
proach has the potential to facilitate vibration-proof 
design of stiffened plate/shell structures. Although 
the optimized beams have complex layouts, they 
could be conveniently manufactured using additive 
manufacturing technologies. 

Future work will involve further development 
of the proposed approach by taking chatter reliability 
into consideration and by application to the design of 
structures under more complex excitation. 
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中文概要 
 

题 目：简谐力激励下结构的生长式拓扑优化方法 

目 的：振动在机械结构的工作中难以避免，且会显著

降低机械结构的工作性能。因此，结构动力响

应优化设计就显得尤为重要。本文旨在提出一

种有效的简谐力激励下的结构拓扑优化方法，

通过合理设计结构内加强筋的布局，减小结构

特定位置处的位移响应幅值，提高结构的固有

频率。 

概 要：植物叶脉可以有效地支撑叶片以抵抗自然界中

的风载。本文将植物叶脉分叉构型的最优性用

于简谐力激励下结构的加强筋布局设计。首先

对简谐力激励下结构的位移响应进行分析。在

此基础上，构建以最小化结构特定位置处位移

响应幅值为目标的生长式拓扑优化模型。然

后，从数学优化的角度，分析加强筋的生长应

遵循的规律，提出生长式拓扑优化的数值实现

算法。最后通过数值算例证明了本文所提方法

的有效性。 
关键词：拓扑优化；适应性生长；刚度设计；加强筋布

局；简谐力激励 

 
 
Appendix A 
 

To calculate the sensitivity of the growth objec-
tive function, the derivatives of the stiffness matrix 
and mass matrix of the jth candidate stiffener with 
respect to the ith design variable are needed. When 
j≠i, the derivatives of the matrices are zero. When 
j=i, the derivatives are as follows: 
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